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FLuip Dynamic FLow

The description of the motion of fluids (or fluid flows) with-
out necessarily considering the forces and moments that
cause the motion is called fluid kinematics. The flow of fluid
can be described by two ways: (a) Lagrangian description
and (b) Eulerian description.

Lagrangian Description of Fluid Flow
Here, individual fluid particles are identified (usually by
specifying their initial spatial position of a given time) and
the motion of each particle is observed as a function of time.
Let the position of a fluid particle identified by 7#,, the posi-
tion vector at any time ‘¢’ shall be 7 = r(#%, t),

Where 7 is the position vector of the fluid particle with
respect to a fixed reference point at time ¢. Considering
Cartesian coordinates,

We have
}_"E) = xOf+y0j+Z0k

r=x(r,0f + y(y,0)] + 2(ry,00k = xi +yj + zk

Here, i s ] and k are unit vectors along the x, y, z direc-
tions respectively and r, denotes the point (x, v, z)-

The velocity vector v having the scalar components u,
v and w in the x, y and z directions respectively are given as
follows:

. or
V=—
atr0
~ 0 ~0 ~ 0
A T i
at’(\ at’n at’?v
=ui +vj+wk

The acceleration vector a having the scalar components
a, a, and a_ in the x, y and z directions respectively are
given as follows:
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Eulerian Description of Fluid Flow

Control Volume

Energy in

Control surface
(bouyndary)

Surroundings

Mass out
Mass in

Energy

A control volume is an open system with a boundary called
the control surface. Transfer of mass and energy takes place
across the control surface. A deforming control volume has
a changing volume while the volume of a non-deforming
control volume is fixed.

If V., and Vv, are the velocities of a control volume
and its control surface respectively, then for a fixed non-
deforming control volume: v,, =V, =0 and for a mov-
ing non-deforming control volume: v, = V,.;. A deforming
control volume not only involves a changing volume but
also involves control surface movement.

For a deforming control volume, v, need not necessar-
ily be uniform and if the control volume is also moving,
then v, need not necessarily be identical to v,,,.

In this flow description, a control volume (flow domain)
is defined within the fluid flow region where the flow prop-
erties of interest are described as fields within the control
volume. For each field, a field variable that is a function of
space and time is defined.

ScALAR, VECTOR AND FLow FIELDS

A scalar field is a region where at every point, a scalar func-
tion (scalar field variable) has a defined value e.g., pressure
field of a fluid flow. A vector field is a region where at every
point, a vector function (vector field variable) has a defined
value, e.g., velocity field of a fluid in motion.

A flow field is a region in which the flow properties, i.e.,
velocity, pressure, etc., are defined at each and every point
at any time instant. Two basic and important vector field
variables of a flow are the velocity and acceleration fields.

Velocity Field

For a general three dimensional fluid flow in Cartesian coor-
dinates, the velocity vector is given by:

V= Vim0
u(x,y,z, t)i +v(x,Y,2, t)3'+ w(X,Y,Z, t)lA(
The speed of the fluid,

v=|\7|=\/u2+v2+w2

' A point in the fluid flow field where the velocity vector | .
- is zero is called a stagnation point. '

Fluid Acceleration
Acceleration Field

For a general three dimensional fluid flow in Cartesian coor-

dinates, if v is the velocity field, then the acceleration field
is given by:

v IV IV v

a(x,y,z, t)——+ —+tVv—tw—

ot  dx dy oz

The scalar components of the acceleration vector are:

gy =y M 2y, N
ot ox 9y 0z
dv  dv  dv av
ay=—+u—+v—+w—
ot dx dy 0z
dw  dw
a,=—+u—-=v w
ot ox  dy 0z

Magnitude of the acceleration vector,

|5|=,1a§+a§+a§

Equation (1) can be rewritten as

(1)

Dv
Dt
» 0 d )
The gradient (or del) operator, V =7 — + J—+ +h 2
ox “dy oz

a(x,y,z, t)—a—+(v V)ﬂ ()

and the operator (.V)= @ vo Yo, J

W
ox ay 0z
The components of the acceleration vector in cylindrical
coordinates are:
v ov, vy dv
LY ry Yo YV

Vi ov

I

a,. =

T, e T a0 .
dp =200 4, Vo Vo Vo Vv  dvo
9, 9, r 96 r 20
ovz vz vg dvz vz
a,=—+v,— v, —
ot o r 00 oz

Local and convective derivative
In equation (2), the operator D _ ai.q.(\jﬁ) is called as
Dt

the fotal (of material or substantial derivative. The operator



ai is called the local (or temporal or unsteady) derivative,
¢ -
while the operator (V-V) s called the convective deriva-

tive. The local derivative represents the effect of unsteadi-
ness while the convective derivative represents the variation
due to the change in position of the fluid particle as it moves
through a field with gradient (spatial change).

Local, Convective and Total Acceleration

In equation (2), the term il is called the local (or tem-

poral or unsteady) acceleration whereas the term (v - V)ﬁ
is called the convective (advective) acceleration. Equation
(2) elucidates that fluid particles experience acceleration
due to (@) change in velocity with time (local acceleration)
(b) change in velocity with space (convective acceleration).
The acceleration vector a is called as the fotal (or material)
acceleration.

Total acceleration = Local acceleration + convective
1 acceleration .
~

.
1
1

Solved Example

Example 1: The velocity field of a two dimensional flow
is given by v = 2xti + Zyﬁ, where 7 is in seconds. At =1
second, if the local and convective accelerations at any point
(x, y) are denoted by g, and d, respectively, then:

(A) @, =2a, (B) a, =a
©) d =d =0 (D) &, =23,
Solution:
From the velocity field description
u = 2xt
v =2yt
x — component of the local acceleration, ag = 8_u =2x
y — component of the local acceleration, ot
v
aypy = E =2y
a = a(!xi + a[,y’j
=2xi +2yi (1)
x — component of the convective acceleration,
udu  vou
ey == T —=—
’ ox  dy
=2xt X2t + 2yt x 0
= 4x1
vy — component of the convective acceleration,
_odv ov
ac,y =u g +v g
=2xt X 0+ 2yt X 2t
= 4yt

a, = aC‘x1 +ac,yj

= 4x1%i + 4y12}
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Att=1 second,
d, = 4xi +4yj (@)
From equations (1) and (2), we have
a, =2a;.
Example 2: A two-dimensional velocity field is given by
V= xyf + 3xt}', where x and y are in metres, ¢ is in seconds

and v is in metres per second. The magnitude of the
acceleration at x =1 m, y = 0.5 m and # =2 secs is

(A) 6.25 m/s? (B) 8.663 m/s?
(C) 12.25 m/s? (D) 6 m/s?
Solution:
From the velocity field description,
u=xy
v =3xt
Now, a, = a_u+ua_u+va_u
t  oJx dy

=04+xyxXy+3xt+x

=xy? + 3x%t
Now, a, = @+u& vﬂ

=3x+xyx3t+3xtx0
=3x+ 3xpt

Atx=1m,y=05mand =2 sec,
a =1x(0.52+3x1x2

=6.25 m/s?
ay:3><1+3><1><0.5><2:6

Magnitude of the acceleration,
|ﬁ| =.Ja? + a§
=/(6.25)% + 6% =8.663m/s>.

Tangential and Normal Acceleration
Consider a fluid particle moving along a path as shown in
the following figure.

' Fluid particle

./

Path

P’ ‘c

Let S denote the distance travelled by the particle along the
path line relative to the reference point P’, t denote time and
v (= (s, ?) denote the speed of the particle. Let 7 be a unit
vector tangential to the path at point P and let 72 be a unit
vector normal to the path at point P and pointing inward
towards the centre pf curvature C. Let  denote the radius of
curvature at point P.
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The acceleration vector,

>

a=a+a,

The tangential component of the acceleration vector,
( v E)v) v2
a, =| v—+— | and the normal component, a, = —.
ds ot r

The component a, is also called as the centripetal
acceleration. The component a, will be present anytime a
fluid particle is moving on a curved path (velocity direction
is changing) while the component @, will be present when-
ever the fluid particle is changing speed (velocity magni-
tude is changing)

Table 1 Translation, deformation and rotation of a fluid element

Normal
Acceleration or
deceleration

Fluid flow Scenario
(only steady
flows

Tangential
acceleration or
deceleration

Flow in a straight
constant diameter
pipe

Flow in a straight
non-constant
diameter pipe

Not present Not present

Present Not present

Flow in a curved Not present Present
constant diameter

pipe

Flow in a curved Present Present

non-constant
diameter pipe

When a fluid element moves in space, several things may
happen to it. Surely the moving fluid element undergoes
translation, i.e., and a linear displacement from one location
to another. The fluid element in addition may undergo rota-
tion, linear deformation or angular deformation.

yh
a. ... ...... c
a c
b'------ -d
b >
d X
Translation

y“ C/
a a —c
Pid dy
b d X
Rotation
A
y
a Co- .
b d a X
Linear deformation
yﬂ . C!
al_a.
ll C l’
S Aa
b d X

Angular deformation

In a two-dimensional flow field in Cartesian coordinates,
translation without deformation and rotation is possible if
the velocity components u and v are neither a function of x
nor of y. When a velocity component is a function of only
one space coordinate along which that velocity component
is defined, e.g., u = u(x) and v = v(y), then translation with
linear deformation is possible.

When u=u(x,y) and v=v(x, y), translation with angular and
linear deformations is possible. It is also observed that when
u = u(x, y) and v = v(x, ), rotation and angular deformation

Jdv  —du

of a fluid element exists simultaneously. When — = —— no
dx dy
angular deformation takes place and the situation is known as

v du

pure rotation. When — = — | the fluid element has angular
ox dy
deformation but no rotation about the z- axis.

Types of Fluid Flow
Steady and Unsteady Flow

In a steady fluid flow, fluid properties (such as density, pres-
sure, etc.) and the flow characteristics (such as velocity,
acceleration, etc.) at any point in the flow do not change
with time. In a steady flow, the local derivative of the fluid

99 0.

property or fluid characteristic ¢ is zero, i.e., 3 =
t

Fluid flow through a pipe at a constant rate of discharge
is a steady flow.



In an unsteady fluid flow, some of the fluid properties
or flow characteristics at any point in the flow change with
time. Fluid flow through a pipe at a varying rate of discharge
is an unsteady flow.

Uniform and Non-uniform Flows

In a uniform fluid flow, the fluid properties or flow char-
acteristics of any given time do not change with respect to
space, i.e., from one point to another in the flow. Since for a
uniform flow, there is no gradient (spatial change) the con-
vective derivative of any fluid property of flow characteris-
tic ¢ is zero, i.e., (V.V)p =0.

Fluid flow through a straight pipe of constant diameter
is a uniform flow.

In a non-uniform fluid flow, some of the fluid proper-
ties or flow characteristics at any given time changes with
respect to space. Flow through a straight pipe pf varying
diameter is a non-uniform flow.

Flow combinations

Type
Steady uniform flow

Example

Flow at a constant rate through a
constant diameter pipe

Steady non-uniform flow  Flow at a constant rate through a

non-constant diameter pipe

Unsteady uniform flow Flow at a varying rate through a

constant diameter pipe

Unsteady non-uniform
flow

Flow at a varying rate through a
pipe of varying cross-section

One-, Two- and Three-dimensional Flows

A flows is said to be one, two- or three-dimensional. If one,
two or three spatial dimensional are required to describe the
velocity field.

Inviscid and Viscous Flow

A fluid flow in which the effects of viscosity (frictional
effects) are absent is called as inviscid (nonviscous) fluid
flow, whereas if the viscosity effects are present, then the
fluid flow is called a viscous fluid flow. Flow of ideal fluids
is inviscid flows while flow of real fluids are viscous flows.

Rotational and Irrotational Flows

A fluid flow is said to be rotational if the fluid particles
while moving in the direction of flow rotate about their mass
centres. If the fluid particle does not rotate, then the fluid
flow is called as irrational fluid flow. Fluid flow in a rotating
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tank is a rotational flow while fluid flow above a wash basin
or drain hole of a stationary tank is an irrotational flow.

' For an irrotational flow, the curl of the velocity vector 1s .
.zero ie., va—Oorcurl(v) 0 '

Compressible and Incompressible Flows
If for a fluid flow, the density remains constant throughout

the flow, i.e. ?)p 0 then the fluid flow is an incompress-
t
ible fluid flow else it is a compressible fluid flow.

Example 3: The velocity field of a two dimensional irro-
2.3

24 +2x—mny+

tational flow is represented by y = [

PEICAN
7 where P and m are constants. If

(px—Zy—

the value of P is equal to one, then the value of m for a
streamline passing through the point (1, 2) is

-2
(A) 5 (B) 0 © 3 D) -1
Solution:
From the velocity field relationship,
24,3
u= x3y +2x —my

2
V=Px—2y—x?y3

Since the flow is irrotational
Vxv=0

. dv _ du

Le., —

ox ay

21,2 —

or P—x»?*=—x>1y>—m

orm=-P=-1.

Streamline

A streamline is a curve that is everywhere tangent to the
instantaneous local velocity vector. At a given instant of
time, the tangent to a streamline at a particular point gives
the direction of the velocity at that point. The fluid flow
will always be along the streamlines and never cross it. At
non-stagnation points, a streamline cannot interest itself
nor can two streamlines cross each other. However, the two
scenarios can be present at stagnation points. The differen-
tial equation of a streamline in a three-dimensional flow
(v—ul +v1+wk) is:

& _dy_d
u \4 w

For a two — dimensional flow (; =ui +vj), the slope of
the streamline is given as:
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d_y_v

dx u

\
1
1

Streamtube

An imaginary passage through which fluid flows and which
is bounded by a bundle of streamline is called a streamtube.
Fluid can enter or leave a streamline only through its ends
but never across the streamtube’s surface. At any instant in
tube, the mass flow rate passing through any cross-sectional
cut of a given stream tube will always be the same.

—>

V(ins tan tan eous
velocity at

point P)

Streamline

.
1
1

Streakline

It is the locus of the fluid particles that have passed sequen-
tially through a chosen point in the flow. It is also the curve
generated by a tracer fluid, such as a dye, continuously
injected in the flow field at the chosen point. An example of
a streakline is the continuous smoke emitted by a chimney.

Pathline

It is the path followed by a fluid particle in motion. A path-
line can intersect with itself or two pathlines can intersect
with each other.

Streamline indicates the motion of bulk mass of fluid
E whereas the path line indicates the motion of a single i
i fluid particle. A streakline indicates the motion of the
i entire fluid particle along its length.

! In a steady flow, the streamline, streakline and path-
i line coincide if they pass through the same point.

1
N

. \
1 1
1 1

Example 4: For a three dimensional flow, if the velocity

field is given by v = 4xi +6 y} —10zk, and then an equation
for a streamline passing through the point (1, 4, and 5) is:

(A) xyz= (B) xyz= %

(C) xyz= (D) xyz=20

(O N I N N NV

Solution:
From the velocity field representation, we have:
u=4x

v=0y
w=-10z
For a streamline,
dx dy dz
woovow
Taking & Q, we have:
u v
dx dy
4x 6y

Integrating, we get
6

x4 = yx Cy, where C, is an integration constant.

Considering the point (1, 4, 5), we get:
6
()4 =4xC

4

Y
= (1)
o _d;
o ow
dx  dz
4x 10z

Integrating, we get

, we have:

10
zx 4 =C,, where C, is an integration consta{})t.
Considering the point (1, 4, 5), we get 5x(1)4 =C,
ie,C,=5
10

zx4 =5 2)
Substituting equation (1) in equation (2), we get zxy = 20 as
the equation of the streamline.

Circulation

Closed
curve

Stream line

Circulation I' is defined as the counterclockwise line inte-
gral, around a closed curve C, of arc length ds times the
velocity component tangent to the curve (v) in the flow
field.

ie, |I'= 950 v,ds = Cﬁcvcos ads




or F=¢8%%=¢%Wﬁ+wh+wﬁ)

For a three-dimensional flow in Cartesian coordinates:

Vorticity

The vorticity vector ¢ is defined as:

1€ =V x¥ = curl(v)|

i.e., for a three-dimensional flow in Cartesian coordinates,

& @Z_QK;+(§Z_§K)f+ v _dul:
oy o) \ar ) e oy

In terms of circulation, vorticity is defined as the circula-
tion per unit of the enclosed area

1.e., (==

Vorticity vector is equal to twice the rate of rotation (or
just rotation) of angular velocity vector ,

ie.,

Vorticity is a measure of the rotation of a fluid. In a fluid
flow field, points occupied by rotating or non-rotating fluid
particles have respectively non-zero or zero (negligibly
small) vorticities.

Vorticity is zero (negligibly small) everywhere for an
E irrotational flow and non-zero everywhere for a rotational

. N
1 ]
1 1
1
1
1

g
Z

Example 5: A two-dimensional irrotational flow has the
velocity filed:

V = ayi + bxj. The angle made by the velocity vector at the

point (1, 1) with the horizontal is

(A) 0° (B) 45° (C) 30° (D) 60°

Solution:

From the velocity field representation, we have
u=ay,v=>bx

Since the flow is irrotational,

o _ou
ox dy
ie,b=a (D

Let the angle made by a velocity vector at point (x, y) is the
flow field be 6.

tan@ =~ (from slope of streamline)
u

_bx )
ay
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Equation (1) in equation (2) gives tan 9 = x
. 1
At point(L,1),tan 0 = I =1
0=45°.

Control Volume Analysis of Mass,
Momentum and Energy

Discharge (flow Rate) and Mass Flow Rate

Discharge (flow rate) is the amount of a fluid passing a
cross-section of a stream in unit time. If A is the area of the
cross-section and v, o is the average fluid velocity over the
cross-section, then:

0=AxV

avg

Where Q is the discharge (flow rate) or volumetric (or
volume) flow rate over the cross-section.

Mass flow rate is the amount of mass flowing through a
cross section of a stream per unit time. If m is the mass flow
rate over the cross-section, then:

m=pxQ

Where p is the bulk average density of the fluid over the
cross-section.

Control Volume Analysis of Mass

Conservation of Mass Principle

The conservation of mass principle states that the net mass
transfer to or from a control volume during a given finite
time interval is equal to the net change of the total mass
within the control volume during that time interval.

Conservation of Mass Relation or
Continuity Equation

Consider a differential area d4 on the control surface (CS)
of a control volume (CV) through which mass flow into or
out of the control volume. Let 7 be the outward unit vector
of dA normal to d4 and let p be the density of the fluid. If
v, is arelative fluid velocity at d4, then the conservation of
mass relation for a control volume can be written as:

F} L
§;JCVpdv+jCSp0¢-n)dA==0 (1)

Where dv is a differential volume within the control
volume. Equation (1) is called as the continuity equation.
Case A: Control volume is fixed

¥, =v, where V is the fluid’s absolute velocity, i.e, the
fluid velocity relative to a fixed point outside the control
volume.

Case B: Control volume is moving but not deforming.

ﬁr =‘7_vcv
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Case C: Control volume is deforming.

v, =V - Ves
Equation (1) can be rewritten using mass flow rates as:
(assuming well-defined inlets and outlets)

om,, . o

w - 2

ot 2 i z out”™ @)
Wherethetotalmasswithinthecontrolvolumeatanyinstant

intime ¢, m,, = J.CV pdv and the net mass flow rate through

the control surface, Zout m— Zm m= j p(v, -n)dA. Here

%,/ and Z, m correspond to the sum of the mass flow rates

of all the respective outlet and inlet fluid streams of the con-
trol volume.

Mass Conservation for Steady
incompressible Flows

For a steady fluid flow, conservation of mass relation
(equation (2)) becomes

zinr;l_zout’;l (3)

If a simple stream of a specific fluid is considered and if the
subscripts 1 and 2 denote the inlet and outlet states respec-
tively, then equation (3) becomes:

my = my

or P =Py, Q)
If the flow is incompressible, then p, = p, and hence for a
steady and in compressible fluid flow, equation (4) becomes
Vid, =74,
or 01=0,(0=74)

Control Volume Analysis of Momentum

Principle of Conservation of Momentum

The net force acting on a mass of fluid (or a body) is equal
to the change of momentum of flow (or the body) per unit
time in that direction.

Forces Acting on a Control Volume
Forces acting on a control volume are classified into:

Body force These are forces that act throughout the entire
body of the control volume. For example, gravity, electric
and magnetic forces.

Surface forces These are forces that act on the control sur-
face of a control volume. For example, pressure and viscous
forces and reaction forces at contact points.

It should be noted that in the control volume analysis
of momentum, only forces external to the control volume
are considered. If Zinf: denotes the sum of all the external
forces acting on a control volume at particular instant of
time,

|2ﬁ = Zﬁbody +2Fsurface

Linear Momentum Equation

The general form of the linear momentum (or simply
momentum) equation that applies to a fixed, moving or
deforming control volume is

= 0 . .
ZF = g_l.cvpvdv+"-cspv(vr -1n)dA

Here the term BEJ‘ pvdv represents the time rate of
t cv

change of the linear momentum of the contents of the con-
trol volume and the term j pv(v, -n)dArepresents the net
flow rate of linear momentclim through the control surface
by mass flow.

For a fixed and non-deforming control volume, the linear
momentum equation is

Y F= %Jpﬁdv+jcspﬁ(§-ﬁ)dA (1)

The algebraic form of equation (1) can be written as

ZF=%ICVP\7dV+20utﬁI;Z\7an—zinﬂ’;lvavg (2)

Where v,,, is the average velocity across the inlet or out-
let and B is the momentum flux correction factor. Here,

BI’;’! Gavg =

| pi(-iiv)dd

For a steady flow, equation (2) reduces to:

zﬁ=zoutﬂ7;lvavg_zinﬁ’;lvavg (3)

If only a single stream of a single fluid is considered and if
subscripts 1 and 2 denote respectively the inlet and outlet
states, then equation (3) can be written as:

ZF = &(ﬁZﬁavgJ _:Blvavg,l)

Force Exerted by Flowing Fluid on a Pipe
Bend
As per Impulse-momentum theorem, the impulse of a

force on a body is equal to the change in linear momentum
of the body in the duration of time for which the force acts.

ie., Fdt = dp = d(mv)



This can also be applied to forces acting on fluids.
Consequently,

F= ? = di(mV) = rate of change of linear momentum.
t t
For fluids, rate of change of linear momentum,
dp d, _ .
—=—(mv) =m(dv
i (mv) =m(dv)

= (mass per second) X (change of velocity)
= (density X discharge) X change of velocity

= pO(dv);

This equation can be used to determine the net force
exerted by a flowing fluid on a pipe bend.

—»
P1A) _|

Consider a reducing elbow as shown in figure. At the inlet
section (1), pressure intensity = p,, velocity of flow = V|,
along x-direction, area of cross-section = 4. At the exit sec-
tion (2), pressure intensity = p,, velocity of flow = V, at an
angle 6 with x-axis and area of cross-section 4,. Let F* be
the force exerted by the flowing fluid on the bend, which
can be resolved as F, and Fy along the x and y directions
respectively. As per Newton’s third law of motion, the bend
exerts an equal and opposite force —F on the fluid, which
can be resolved as —F, and — Fy in the x and y directions.
The minus (—) sign shows that the direction of force exerted
by the bend on fluid is opposite to corresponding force
exerted by fluid on bend.

Along the x and y-directions, the forces on the fluid due to
pressure of fluid and force exerted by bend, can be equated
to the rate of change of momentum in that direction.

L
y

Fy (due to bend) y
P2A2

2] X
p1A; O  F,(due to bend)

Figure 1 Forces on fluid due to pressures and due to bend

Net force on fluid is x direction is (let us call this P))

P.= piA — py 4y cosO—F, |
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Net force on fluid in y-direction (let us call this P)

Py=—p2A2sine—Fy|

A

y

mV,

mV, P

C X

Figure 2 Linear momentum of fluid at inlet and outlet

Time rate of change of linear momentum of fluid along
X-axis

= i;qu cos@—ml,

= r;1(V2 cos6-V)
= pO(V, cos 8- V) [Q = discharge in m%/s
p = density in kg/m?)
Time rate of change of linear momentum of fluid along
y-axis,
=mV,sin@-0
=m V,sin@
=pQ V,sin 6

Equate the net force on fluid in the x direction to the time
rate of change of linear momentum in the x direction

Px :plAl _p2A2 Ccos B_Fx: PQ(V2 cos 6 — Vl)
=F . =p,A4,—p,A,cos p—pQ (V,cos 0-V,)
= F . =pA, —pyA,cos60 —pQ (V, =V, cos 0) | is the

X-component of the force exerted by fluid on bend. Similarly,
equating the net force on fluid is the y direction to the time
rate of change of linear momentum is the y direction,

P =-pyd, sin 6 — F,=p0V, sin 6
F,=-p,4, sin - pQ V, sin 6
=—(p,4,+ pQV,) sin 6
| o F = —(p,A4,+ pOV,) sin0| is the y-component of the

force exerted by fluid on bend.
The net force (F) exerted by fluid on bend is given by

F=\F2+F}

The angle (&) mode by the net force exerted by fluid on
bend is given by

o

y

tano = —
Iy
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Direction for questions 6 and 7: The volumetric flow rate
of a liquid of density 900 kg/ m3, flowing through a bent
pipe, as shown in the following figure, is 400 litres per sec-
ond at the inlet of the pipe. The pipe which is bending by
an angle 6 has a constant diameter of 500 mm. The liquid is
flowing in the pipe with a constant pressure of 500 kn/m?2.
The horizontal component of the resultant force on the bend
has a magnitude of 148325.358 N.

Example 6: The value of the angle 6 is approximately:

(A) 60° (B) 120°
(C) 30° (D) 45°
Solution:

Let the subscripts 1 and 2 denote the inlet and outlet of the
pipe respectively.
Vo

Control

P,A
22 volume

Fixed
control
volume

[ 2 N - 0

................

Diameter of the pipe, d = 0.5 m
Density of the fluid, p = 900 kg/m?
Cross-sectional areas of the pipe,
2 2
A=A :ﬂ: 7% (0.5)
4 4
=0.1963 m?
Given, pressures p, =p,
=500 x 10° N/m?

Let R be the reaction force exerted by the bend on the
control volume.

Now R would be equal and opposite in direction to the
resultant force exerted in the bend. Let R, and R be the
magnitude of the respective horizontal and vertical compo-
nents of R

Given, R, = 148325.358 N
Now, mass flow rate:

m= pQO, =900x0.4 =360 kg/s

The flow is assumed to be steady flow. Also the weight of
the pipe and the water in it is neglected. From the continuity
equation, we can write:

AV =40,

Where v, and v, are the (incompressible) liquid average
velocities assuming uniform flow at inlet and outlet. Given,
volumetric flow rate:

0,=4,V,=04m’s

Y F T
0.1963 s

VI =W

The change in momentum in the direction of flow can be
equated to:
P4, +P,A, cos (180° - 0) - R,
Therefore it becomes
P A, + Py, (180°-6)—R,
= (~v,cos (180° ~6) —v,) m
Cos (180°— 0) =(148325.358 — 360 x 2.0377 — 500
x 103 % 0.1763)
cos(180°—0)
(148325.358 —360%2.0377-500%10% x0.1963
(500 x10% x0.1963+360 % 2.0377)

ie., cos (180°—60)=0.5
or cos 180° — 8= 60°

0=120°.
Example 7: The magnitude of the resultant force on the
bend is:
(A) 148325358 N
(C) ON

(B) 85633.17N
(D) 171270.11 N

s

Solution:
Now cos (180°-6) =0.5

sin (180° — 8) = /1 - cos?(180° — 6)

=0.8660

The linear momentum equation in the y-direction

ZFy:’;’l(VZSy_VI,y) (2)

Here, Vi, = 0
vy, = v,sin (180° —0)
N\ F, =—P,4, sin (180°—6) +R,
Equation (2) becomes:
R —P,A, sin (180°-0)

=mv,sin (180°—0)



or R, =360 % 2.0377 x 0.8660
+500 x 10% x 0.1963 x 0.8660
=85633.17N

Magnitude of the resultant force:
|R|= Ry +R?

= \/148325.3582 + 85633.172
—171270.11 N,

Example 8: A 3.57 m diameter jet of liquid (density = 1100
kg/m? from a nozzle steadily strikes a flat plate, inclined at
an angle of 30° to the horizontal, as shown in the following
figure.

If a horizontal force of 275.27 kN is applied on the plate to
hold it stationary than the velocity of the liquid jet is

(A) 9.52m/s (B) 3.37m/s

(C) 90.63 m/s (D) 4.76 m/s

Liquid jet Plate

Solution:
Let F be the force applied normally on the plate to hold
it stationary. Let Fx be the horizontal component of the
force F.

Given Fx=27527x 10° N

Linear momentum equation in the

Control
volume

'
,
; .
.
/
.
.

Plate

X
Direction normal to the plate yields:
—F =m (0—vcos(90 —6))
or F=mvsin@
= pAv?sin O (1
Now here,
F_=Fcos (90 - 6) = F'sin0 2)
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Comparing equations (1) and (2), we get
Fx = pAv’sin®0

So 275.27x103 =1100 x%x (3.75)2 X v2 X (sin30°)2
Lov=952m/s.

Moment of Momentum Principle

The resulting torque acting on a rotating fluid is equal to the
rate of change of moment of momentum.

Angular Momentum Equation

The general form of the angular momentum (or moment
of momentum) equation that applies to a fluid, moving or
deforming control volume is

e %jw(?xV)pdw jcs(?w)p(v, -7i)dA (1)

Here, Zr?z = z (7 x F) is the vector sum of the moment of
all the forces acting on the control volume.

) L .
The term a—j (¥ XV)pdv represents the time rate of
t cv

change of the angular momentum of the contents of the
control volume and the term J‘ (F X V)p(V - 1i)dA represents

the net flow rate of angular momentum out of the control
surface by mass flow

For a fixed and non-deforming control volume, the angu-
lar momentum equation is

3= % jCV(F x ﬁ)pdv+_[m(17 X )p(¥, - ii)dA

An approximate form the angular momentum equation
written in terms of average properties becomes

a o . o _,
21’7’! - 5.[@0 Xv)pdv+zout(r vaavg)

=Y (FXmi,,) )

For a steady flow, equation (2) reduces to

zﬁl:ZOut(Fvaa"g)_zm(?x};lr}a‘)g) (3)

Note that the term Zm also represents the net torque

acting on the control volume.

If the significant forces and momentum flows are in the
same plane, then they would give rise to moments in the
same plane. For such cases, equation (3) can be expressed
in a scalar form as:

Zﬁz 2 rmv—z, rmy
out m
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Where r represents the average normal distance between
the point about which moments are taken and the line
of action of the force or velocity provided that the same
convention is followed for the moments. Moments in the
counter clockwise position are positive and moments in the
clockwise direction are negative.

Example 9: The sprinkler, shown in the following figure, has
a frictionless shaft with equal flow in both the nozzles. If the
water jets from the nozzles have a velocity of 10 m/s relative
to the nozzles then the sprinkler rotates at an r. p. m of:

(A) 32.19 (B) 318.31
(C) 139.48 (D) 73.46
l«—0.5 m{—-|<— 0.8m——»]
0
Solution:
-t t™y»w
O
Ny
w
A l lB
Givenr4=0.5m
rp=0.8m
Relative velocities, v, ,=10 m/s and
V, p=10m/s

Let w be the angular velocity of the sprinkler.

Absolute fluid velocity of 4,
V4=V Oy
=10+0.5w

Absolute fluid velocity of B,

a, A

Vo= Vg~ WOp
=10-0.8w

The jets of water coming out from the nozzle will exert a
force in the opposite direction. So torque at B will be in
the anticlockwise direction and torque at 4 will be in the
clockwise direction. Since torque at B is greater than the
torque at A, hence the sprinkler, if free, will rotate in the
anticlockwise direction.

Since there is no friction and no external torque is applied
on the sprinkler, 2 m=0

Since the moment of momentum of the water entering
the sprinkler is zero,

ZA rmv=0
mn

Equation (1) becomes

Z rmy
out

o o
or =MV Vy, 4+mprgv,z =0

=0

Given my4 = mp

5 —0.5(10+0.5w)+0.8(10-0.800) =0
or w=3.3708 rad/sec
If N is the speed of rotation of the sprinkler in rpm, then

2N

- 10
60
or N = 80X3:3708 _ 35 19,m.
2X 71

Bernoulli’s Equation

Bernoulli’s equation is stated as follows:

2
—+V—+gz=C
p 2

Where C is a constant. This equation is applicable only for
a steady incompressible flow along a streamline and only
in the inviscid regions (regions where viscous or frictional
effects are negligibly small compared to inertial, gravita-
tional and pressure effects) of flow. For point 1 and 2 along
the same streamline, Bernoulli’s equation can be written as:

2 2
ﬂ'|'V_l'|'g21 :&+V_2+g22
p 2

2

Bernoulli’s equation is not applicable in a flow section that
involves a pump, turbine, from or any other machine or
impeller since these devices destroy streamlines and trans-
fer or extract energy to or from the fluid particles. This
equation should also not be used for flow sections where
significant temperature changes occur through heating or
cooling sections.

For a fluid flow, in general, the value of the constant C
is different for different streamlines. However, if the flow
is irrotational, constant C has the same value for all the
streamlines in the flow. In other words, for irrotational
flows, Bernoulli’s equation becomes applicable across
streamlines, i.e. between any two points in the flow region.

A
1
1

The mechanical energy of a flowing fluid expressed on a
unit-mass basis is

2

€meh =_+V_+gz
p 2




P 2
Where ; is the flow or pressure energy % is the kinetic

energy and gz is the potential energy of the fluid, all per unit
mass.
From Bernoulli’s equation the following equation can be

written
E een = constant

Where, E_ ., is the mechanical energy (sum of the
kinetic, potential and flow energies) of a fluid particle is
constant along a streamline in a steady, incompressible and
inviscid flow. Hence Bernoulli’s equation can be taken as a
“conservation of mechanical energy principle”.

It is to be noted that the mechanical energy remains con-
stant in an irrotational flow field.

Liquid discharge from a large tank

A large tank open to the atmosphere is filled with a liquid
to a height of h metres from the nozzle as shown in the fol-
lowing figure.

v (1)

The flow is assumed to be incompressible and irrota-
tional. The draining of the water is slow enough that the flow
can be assumed to be steady (quasi- steady). Any losses in
the nozzle are neglected. Point 1 is taken to be at the free
surface of water and so p, = p,.and point 2 is taken to be
at the centre of the outlet area of the nozzle and so P, =P,

If A, and A4, are the cross- sectional areas of the tank and
nozzle respectively, then from the continuity equation, we
have:

AV, =4V, )

Since the tank is very large compared to the nozzle, we
have 4,>>>>4,. Hence from equation (1), we have

V,=0

From the Bernoulli’s equation, We have

P V2
2yl gy =242 1 g,
2
or V22 =2g (z1 fzz)
or V, =J2gh ()

Equation (2) is called the Torricelli equation.
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Example 10: Section A of the pipeline, shown in the figure
below, has a diameter of 20 cm and a gauge pressure (p,)
of 40 kPa. The section is at an elevation of 120 m. The
section B of the pipeline has a diameter of 40 cm and is at
an elevation of 125 m. The volumetric flow rate of the liquid
(density = 1100 kg/m?) through the pipeline is 70 litre/sec.
If the frictional losses in the pipeline can be neglected and
if p, denotes the pressure of section B, then,

(A) Flow is from Bto A and p, —p,=51.395 kPa

(B) Flow is from 4 to Band p, —p,=51.395 kP

(C) Flow is from 4 to B and p, — p, =28.605 kPa

(D) Flow is from B to 4 and p , — p, = 28.605 kPa

Section A

Section B

Pipeline
Solution:
At section 4, velocity of flow,
VA = 2
Ay
70
_ 1000
T (20Y
[ X -
4 100
=2.228 m/s
At section B, velocity of flow,
70
v, = QO _ 1000 .
A 40
[ x -
4 100
=0.557 m/s

Assuming the flow to be steady, Bernoulli’s equation
application between the two sections gives:

p—A+ﬁ+ng:—+£+ng (1)
2 2
Here P, =40 x 10° Pa (gauge pressure)
z,=120m
z,=125m
p = 1100 kg/m?
Hence equation (1) gives

40x10°  (2.228)?
1100 2

+9.81x120
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_ By, (0.557)?

= +9.81x125
1100 2

or P, =-11.395 kPa (gauge pressure)
Since p, > pg, flow is from 4 to B and p, — p, = 40 —
(-11.395) = 51.395 kPa.

Example 11: A vertical jet of liquid (density = 850 kg/m?)
is issuing upward from nozzle of exit diameter 70 mm at a
velocity of 15 m/s. A flat plate weighing 250 N is supported
only by the jets impact. If all losses are neglected then the
equilibrium height h of the plate above the nozzle exit is:
(A) 11.468 m (B) 6.434m

(C) 9.682m (D) 10.145m

—re

Nozzle

Solution:
Mass flow rate,

m= pAv

b4 70 2
=850x—x| —— | x15 =49.068 kg/s
1000

4
% 2,
(&)
W ‘/‘
L o (1)
Applying Bernoulli’s equation between points (1) and (2),
we get:

P _ D

5 821 P > 82y

Here p, =p, =p i,
Zy—z, = h

vy =V —2gh

= J(15)2 =2x9.81xh

________ —

Control .

volume

Applying the linear momentum balance equation for the
control volume shown above, we get —250=m(0—v,)
(momentum correction factor is assumed to be unity)

= —49.068 X /(15)2 —2x 9.81x
h=10.145m.

Different Types of Head of a Fluid in Motion

The Bernoulli’s equation can be rewritten as:

p v
—+—+ z = constant
pg 2g

Each term on the LHS of the above equation has the dimen-
sion of length and represents some kind of head of a flowing
fluid.

Pressure Head 1t is the term 2~ and it represents the height

pg
of a fluid column that is needed to produce the pressure p.

2

Velocity Head 1t is the term ;— and it represents the elevation
8

needed for the fluid to reach the velocity v from rest during a

frictionless free fall.

Elevation Head 1t is term z and it represents the potential
energy of the fluid. The sum of the pressure head and the

elevation head, i.e., P z,1s known as the piezometric
Pg
head.

Static, Dynamic, Hydrostatic, Total
and Stagnation Pressures

The Bernoulli’s equation can be rewritten as:

pv’
p+ T + pgz = constant

Each term on the LHS of the above equation has the units
of pressure and represents some kind of pressure.

Static pressure 1t is the term p and it represents the actual
thermodynamic pressure of the fluid as it flows.

P

Dynamic pressure It is the term and it repre-

sents the pressure rise when the fluid is brought to a stop
isentropically.

Hydrostatic pressure: 1t is the term pgz. It is actually not
a pressure although it does represent the pressure change
possible due the potential energy variation of the fluid as a
result of elevation changes.



| Total pressure = Static + dynamic + hydrostatic pressures |

| Stagnation pressure = Static + dynamic pressure |

Stagnation pressure (pstag) represents the pressure at a point
where the fluid is brought to a complete stop isentropically.

pv
Pstag = P + 7

Dynamic pressure

I

Piezometer
Stagnation pressure pstag

Static pressure, P Pitot tube

Stagnation point

Control Volume Analysis of Energy

Conservation of Energy Principle

The conservation of energy principle states that energy can
neither be created nor destroyed during a process but it can
be converted from one form to another.

Energy equation The general form of the energy equation
that applies to a fixed, mass or deforming control volume is

Qnet nt W shaft,netin = ePdV

ot Jev

+J[ +e]p(v -n)dA (1)

Where the total energy, e = u + ke + pe
2
=u +V?+ gz with u, ke and pe being the internal (u),

kinetic (kc) and potential (pc) energies all being per unit
mass. p

The term = represents the flow work, i.e, work asso-
ciated with passing a fluid into or out of a control vol-
The term Qnetin = Qin_ Qout

is the net rate of heat transfer to the system. The term

ume, per unit mass.

W shaft,netin = W shafi,in — W shaft,out is the net power input
to the system. W, . is the work transfer associated with
the devices such as pumps, turbines, fans or compressors
whose shaft protrudes through the control surface. Instead
of W ,W.q is used, since in most cases work is transferred
across the control surface by a moving shaft.

The LHS of the equation (1) represents the net rate of
energy transfer into a control volume by heat and work
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transfer. The first term on the RHS of equation (1) repre-
sents the time rate of change of the energy content of the
control volume while the second term represents the net
flow rate of energy out of the control surface by mass flow.

For a fixed control volume (v, = V), the energy equation
is:

o

°
Qnet in + Wshaft,net in

:2 epdv+J ( +e)p(v n)dA 2

otve

Assuming that the term (£ + e) is nearly uniform across

an inlet or outlet and using the relation p; = J p(V-#)dA, the

energy equation (2) becomes:

o

Qnet int W shaft,netin

_9 -y a2
_Bt Cvepd +240ut (p+e) me( +e)

p

If the flow is steady and considering a single inlet and
single outlet scenario, the above equation becomes:

. J o P2 P
Qnet in + Wshaft,netin =m |:— — —:|
P2 P

V22 12
———+g(z—z)

“+u
2 2 2

—M1+

If we consider W shaft,netin

—u) - Qnetin

= Wpump —W turbine and E mechloss = m(uz
Then the above equation can be written as:

(pl +—+gz1)+Wpump
p 2

2
(pz +—+ g2 ) + Wturblne + Emechloss (3)
pr 2

Where W pump is the shaft power input through the pump’s
shaft, W wrbine is the shaft power output through the turbine’s

shaft and Emechloss is the total mechanical power loss con-
sisting of the pump and turbine losses and also including the
frictional losses in the piping system, i.e.,

Emechloss = Emech loss, pump +

FE mechloss , turbine + £ mechloss ,piping
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In terms of heads, the energy equation (3) can be written as:

2 2
P i, =L b, (4
pg 2g P8 28

= Mo W pu

Where, hp Mpump ™ pump is the useful head delivered

mg

to the fluid by the pump, &, | = 7 1rine.

, is the extracted

Nturbine I’;’l g
head removed from the fluid flow in the piping system.

Direction for questions 12 and 13: The velocity profile for
flow in a circular pipe is given as:

2
V=V ll—(%) ]where v is the velocity of any radius

7, v,.... is the velocity of the pipe axis and R is the radius of
the pipe.

Example 12: The average velocity of flow is given by:

3
(A) Vinax (B) vaax
(C) Vn:"ax (D) vmax
Solution:

In a cross-section of the circular pipe, consider an elemen-
tary area dA in the form of a ring at a radius r and of thick-

ness dr.
Then, dA =2nrdr

Flow rate through the ring

Elementary
area

= dQ = elemental area X local velocity

=27mrdr X v

Total flow, ¢ = J'OR 2rdr-v

[ (5]

R2
Q = PVmax (7)

)

Letv,, . be the average velocity,

Then Q = R? X Vave

From equation (1) we have

R2
e (7] v

_ Vimax

avg 7

Example 13: The value of the kinetic energy correction
factor is:

(A) 2 (B) L.11
(C) 1.04 D) 1
Solution:

3
wl I(L) »
A van

R
=—1 —8 J V3 2mrdr
TR (Ve )* 70

H\3
zﬁRl—L rdr
R*70 R

2
:EX R_ — 2
R* '8
Example 14: If the head losses in the pipe shown in the

figure is h, metres, then the discharge velocity at the pipe
exit is:

Large tank

(A) J2g(h—hy)

(B) 0
(©) 2g(H —hy)
(D) \2,(H +h—h;)

Solution:
Let the height of the water surface from the bottom of the
tank (chosen as the datum level) be L.
Consider point 1 to be the water surface of the tank and
point 2 to be at the pipe exit.
Now, P, =P,=P,
The tank is considered to be very large such that V', = 0
Assuming the flow to be steady applying the energy equa-
tion between the two points we have:
2
i+051V#+Z1 +hp =
pg 28

P, oV}
B ol

(1)
pg 2g

+Zy+ht+h



Since no pump and turbin is involved,
h =h=0
b4 t

The kinetic correction factor are considered to be unity, i.e.,
o =0a,=1
The equation (1) can be written now as:

V2
L=-2+(L-h)+hL
2g

Vy =2g(h—hy).

Example 15: A hydrautic turbine is supplied with 5 M%/s
water at 420 kPa (guage). A vacumm gauge fitted in the
turbine discharge 4 on below the turbine inlet centre line
shows a readingof 200 mm Hg. If the turbine shaft output
power is 1200 kW and if the internal diameters of the supply
and discharge pipe are identically 100 mm, then the power
loss through the turbine is:

(A) 2429.62 kW (B) 962.78 kW

(C) 1229.62 kW (D) 2162.78 kW

Solution:

Let the subscripts S and D denote points in the suction and
the discharge pipe respectively.

Given Ps =420 kPa

Zs=4m

Z, =0 m ( discharge pipe taken at the dotum plane.)

/4 =1200x 103 W

turbine

The energy equation applied between the points S and D is
as follows.

2

Ps V}
M ?‘*‘O‘ST"‘ng +Wpump

P Vi
_ M(FDHXD 7D+gZDJ+VVturbine B echioss (D

Since no pump is involved, Wpump = 0. The kinetic energy
correction factors are assumed to be unity, i.e., o= 0, = 1

Here O =5 m>*
m=pQ =1000x 5= 5000 kg/s
Now P, =-200 mm kg

= 2290 13600%9.81
1000

=—26.6832 kPa

Since the supplies are discharge pipe have identical internal
diameters, we have:
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Ve=V,

Equation (1) becomes

3
5000><(420><10

+9.81><4)

-26.6832x10°
1000

= 5000( ]+1200X103+Emechloss

E =1229.62 kW.

~ “mech loss

Differential Analysis of Mass and
Momentum
Continuity Equation

The general differential equation for conservation of mass
or the continuity equation is

I = =
—+V-(pV)=0
%' (PV)
or 1Dp G50
p Dt
dp 0 0
or 4 i
at+ax(Pu)+ay(PV)
+i( w)=0
0z pw)=

The continuity equation in cylindrical coordinates is

ap

19 19 d
= (rpV )+ ——(pVy)+—(pV.) =0
at+r8r(rp r)+rae(p 9)+az(p 2)

Special Cases of the Continuity Equation

(a) For steady compressible flow, the continuity equation
reduces to

V-(p¥V)=0
or %(pu)+%<pv)+§—2<pw) ~0

(b) For incompressible (steady or unsteady) flow,
continuity equation reduces to

VV=0
du Jdv oJw

or —+—+—=0
dx dy oz

Since V.V =0, velocity field V is said to be a divergence
free or divergence less field in this case.

Stream Function
For an incompressible two dimensional planar flow, the con-
tinuity equation reduces to
du dv
+ =

—+—=0 (1)
ox dy
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A function Y¥(x,¥), called the stream function can be
defined such that whenever the velocity components are
defined in terms of the stream function as shown below, the
continuity equation (1) will always satisfied.

L ] ®)
dy ox
Equation (2) holds for rotational and irrotational regions
of flow.
The volume rate of flow, O, between two streamlines
such as y; and v, is given by

0=y, -y,

The relative value of ¥; with respect to ¥1 will deter-
mine the flow direction as shown below.

Y2 > Y1

-Q

/y\_/

2

Yo <Y1

o

«~Q

/y\_/

f

Flow stream lines are curves of constant Y

Navier Stokes Equation

The Navier stokes equation is obtained when the conserva-
tion relation is applied to momentum. For an incompress-
ible and isothermal flow, the equation is

DV o - -
—=-Vp+pg+uVVv
Py = VPtpetu

The above equation is valid only for Newtonium fluids
with constant properties such as viscocity, thermal conduc-
tivity etc.

The scalar operator =V? =(= ?v) is called as the

2 9% 0?

Laplacian operator and is equalto =~ = 4 =

ox?  oy* 0922

Navier Stokes Equation (approximation)
for Creeping Flow

A creeping flow is a flow in which the Reynolds number
is very low (Re <<1). Reynolds number is defined as Re

_pL
u

where V" and L are the characteristic speed and length. The
approximate equation for creeping flow, assuming negligi-
ble gravitational effects and steady or oscillating flow is

Navier Stokes Equation (approximation)
for Inviscid Regions of Flow

The inviscid regions of flow or regions of flow with negligi-
ble net viscous forces are regions of high Reynolds number.
In such a region, the Navier Stokes equation reduces to

DY Sp+ps
P, =VPHPE

The above equation is called the Euler equation which
is the Navier stokes equation without the viscous term.
Euler equation is approximate only in regions of flow
with large Reynolds numbers and where the net viscous
forces are negligible compared to the inertial and/or
pressure forces.

An irrotational region of flow is a region where net vis-
cous forces are negligible compared to inertial and for
pressure forces because of the irrotational approximation.
All irrotational regions of flow are also inviscid but all
inviscid regions of flow need not be irrotational. A uni-
form flow field is an example of an irrotational flow.

Velocity Potential Function

If the curl of a vector is zero the vector can be expressed as
the gradient of a scaler function ¢ called the potential func-
tion. This is possible since the unit of the gradient of any
scalar function (as long as ¢ is a smooth function) is zero.

For an irrotational flow, we have V x V' =0 and therefore
the velocity vector /' can be expressed as the gradient of a
scalar function @, called the velocity potential function (or
just velocity potential) as follows:

V=V

Therefore the existence of a velocity potential implies
that the fluid is irrotational.

Regions of irrotational flow are also called regions
of potential flow. Sometimes a potential flow specifically
refers to an inviscid incompressible and irrotational flow.

Substituting equation (1) in the incompressible continu-
ity equation, we obtain for irrotational flows the following
equation.

V26 =0

The above equation is called the Laplace equation.



Thus for incompressible, irrotational planar regions of
flow, the following are applicable

(a) V?¢=0
() V=0
© u=2-%

dx dy

99 _ -0y
d y=—_—=—X
@ dy  ox

=8_¢=8_l// and v=8_¢=_8_y/
ox dy ay ox
called Cauchy Riemann equation. These equations give the
relations between velocity potential function and stream
function.

Curves having constant values of ¢ are called as equipo-
dy —u

The equation |u are

tential lines. The slope of an equipotential line,

Potential function exists for irrotational flow only. The
1 . . . .
' stream function applies to both the rotational and irrota-

. iy
1 1
1 1

In a flow field streamlines intersect equipotential lines
at right angles or orthogonally at all points of intersection
except at stagnation points where the components vanish
simultaneously.

Example 16: The velocity potential function of a two
dimensional incompressible and irrotational flow is ¢ = ax’y
—3%x. The value of a is:

(A) 0 B) 1 (©) 1/6 D)6
Solution:
For an incompressible and irrotational flow, we have V2 ¢=0
2 2
ox%  9y?
¢=ary-yx (1
9 3axty-y?
ox
2%¢
e 6axy )
a—¢ =ax? -3y%x
dy
2%¢
2l 6yx 3)
dy? >
Substituting equations (2) and (3) in equation (1) we get:
6axy —6yx =0

ora=1.
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Example 17: A steady threedimensional velocity field is
given by: V =axy3i +(10b—3cy*)j+x2y*k. The condi-
tion under which the flow field will be incompressible is:

(A) a=4c (B) a=0
(€) a=12c¢ (D) b=c
Solution:

If the field is incompressible, then from the continuity
equation we have:

Jdu dv ow
—t—t—=
dx dy oz

From the velocity field description,

0 (1

u=axy’
v=10b-3cy*
w=x%)?
Substituting the above three equations in equation (1) we
have:
ay’*—12¢p* +0=0

Or a=12c.

Example 18: An incompressible flow is represented by the
velocity potential function ¢ = 4x? + 4)? +17¢. For the flow,
which one of the combinations of the following statement
holds true?
(i) Flow is physically possible

(i1) Flow is physically not possible.

(iii) Flow satisfies the continuity equation

(iv) Flow does not satisfy the continuity equation
(A) (i) and (iv) (B) (i) and (iii)
(C) (ii) and (iii) (D) (ii) and (iv)

Solution:
¢ =4x>+4y* + 17t
99
u=—=28x
ox
99
V=—=8
dy 7
The incompressible equation is:
a_M + 8_\/ = 0
on dy
Here a—u+a—v:8+8:l6;r&0
ox dy

Hence the continuity equation is not satisfied and this
implies that the flow is physically not possible.

Example 19: Persons 4, B and C claim that the functions
¢0=5x*>—5)?, ¢=10sinx and ¢ =27 xy respectively are valid
potential functions. Which one of the following statements
is ONLY correct regarding the claims?

(A) The claims of persons 4 and B are true.

(B) The claims of persons B and C are true

(C) The claims of persons 4 and C are true.

(D) The claims of person A4 are false.
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Solution:
For ¢ to be a valid potential function.
aZ(P 82
———+ —— should be equal to zero.
ox%  9y? q
For ¢ = 5x% — 5)?
2 2
a—¢ + 8_(;) =10-10=0
ox?  oy?

Person A’s claim is true.
For ¢ =10 sin x

2 2
M+a—¢ =-10sinx+0
ox*  9y?
=—10sinx # 0
Person B’s claim is not true.
For ¢ =27 xy
2 2
8_¢+ a_¢ =0+0=0
ox%  9y?

Person C’s claim is true.

Example 20: The stream function representing a two

2.2 4 4
dimensional flow is given by: y = awry 5 y— ax_ Y
2 12 6
If the flow is irrotational then the value of a is
(A) 0 (B) 2 (C) 0.5 (D) 12
Solution:
If the flow is irrotational,
2 2
Then &Y OV _ (1)
ax*  oy?
Iy _ 2axy? oy 4x3a
ox 2 12
P’y 2_ .2
—=ay* —x’a 2
Y 2
Iy _ 2ax’y 4y3
y 2 6
oy 2
2T a2 =242 3)
y? 7

Substituting equations (2) and (3) in equation (1) we get
ay’* —ax* +ax* —2*=0
Ora=2.

Flow Nets

A flow net is a grid obtained by drawing a set of streamlines
and equipotential lines.

D1 P2 P3

Flow nets are used to study 2-dimensional irrotational
flow especially in cases where the stream and velocity func-
tions are unavailable or difficult to solve.

Flow Through Orifices

A small opening of any cross-section, made on the bottom
or sidewall of a tank through which a fluid can flow, is called
an orifice.

Classification of orifices The various bases for classifica-
tion of orifices are

1. Based on size of orifice as
(i) Small orifice, if the head of liquid from the
centre of orifice is more than five times the depth
of orifice.

(i1) Large orifice, if the head of liquid from the
centre of orifice is less than five times the depth
of orifice.

2. Based on shape of cross-sectional area as
(1) Circular orifice
(i1) Triangle orifice
(ii1) Square orifice
(iv) Rectangular orifice
3. Based on shape of upstream edge of orifice as
(1) Sharp edged orifice
(i1)) Bell-mouthed orifice
4. Based on nature of discharge as
(i) Free discharging orifices
(il)) Drowned or submerged orifices, which are
further classified as fully submerged orifices and
partially submerged orifices.

When a jet of fluid flows out of a circular orifice, the area
of cross-section of the jet keeps on decreasing and becomes
a minimum at the vena contracta and beyond that the jet
diverges. The location of minimum cross-sectional area (i.e.
Vena-contracta) is approximately at a distance of half the
diameter of the orifice from the tank. If the flow through
the orifice is steady at a constant head H and the cross-
sectional area of the tank is very large when compared to
the cross-sectional area of the jet, it can be shown using
Bernoulli’s theorem that the theortical velocity of flow at
the vena contracta



Vy =\J2gH ,| where g = acceleration due to gravity. The

actual velocity of flow (V) at the vena contracta is less than
this theoretical value, i.e., V<V,

The ratio s = C,, = coeficient of velocity
Vr

Hence coefficient of velocity (C)) is defined as the ratio of
the actual velocity of flow at the vena contracta to the theo-
retical velocity of flow at the same location.

CV=L= 4

VT ﬂng

The value of C), varies from 0.95 to 0.99 for various ori-
fices ad this value depends on:

(i) Shape of orifice
(i1) Size of orifice and
(iii) On the head under which the flow takes place.

c, <l

Coefficient of contraction (C,) is defined as the ratio of
area of cross-section of the jet at the vena contracta (a,) to
the cross-sectional area of orifice (a)

CC:a—C<1
a

The value of C_. varies from 0.61 to 0.69 for various
orifices and depends upon the same factors on which C),
depends.

Coefficient of discharges (C) is defined as the ratio of
actual discharge from an orifice to the theoretically possible
discharge through the orifice.

Cd — Qactua]
cheoretical

Actual cross-sectional area X actual velocity

* Theoretical cross-sectional area x theoretical velocity

_ ac xV
aXVT

The value of C, varies from 0.61 to 0.65 for different ori-
fices and depends on shape and size of orifice and the head
under which the flow occurs.

:CC XCV
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Tank of cross-
sectional area A

L) VT

—_ le——
bg Orifice of area

Figure 3 Time for emptying a tank of uniform cross-sectional area
through an orifice at its bottom

At time ¢ = 0, the height of liquid above orifice is H.
Using Bernoulli’s equations, it can be shown that the
theoretical time required for completely emptying the tank

) f f2H . .
1S|7T = (é) 2—H It may be noted that  [— is the time
a g g

needed for free fall from rest from a height of H.
If C, is the coefficient of discharge through the nozzle,

A) 1 2H
TacTuaL = ; C_ ?
d

emptying the tank.

Also, the time needed for emptying the same tank from
an initial height of liquid H, above orifice to a final height
of liquid H, above orifice is given by:

g i

is the actual time taken for

/ Hemispherical tank of radius R

H = initial height of
liquid above orifice

Orifice if cross -
sectional area a

Figure 4 Time for emptying a hemispherical tank through an
orifice at the bottom
If C, is the coefficient of discharge through the orifice, it
can be shown that the actual time needed for emptying the
hemispherical tank is:

T |4 2 2 2

Thetwal =———| —RH2 ——H?2
actual Cda \/g l 3 5 jl
Where R = radius of hemispherical tank and
H = initial height of liquid above orifice

a = cross-sectional area of orifice and
g = acceleration due to gravity
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If initial height of liquid above orifice is //; and final

height of liquid above orifice is /,, then time needed for
emptying the hemispherical tank is:

s la (2 3\ o 2
Tyl = ———|~R| H2 —H? |-Z| H? —H?
actua Cda (—2g 3 1 2 5 1 2

Cylindrical tank of
radius R and length L

H =initial length
of liquid above
orifice

Orifice of cross-
sectional area a

Figure 5 Time for emptying a circular horizontal tank through an
orifice at its bottom

A horizontal cylindrical tank of radius R and length L is
fitted with an orifice of cross-sectional area an at its bottom.
The height of liquid above the nozzle is H. The coefficient
of discharge through the nozzle is C,,.

Time for emptying the horizontal cylindrical tank is:

3 3

T (2R)2 —(2R-H)?]

4L [
3Cda1¢2g

If initial height of liquid above orifice is /; and final

height of liquid above orifice is H,, time required for

decreasing the liquid level from /| to H, (ie emptying
through orifice) is:

3 3

T (2R-H,)2 —(2R-H,)?]

_ 4L [
3Cdaﬁ2g

Discharge through large rectangular orifice In alarge rec-
tangular orifice, there is a considerable variation of effective
pressure head over the height of the orifice. Hence the veloc-
ity of liquid particles through the orifice is not constant.

N,

e

A W NABNA ¥

Consider a large rectangular orifice of with » and height
d, fitted to one vertical side of a large tank, discharging freely
into atmosphere, under a constant H as shown in figure.

We have H| = height of liquid above top edge of orifice

H, = height of liquid above bottom edge of orifice

. Height of orifice, d = H, — H,

b = width of orifice

C, = coefficient of discharge of orifice

Area of a strip of orifice of height dh at a depth h below
the free surface of liquid in the tank is

dA = bdh

V' =Theoretical velocity of flow through this strip = /2gh
Discharge through the strip, dQ

= C, x area of strip X velocity

= Cy(bdh)\J2gh = C;b\]2ghdh

Total discharge through orifice,

Q:jdgzhfcdb 2gh dh

H,

2 3 3
=0= ngbJZg lHZZ —H12:| is the actual discharg-

ing through the large orifice

Velocity of approach is the velocity with which the
liquid approaches the orifice. In the above expression
for discharge Q over the rectangular orifice, veloc-
ity of approach V, is taken as zero. If V_ # 0, then
VZ VZ
Hleff=(H1+L)andeeff=(H2+ 4 J In the
2g 2g
expression for O, H, and H, will get replaced to H

and H, &

1 eff

Practical Applications of Bernoulli’s Equation

Venturimeter It consists of two conical parts, the conver-
gent part and the divergent part, with a small portion of
uniform cross-section (with the minimum area), called the
throat, in between the parts. The venturimeter is always used
so that the upstream part of the flow takes place through the
convergent part while the downstream part of the flow takes
place through the divergent part.

In the convergent part, the velocity increases in the flow
direction while the pressure decreases, with the velocity being
maximum and pressure being is minimum at the throat. In the
divergent part, velocity decreases while pressure increases.

’ Convergent




From the Bernoulli equation and the continuity equation,
the velocity at the throat is obtained as follows.

A * *
= —]2\/2g(h1 -h

AP =4

Where /' and /, are the piezometric heads at section 1
and 2 respectively and are given by:

hl* =ﬂ+21 h; =&+22
P8

The theoretical discharge or flow rate is given by:

%\/zg(l«r s
1 — 4

Here, i —h, = Ah [P_m_ )Where 7, is the density of the
p

manometric fluid. The actual discharge or flow rate is given
by:

O=4V, =

Qactual=C,x Q0

2gAh(&—1J
p

Where C))is the coefficient of discharge or coefficient of
venturimeter. C,, is always less than unity and lies between
0.95 to 0.98. The coefficient of discharge is introduced to
account for the fact that the measured values of A/ for a real
fluid will always be greater than that assumed for an ideal
fluid due to frictional losses.

Example 21: A venturimeter with a throat diameter of 50
mm is used to measure the velocity of water in a horizontal
pipe of 200 mm diameter. The pressure at the inlet of the
venturimeter is 20 kPa and the vacuum pressure at the throat
is 10 kPa. If frictional losses are neglected, then the flow
velocity is:

(A) 28 cm/s (B) 24.2 cm/s
(C) 14 cm/s (D) 48.5 cm/s
Solution:

Givenp, =20x 103 P,
py=—10x10° P,
Since the venturimeter would be horizontal, z, = z,
Now i =i =L 4z -L2_7
Pg P8
B 20x10° +10x103
1000x g

30
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A4V,

1

The flow velocity, V; =

2
Here, 4, = E( 200 )

411000
x( 50 )’
A2:_ —_—
411000

2
v 6o

V200* —50%

=48.5 cm/s.

Orificemeter An orifice meter is a thin circular plate with a
sharp edged concentric circular hole in it.

Vena contracta

The flow through the orificemeter from an upstream sec-
tion contracts until a section downstream, where the vena
contracta is formed, and then expands to fill the whole
pipe. One of the pressure tapings is usually provided at the
upstream of the orifice plate where the flow is uniform and
the other is provided at the vena contracta. At the vena con-
tracta, streamlines converge to a minimum cross section.

The velocity of flow at the vena contracta,

Where p,, is the density of the manometric liquid and C),
is the coefficient of velocity.

C, is always less than unity. The coefficient of velocity is
introduced to account for the fact that the pressure drop for
a real fluid is always more due to friction that assumed for
an inviscid flow.
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The volumetric flow rate is givenby O =4, V, Example 22: Water is flowing through a pipe a pipe that
If the coefficient of contraction, C, is defined as contracts from a diameter of 0.15 m to d meters as shown in
the following figure. The difference in manometer levels is
0.4 m. If the flow rate Q in the pipe is expressed in terms of
the variable d as Q = kd", then

(A) £k=0.0495and n=0

(B) £=0.0495and n=2

(C) k=7.848andn=0

(D) k=6.164 and n=2

A . .
C, =% where A, is the area of the orifice,

Then O =C,4,

Where the coefficient of discharge, C,=C,
The coefficient of discharge of an orificemeter lies
between 0.6 to 0.65

Pitot tube It works on the principle that if the velocity of
flow at a point becomes zero, the increase in the pressure at
the point is due to conversion of kinetic energy into pres-
sure energy. A pilot tube provides one of the most accurate
methods for measuring the fluid velocity.

Piezometer v, j.x----- | /Pitot tube Solution:
112 IT From Bernoulli’s equation we have
hg Pipe
V2 V2
| ﬂ+L+ZIZ&+L+ZZ
h Liquid flow pg 2g pg 2g
o
_\L_ R Here Z, = Z, . .
. T V, =0 (stagnation point)
P S V2
n VP _m (1)
pg 22 pg
Point S is a stagnation point while point P is a pointinthe = But ZL _
undisturbed flow both being at the same horizontal plane. Pg
hy = 20 P2 ph04
Pg pg
P o B2 Py 2)
' pg pg Pg
Substituting equation (2) in (1),

Where p, is the pressure at point P, i.e., static pressure

and ps is the stagnation pressure at point S. We have:
VZ
Po V2 Ps 1 04
= 4= 2 g
pg 2¢ pg
7, =40.4%2x9.81
V2
ho+ ==k =2.801 m/s
g
0=4,xV,
V =1\2g(h, —hy) =+2gAh
1V =280h ~y) = 24| =%><(0.15)2><2.801
Where Ah is the dynamic pressure head which is equal to —0.0495 m3 /s
the velocity head. It is to be noted that the pitot tube measures '
only the stagnation pressure and so the static pressure must = .. In the relationship
be measured separately by using a piezometer. A pitot static O =kd

tube however measures both static and stagnation pressures. k= 0.0495 and 7 = 0.



Free Liquid Jet

A jet of liquid issuing from a nozzle in to the atmosphere is
termed as a free liquid jet. The path traversed by a liquid jet
under the action of gravity is called as its trajectory which
would be a parabolic path.

Here u is the velocity of the liquid jet and 0 is the angle
made by the jet with the horizontal. The equation of the jet
is:

y=xtan 0 — gx? sec? 6/2u?

1. Maximum height attained by the jet (H)

_u*sin?6
2g
2. Time of flight (T)
7= 2usin@
g

Time taken to reach the highest point is:

_ usinf
g

3. Horizontal range of the jet (R)

_ u*sin20

g

R

Range is maximum when 0 =45° and its value is ﬁ
Example 23: The flow rate of a liquid through a frozzle
of diameter 50 mm is 18.62 L/s. The nozzle is situated at
a distance of 1.5 m from the ground and is inclined at an
angle of 30° to the horizontal. The jet of liquid from the
nozzle strikes the ground at a horizontal distance of
(A) 1.04 m (B) 1.5m
(C) 10m (D) 5m

Liquid jet
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Solution:

T (50 Y
Area of the nozzle, 4 =—x| —— | m?
1000

4
Flow rate O = 0.01862 m>/s
u=2 943"
A s

Let the horizontal distance at which the jet strikes the
ground be x.

If the co-ordinates of point A is set to (0, 0). Then the
co-ordinates of point B will be (x, —1.5)

The equation of the jet is

gx?sec’ 0

2u?

y=xtanf—

9.81x x% xsec? 30°
2x%9.4832

1.e.,—1.5=xxtan 30° —

=0.07273 x> - 0.5774x - 1.5=0

x=10m.

Vortex Flow

It is defined as the fluid flow along a curved path or the flow
of a mass of fluid rotating about an axis

Plane Circular Vortex Flows

These are flows with streamlines that are concentric circles.
Considering a polar coordinate system, the velocity field of
such a flow is defined as

Ve#0 and V.=0

Where V', and V, are the tangential and radial compo-
nents of the velocity respectively. For such flows V, is a
function of r only and not 6

Vortex flows can be mainly classified into two types:

1. Forced vortex flow
2. Free vortex flow

It is to be noted that a plane circular free vortex flow or a
plane circular forced vortex flow will be simply referred
to as respectively a free vertex flow or a forced vertex
flow. Hence all the characteristics of a plane circular vor-
tex flow will be attributed sometimes to a free or forced
vortex flow.

Forced Vortex Flow

It is defined as the vortex flow in which some external
torque is employed to rotate the fluid mass. The tangential
velocity of a fluid particle is given by

Vo=rm
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Where r is the distance of the fluid particle from the axis
of rotation and @ is the angular velocity of the fluid parti-
cle. In a forced vortex flow all fluid particles rotate with the
same angular velocity like a solid body and hence this flow
is termed as a solid body rotation. A forced vortex is also
called as a flywheel vortex or rotational vortex.

A forced vortex flow is a rotational flow (vorticity = 2®).
To maintain a forced vortex flow, mechanical energy has
to be spent from outside and the total mechanical energy
per unit mass is not constant. In such a flow, shear stress is
zero at all points in the flow field since there is no relative
motion. A forced vortex flow can be generated by rotating
a vessel containing a fluid so that the angular velocity is the
same at all points. That is,

1. Rotation of a liquid in a centrifugal pump.
2. Rotation of a gas in a centrifugal compressor
3. Rotation of water through the turbines runner

Consider two points 1 and 2 in a fluid having a forced vortex
flow as shown in the following figure.

, Free surface

For the two points, the following equation is applicable.

P2— D =§(V22_V12)_Pg(zz—z1) (D

Where |V1 = rla)| and |V2 = r2w|

If the two points lie on the free surface of the liquid then
P, =P, and equation (1) becomes

1
Z, -2, :g(sz _Vlz

If additionally to the above case, point 1 lies on the axis
of rotation.
(i.e., v, =r; Xxw=0Xxw=0), then

VZ
Zz - Z] = _2
2g
22
or z=2" 2)
2g

Where Z=2, -7,

Since Z varies with the square of r, equation (1) is an equa-
tion of a parabola consequently the free surface of the liquid
is a paraboloid.

Cylindrical Forced Vortex

It can be generated by rotating a cylindrical vessel contain-
ing a fluid. At any horizontal plane, the tangential velocity,
Vy=rw

0

Spiral Forced Vortex

The superimposition of a purely radial flow with a plane
circular forced vortex results in a spiral forced vertex flow.

Example 24: A cylindrical tank of diameter 1 m and height
3 m, which is open at the top, is filled with a liquid up to a
certain depth. When the cylinder is rotated at 100 rpm. The
liquid level is raised to be even with the brim. The depth of
the liquid in the tank is:

(A) 1.39m (B) 23 m
(€) 3m (D) 0.5m
Solution:
1, ——>
. 2
_____ B S ree—— — — Z=22—Z1
3mo L e _E_'I_/_/.’/. ...... l
L B SO
i AN v| -------- i ------

Let / be the depth of the liquid in the tank.
The points 1 and 2 are chosen as shown in the above
figure.

2,2
Hence, 7, - 7, = wn
2g
o 2N 2mx100
60 60
r,=0.5m
2
(2” ; 0100) % (0.5)?
Z = Zz _Zl =
2x9.81
=1.3973m

When the vessel is rotated a paraboloid is formed.Volume
of air before rotation = volume of air after rotation

= 7y X3-7mrs Xh



:lx;rxrz2 xXZ
2

or he3 2 _5 13973
2 2

=23 m.

Pressure Forces on the Top and Bottom
of a Cylinder

Consider a cylinder of radius R and height A which is com-
pletely filled with a liquid. The cylinder is rotated about its
vertical axis at a speed of @ radians/sec.

Total pressure on the top of the cylinder,

2
Frz%xnk“

Total pressure force on the bottom of the cylinder (/) =
weight of the liquid in the cylinder + total pressure force on
the top of the cylinder : ()

That is, |Fy = pgnR*H + Fy

Free Vortex Flow

A vortex flow in which no external torque is required to
rotate the fluid mass is called a free vortex flow. The veloc-
ity field in a free vortex flow is described by

C
V9=—
r

Where c¢ (called as the strength of the vortex) is a con-
stant in the entire flow field. The above equation is derived
from the fact that in a free vortex flow, as the external torque
is zero, the time rate of change of angular momentum, i.e.,
the moment of momentum is zero.

A free vortex is also called as a potential vortex or irro-
tational vortex.

A free vortex flow is irrotational (zero vorticity). In this
type of flow, the total mechanical energy per unit mass is
constant in the entire flow field with no addition or destruc-
tion of mechanical energy in the flow field. In a free vortex
flow, the fluid rotates due to either some previously imparted
rotation or some internal action. That is,

1. Whirlpool in a river

2. Flow around a circular bend

3. Flow of liquid through an outlet provided At the
bottom of a shallow vessel. (e.g. wash tub etc.)

It is to be noted that Bernoulli’s equation is applicable in
the case of a free vortex flow.

Consider two points 1 and 2 in the fluid having radii
r, and r, respectively from the axis of rotation and with

Chapter 3 e Fluid Kinematics and Dynamics | 3.461

heights Z, and Z, respectively from the bottom of the vessel
as shown in the figure.

' Axis of

. —7 rotation

A

Vessel

Since Bernoulli’s equation is applicable for free vortex

flow, we can write:
2 2
o W, B,

pg 2¢ pg 2g
Example 25: In a free cylindrical vortex flow of air (density
= 1.2 kg/m?), point A is located at a radius of 350 mm from
the axis of rotation and at a height of 200 mm from the
vessel bottom. Point B is however located at a radius of 500
mm and height 300 mm. If the velocity at point 4 is 20 m/s
then the pressure difference between the points 4 and B is:

(A) 121.22 P, (B) 10.29 P,
(C) 1235P, (D) 25.62 P,
Solution:
Given r,=035m

Z,=02m

V,=20m/s

Vp=0.5m

Z,=03m
For a free vortex flow
Vr = constant

VA ry= VBrB.
Or Vg = M = 14&
K

From Bernoulli’s equation we have:

VZ 2
p—A+—A+ZA:p—B+V—B+ZB
pg 2g pg 2g

2 2

Pa 20 2=, 14 +0.3
pg  2x9.61 pg 2x9.81

Ps_Pi _102975

pg  pg
Orp,—p,=10.2976 X 9.81 x 1.2

=121.22 Pa.
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Cylindrical Free Vortex

A cylindrical free vortex in a cylindrical coordinate system
has the Z axis directly vertically upwards where at each hor-
izontal plane, there exists a planar free vortex motion with
tangential velocity given by

Vezg
r

Spiral Free Vortex

For a plane spiral free vortex two dimensional flow, the tan-
gential and radial velocity components at any point with
respect to a polar coordinate system is inversely propor-
tional to the radial coordinate at that point.

*. In the flow field,
Vg = Q
,
v,=%
,

Such a flow can be said to be the superimposition of a

. . . C, .
radial flow described by equation Vr = —= with a free vor-
r

tex flow.

If a is the angle between the velocity vector V and the
tangential component of the velocity vector V, at any point
then:

Vo _ G
tanox=—=—
o G
drdr
Now, Jr —di __di__ dr
ve rw do  rdo
dt
»
— =tano
rd@

This is the equation of the streamline in this flow.
Integrating the above equation, it can be shown that:

0%
r= ’,Oeextantx =re @

Where 7, is the radius at 6= 0. The above equation shows
that the patterns of streamlines are logarithmic — spiral.

Example 26: An object, caught in a whirlpool, at a given
instant is at a distance of 100 cm from the centre of the
whirlpool.

The two dimensional velocity field of the whirlpool can
be described by the tangential and radial components of the
velocity such as V,, and V| respectively, where V, = -3V7r.
If after a certain period of time, the object is found to be at
a distance of 4.32 m from the centre of the whirlpool, then
the number of revolutions completed by the object from its
original position is:
(A) 3 B) 1.5

(C) 4.5 (D) 1

Solution:

The motion in a whirlpool can be simulated as a free vortex
flow. Since V,# 0 and Vr # 0 (for some finite radial location)
the flow can be considered to a spiral free vortex flow.
Given 7, =100 m

r=432m

Now for a spiral free vortex flow,

r= roeecz/c,

— ,,.OeGVr/Vg

ie., 432= 100><e9x(—%)

Or 0 =9.425744 radians
Now, 1 revolution = 27 radians
.. No. of revolution completed by the object

_9.425744
2
=1.5.

Practice Problems |

Direction for questions 1 to 20: Select the correct alterna-
tive from the given choices.

1. A two-dimensional velocity field is given by
V' = xti —myj, where x and y are in meters, ¢ is in sec-

onds, Vv is in m/s and m is a constant. Ifat =2 secs, x =
2 m and y = 1 m, the fluid speed is 5 m/s, then the con-
vective acceleration along the y-direction at the same
values of 7, x and y is:

(A) -9 m/s? (B) 9 m/s?
(C) 8m/s? (D) 0 m/s?
2. A flow field is represented by the velocity field
V =—xti +(6— y)t}, where ¢ is time. The equation of
a streamline passing through (1, 3) is:
(A) y+3x=6
(B) y=3x
(C) 6x—xy=3
(D) Not possible to determine



3. For a three-dimensional flow, the velocity components

are given as:

u=ax+dy+cz,v=dx+ey+hzandw=—-cx+hy+1
z. If for this flow, the vorticity vector is (¢ + 4x + 6y) [,
then the value of ¢ at the point (1, 1, 1) in the flow field
is:

(A) —10 (B) zero

©) 5 (D) 10

. A horizontal jet of liquid (density = 800 kg/m?) strikes
a flat plate kept in the vertical position, with a velocity
of 10m/s. The liquid then splashes off the sides in the
vertical plane. A horizontal force F'is applied to hold the
plate stationary. If the volumetric flow rate of the liquid
jet is 100 litre/sec, then the valve of F' (in Newtons) is:
(A) 800 (B) 8000

(C) —8000 (D) -800

. A 0.1 m diameter jet of concrete flows steadily at a
velocity of 2 m/s into a cart which is attached to a wall
by a cable as shown in the figure below.

The density of the concrete is 2200 kg/m?. If at instant
shown in the figure, the cart and the concrete in it
together weighs 3560 Newtons and the reaction force
exerted by the ground on the cart is 3620 Newtons, then
the tension in the cable is:
(A) 48.92N

(C) 11.65N

(B) 3431 N
(D) 20.53 N

Jet of concrete

— Cart

Cable

QOO O

. An incompressible fluid flows steadily through a con-
vergent horizontal nozzle of length 100 m. where the
velocities of the inlet and outlet are 10 m/s and 20 m/s
respectively. If along the length of the nozzle, a one
dimensional flow and a linear velocity distribution are
assumed, then the fluid acceleration at a distance of
25 m from the inlet is:

(A) 0.1 m/s? (B) 25 m/s?

(C) 1.25m/s? (D) 12.5 m/s?

. The nozzles of the sprinkler shown in the following fig-
ure have diameter of 7 mm. The total discharge of water
from the nozzle is 4 x 10~* m¥/s. If the friction in the
sprinkler is neglected, then the torque (in Nm) required
to hold the sprinkler stationary is:

(A) 1.663 (B) 4.157

(C) 1.039 (D) 0.416
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8.

10.

| T

v

o
«— 0.3m —se— 0.7m —»|

A large tank with nozzle attached contains three immis-
cible, inviscid liquids as shown in the following figure.
If the changes in the heights of the liquids in the tank
can be assumed to be negligible and that the instanta-
neous discharge velocity is 12.95 m/s, then the height /
in meters is equal to:
(A) 5

B) 1
(D) 9

p =900 kg/m3 ‘

p = 1000 kg/m3

p =1100 kg/m3

A duct in a horizontal plane, with a 45° bend as shown
in the figure below, has a cross-sectional area of 2
m? at section 1 gradually reduced to 1.5 m? at sec-
tion 2. The velocity of flow of the liquid (density
=950 kg/m?) of section 1 is 15 m/s whereas the pres-
sure at the section 1 is 90 kN/m?. The horizontal compo-
nent of the force required to hold the duct in position is:
(A) 25806429 N (B) 4598274 N

(C) 117158.1N (D) 197157.1 N

" Section 2

Section 1

A 7 m long pipe is inclined at an angle 30° with the
horizontal as shown in the following figure. The diame-
ters of the inlet and outlet sections are 150 mm and 300
mm respectively. The pipe is uniformly tapering. If the
velocity of the liquid flowing in the pipe 0.5 m/s at the
outlet section and if the differences in pressure between
the inlet and outlet is 30837 N/m?, then the density of
the liquid is:



3.464 | Partlll e Unit4 e Fluid Mechanics

11.

12.

13.

14.

15.

16.

(A) 462 kg/m?
(C) 535 kg/m?

(B) 950 kg/m?
(D) 602 kg/m?

outlet

A closed tank is partly filled with water where air is
present above the water surface. A 5 cm diameter pipe
connected to the bottom of the tank discharges to an
elevation of 3 m above the present level of water in the
tank. If frictional losses are assumed to be absent and a
discharge of 30 litre/s to be achieved, then the air in the
tank is to be pressurized to a gauge pressure of:

(A) 146.2 kN/m? (B) 87.34 kN/m?

(C) 116.77 kN/m? (D) 119.77 kN/m?

A circular pipe carrying oil with specific gravity of 0.8
increases in diameter from 150 mm at section A to 450 mm
at section B. The section A is 3 meters lower than section
B, and the pressures at sections A and B are 50 kPa and 20
kPa respectively. If the discharge is 100 litre /sec, then:
(A) Flow is from A4 to B and head loss is 5.435 m

(B) Flow is from B to 4 and head loss is 5.435 m

(C) Flow is from B to 4 one head loss is 2.435 m

(D) Flow is from A4 to B and head loss is 2.435 m

If the velocity potential function for a two-dimensional
flow field is given by ¢ = 10 xy, then the discharge
between the streamlines passing through the points
(2,3)and (1, 2) is:

(A) 10 (B) 80 (C) 40 (D) 40

A two — dimensional flow is described by the stream
function y = xy. The point in the flow field at which the
velocity vector will have a magnitude of 10 units and
will make an angle of 120° with the x-axis is:

(A) (543,5) (B) (0,0)
©) (5v3,53) (D) (5,53)

A venturimeter of throat diameter 150 mm is used to
measure the velocity of water flowing in a horizontal
pipe of diameter 350 mm. The difference of pressures
at the inlet and the throat of the venturimeter is 177
kPa. If 4% of the head is lost between the inlet and the
throat, then the flow rate of water through the pipe is:
(A) 0.3382 m/s (B) 0.0012 m?/s

(C) 0.3247 m®/s (D) 0.2198 m?/s

In a horizontal pipe of diameter 250 mm, water is flow-

ing at a rate of 0.02 m%/s through a 150 mm diameter
orifice. If the coefficients C, and C, are 0.62 and 1.0

17.

18.

19.

20.

respectively, then the difference in pressures at the
upstream section and the vena contracta section is:

(A) 1583.38 Pa (B) 1642.93 Pa

(C) 3412.84 Pa (D) 2242.36 Pa

A liquid of density p is slowing in a horizontal pipe
of constant diameter D as shown in the following fig-
ure. The manometer liquid has a density of p, and the
manometer reading is h. The volumetric flow rate of the
liquid in the pipe is:

(A) %sz Phgp,,
T ey /2hg(pm -p)
4 P
P
P

(B)

©

Zp2x [2h, £
4 pm
Ul (Pwtp)
Apix 2, L tP)

(D)

A nozzle of diameter 50 mm is inclined at an angle of
45° with the horizontal. The jet issuing from the noz-
zle strikes a point, on the ground, that is 2 m vertically
beneath the nozzle and 5 m horizontally from it. If the
velocity coefficient of the nozzle is 0.96, then the pres-
sure head at the nozzle is:

(A) 1.936 m (B) 1.834m

(C) 1.629m (D) 2.104 m

A cylinder has a height 2 m and contains water upto
a height of 1.5 m. When the cylinder is rotated about
its vertical axis at 100 r.p.m, the actual depth becomes
zero. The diameter of the cylinder is:

(A) 1.94m @B) 1.2m (C) 3.88m (D) 0.6 m
In a tornado, the velocity and pressure of air (density
= 1.2 kg/m®) at a radius of 3 m from its axis are 100 m/s
and 94.66 kPa. If the outer edge of the tornado is at a
radius of 20 meters from its axis, then the pressure at
the outer edge is:
(A) 88.795 kPa
(C) 100.525 kPa

(B) 94.66 kPa
(D) 101.325 kPa
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gauge fitted at the inlet reads 200 KN/m? where the
cross-sectional area is 0.05 m?. The liquid flows into
the atmosphere through the outlet, of cross-sectional

Practice Problems 2

Direction for questions 1 to 30: Select the correct alterna-
tive from the given choices.

1. A two-dimensional

velocity field is given by
Vv=(x+y-m)i+(5+2x-3y)j,where x and y are
in metres and m is a constant. If a stagnation point is

Outlet

area 0.01 m?, at a velocity of 10 m/s. With respect to
the horizontal, the force required to hold the elbow in
place acts at an angle of:

found at x = 2 m, then the convective acceleration in the (A) 4.5° (B) 7.25°
x —directionatx=2mand y=3 mis (€) 0.34° (D) 10.01°
(A) 0m/s? (B) 25 m/s? 7. A 10 cm diameter horizontal jet of water having a
(©) 5m/s? (D) =5 m/s? velocity of 15 m/s impinges on a flat vertical plate and
. A two-dimensional velocity field is given by v = splashes at the sides in the vertical plane. If a horizontal
A ~ L force F is applied to hold the plate stationary then the
£(m=3) i +2(n—4y+x)i , where s in seconds and force requirgg to move the platpe ata Velocityyof 10 m/s
x and y are in meters. If the velocity field corresponds towards the water jet is:
to a steady uniform flow, then the values of m and #, at 3F
t=1secs,x =2 m and y =3 m, are respectively: (A) F (B) =
(A) 3and-10 (B) 0and 10 sp F
(C) 3and 10 (D) 0 and —10 (©) Y (D) 3
. If the velocity field for an irrotational flow is repre- = g A jet of liquid (density = 900 kg/m?), having a diameter
sented by ¥ =ui +vj+wk. Then which one of the fol- of 0.2 m and speed 3 mV/s, is steadily filling a tank as
lowing relationships need not necessarily be true? shown in the figure. The coefficient of friction between
A) o du _ow ®B) M ow _dv the tank and the ground is 0.227. If at the instant shown
9z ox ay T oz in the figure, a horizontal force of 100N is exerted on
N u w v the stop block by the tank, and then the weight of the
©) D) — tank and its contents (neglecting the friction between
o .ay o B3 By ) the stop block and the ground) is:
. The equation of streamlines in a two-dimensional field (A) 780.656 N (B) 1001.033 N
is given by yx® = c, where c is a constant. If the velocity (C) 340352 N (D) 220376 N
of the flow field in the x-direction is given by u = —2x3,
then the velocity in the y-direction is: Liquid jet
(A) v=x
(B) v=06x% 600
(C) v=-3y Stop block
(D) Not possible to determine \
. Fluid particle A is present at the point (2, 2) in \
a two-dimensional flow with the velocity field:
V= xy3f +x3 y}', while fluid particle B is present at the . . . .
point (2, 2) in another two-dimensional flow which 9. An 1ncompre551ble fluid ﬂows steadllx through a con-
velocity filed: 7 =4 yzl? 1352 j‘ Which one of the fol- Vergent horizontal nozzle Wlth a velocity of 2.5 rr}/s at
lowing statements is ONLY correct? the inlet. Assume a one-dimensional flow and a linear
(A) Fluid particles 4 and B are rotating. velocity distribution along the length of the nozzle. The
(B) Fluid particles 4 and B are not rotating. outlet cross-sectional area is one-tenth the inlet cross-
(C) Fluid particle B is not rotating. sectional area. If the difference between the fluid accel-
(D) Fluid particle 4 is not rotating. erations at distances of 30 m and 10 m from the inlet pf
. A liquid of density 800 kg/m® is flowing steadily El;‘e) ng(z)zle is 4.05 m/s?, then t(l;;)le;logth of the nozzle is:
o . . m m
';Ero;‘llgh a ?AE) reducuTg elbow as shown in the follow- (©) 118m (D) 100.62 m
g figure. A pressure:
Inlet 10. A sprinkler with equal arm lengths of 0.5 m, as shown

in the following figure, discharges water at equal rela-
tive velocities through nozzles of equal diameters of
5 cm. The sprinkler freely rotates with no friction at a
speed of 95.493 r.p.m. The torque (in Nm) required to
hold the sprinkler stationary is:

(A) 98.175 (B) 49.087

(C) 61.235 (D) 22.602
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11.

12.

13.

0.5m

A large closed tank with a nozzle attached contains two
immiscible inviscid liquids as shown in the following
figure. The air space in the tank is pressurized to 2 atm.
If the changes in the heights of the liquids in the tank
are assumed to be negligible, then the instantaneous
discharge velocity is:

(A) 9.9 m/s (B) 7.1 m/s
(C) 16.04 m/s (D) 9.63 m/s
l aAir space
2 f“ p =900 kg/m3
SIrn p =1200 kg/m3

A duct in a horizontal plane, with a 45° bend as shown
in the figure below, has a cross-sectional area of 2 m?
at section 1 gradually reduced to 1.5 m? at section 2.
The velocity of flow of the liquid at section 1 is 10
m/s. The pressures at section 1 and 2 are 95 kN/m? and
52271.105 N/m? respectively. The vertical component
of the force required to hold the duct in position is:
(A) 262808 N (B) 312456 N

(C) 101333 N (D) 200654 N

Section 2

Section 1

A liquid is flowing upwards a vertical pipe which uni-
formly tapers from an inlet section of diameter 600 mm
to an inlet section of diameter 400 mm. The manometer
fitted to the pipe, reads the pressure difference between
the inlet and outlet to be 8 m in terms of the head of
the liquid flowing in the pipe. If the outlet section lies
above the inlet section by a height of 2 m, then the volu-
metric rate of flow of the liquid in the pipe is:

(A) 3.424 m¥/s (B) 0.676 m%/s

(C) 1.522m/s (D) 5.383 m¥/s

14.

15.

From a large tank of water, water is drawn steadily
using a siphon as shown in the figure below. If the point
1 denotes a point at the siphon discharge exit, then the
lowest pressure occurring in the siphon is given by:

(A) Py, +pg(L+H)
(B) Patm_pg(L+H)
(C) P —pe(L—H)
(D) Patm+pg(L_H)

@

For a flow to which the Bernoulli’s equation can be
applied, which one of the following quantities is defi-
nitely constant along a streamline?

(A) Sum of static and dynamic pressures

(B) Sum of dynamic and hydrostatic pressures

(C) Sum of hydrostatic and static pressures

(D) Sum of stagnation and hydrostatic pressures.

Direction for questions 16 and 17: The velocity profile for

7
flow in a circular pipe is given as V = V.. (%) where V'is

the local velocity of flow at a distance r from the pipe wall,

V

max

is the maximum velocity at the center line of the pipe

and R is the pipe radius.

16.

17.

18.

The average velocity of the flow is given by:
(A) Vmax

(B) A Vmax

© ==

D) =

The value of the momentum flux correction factor is:
(A) 1.01 (B) 1.02
O 1 (D) 1.04

An incompressible liquid flows steadily along a cir-
cular pipe of constant diameter 600 mm. If the length
between the sections 4 and B is 6 m, then between the
sections, the:

(A) Flow is from A4 to B and head loss is 1 m.
(B) Flow is from B to A and head loss is 2 m.
(C) Flow is from B to A and head loss is 1 m.
(D) Flow is from A4 to B and head loss is 2 m.



19.

20.

Water is pumped from a large tank as shown in the fig-
2
ure below. The head loss is known to be equal to 62L
g
where V is the discharge velocity, and the pump head
is equal to 20 —50?, where Q is the discharge. If the
discharge pipe has a diameter 100 mm and if only SI
units are considered, then the discharge Q is equal to:
(A) 0.0914 m®/s (B) 0.0124 m®/s
(B) 0.0831 m?/s (D) 0.0064 m>/s

b

AV

A two dimensional flow with the velocity field given
by: V' =(x+6,)i+(7+y)j is

(A) Incompressible and rotational
(B) Compressible and rotational
(C) Incompressible and irrotational
(D) Compressible and irrotational

Direction for questions 21 and 22: In a two dimensional
flow field, the point (5, 8) has been marked as point P.
The velocity potential function for this flow is given by

¢=
21.

22.

23.

72xy —48x.

The respective velocity components in the x and y
diameters are

(A) 48 — 72y and 72x

(B) 48 — 72y and —72x

(C) 72y —48 and 72x

(D) 72y — 48 and —72x

The value in units of the stream function at point P is:
(A) 2820 (B) 1020

(C) —1020 (D) —2820

Water is flowing with a velocity of 5 m/s through a 0.15
meter internal diameter horizontal pipe. The veloc-
ity of the water flowing has been determined using a
venturimeter, of throat diameter 0.1 m, fitted into the
pipeline. The differential manometer fitted into the
venturimeter shows a reading of 1.2 meter. If the ven-
turimeter coefficient is 0.96, then the density if the
manometric liquid is:
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(A) 5313.73 kg/m’
(C) 7000 kg/m®

(B) 13600 kg/m?3
(D) 4329.67 kg/m?

24. An orificemeter having an orifice of diameter d is pre-

sent in a pipe of diameter D. Generally, the coefficient

of discharge of the orificemeter:

(A) Is independent of d/D and Reynolds number of
flow.

(B) Depends on d/D and Reynolds number of flow

(C) Depends only on d/D

(D) Depends only on Reynolds number of flow

25. In an open stream of flowing liquid, a pitot tube is

immersed as shown in the figure below. Point 2 is a
stagnation point while point 1 is located upstream of
point 2. The velocity at point 1 is:

(A) \2gh (B) N2g(h +hy)

2
© /2g(2—1) D) 2gh
2

Pitot tube

=

26. In a horizontal pipe converging from a diameter of 200

mm to 100 mm, air (density = 1.2 kg/m?) is flowing at
a volumetric flow rate of 1004 L/S as shown in the fol-
lowing figure. If the specific gravity of the manometric
liquid is 0.85, then the value of the manometer reading
his

(A) 0.1m (B) 0.0736 m
(C) 1.177m (D) 0.00625 m
D =200 mm

D=100 mm

. Water is flowing out from a tank, through an orifice at

the side of the tank, as a jet. The jet strikes the ground
at a horizontal distance of x metres from the tank.
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28.

29.

The height of the water in the tank is 1.5 m and the
orifice is situated at a distance of h metres from the free
liquid surface. The value of x will be maximum is

(A) 1.33m (B) 1.5m

(C) 0.66m (D) 0.75m

A cylindrical vessel of diameter 0.2 m and 0.5 m height
is filled with a liquid completely upto the top. The vol-
ume of the liquid that will be left in the vessel after it is
rotated with a speed of 250 r.p.m. is

(A) 0.0157 m? (B) 0.00548 m?

(C) 0m? (D) 0.01022 m?

A cylindrical vessel is closed at the top and the bottom
and has a diameter of 0.4 m and height 0.5 m. The ves-
sel is completely filled with a liquid. When the vessel
is rotated about its vertical axis with an angular speed

30.

of wrad/s, the total pressure exerted by the liquid on the
bottom is twice that exerted by the liquid on the top the
vessel. The value of wis

(A) 22.14 rad/s (B) 14 rad/s

(C) 44.29 rad/s (D) 28 rad/s

In a free vortex flow of a fluid, at a radial location of
r = 1 m, the tangential velocity is 2 m/s. At two radial
locations in the same horizontal plane r, and r, (r, > )
in the free vortex flow, the pressure difference is deter-
mined to be P, — P,. If for a forced vortex flow of the
same fluid, having an angular velocity of 5 rad/s for
the same radial locations, the pressure difference is the
same, then the value of r, whenr, =2 m is

(A) 0.4m (B) 0.1 m

(©) 0.5m (D) 0.2m

PREvVIOUS YEARS’ QUESTIONS

1. A fluid flow is represented by the velocity field

V = axi +ayj, where a is a constant. The equation
of streamline passing through a point (1, 2) is [2004]
(A) x—2y=0 (B) 2x+y=0
C) 2x-y=0 (D) x+2y=0

. For a fluid flow through a divergent pipe of length L

having inlet and outlet radii and R, and R, respec-
tively and a constant flow rate of Q, assuming the
velocity to be axial and uniform at any cross section,

the acceleration at the exit is [2004]
20(R, —Ry) 20%(R -R
(A) 132 (B) Q(132)
LR, LR,
20*(R —R,) 20%(R, - R
(@) 5 1 - 2 (D) O° (R’ 1)
LR, n’LRy

. A closed cylinder having a radius R and height H is

filled with oil of densityr. If the cylinder is rotated
about its axis at an angular velocity of m, the thrust at
the bottom of the cylinder is: [2004]

(A) pR*pgH
(B) nRZM
(C) pR?* (pw*R* + pgH)

2 p2
(D) zR? (¥+P8H]

. The velocity components in the x and y directions of

a two dimensional potential flow are u and v, respec-

tively, then g—u is equal to: [2005]
X
v v
A) — B) -~
(A) = B) T
v v
© D) -
dy dy

5.

A venturimeter of 20 mm throat diameter is used to
measure the velocity of water in a horizontal pipe of
40 mm diameter. If the pressure difference between the
pipe and throat sections is found to be 30 kPa then,
neglecting frictional losses, the flow velocity is:[2005]
(A) 0.2m/s (B) 1.0 m/s

(©) 1.4m/s (D) 2.0 m/s

A leaf is caught in a whiripool. At a given instant, the
leafisatadistance of 120 m from the centre of the whirl-
pool. The whirlpool can be described by the following

3
velocity distribution: = — B0XI0 ﬁandVg
2nr ) s
3
= Mﬂ, where r (in meters) is the distance
2rr s

from the centre of the whirlpool. What will be the dis-
tance of the leaf from the centre when it has moved

through half a revolution? [2005]
(A) 48m (B) 64 m
(C) 120m (D) 142 m

In a two-dimensional velocity field with velocities u
and v along the x and y directions respectively, the
convective an acceleration along the x-direction is

given by: [2006]
Ju  du u v
A — L p— B —_— i
) u8x+v8y ®) u8x+v8y
Jdv  du Ju  du
C — L y— D - -
© s & Yo Yoy

A two-dimensional flow field has velocities along
the x and y directions given by u = x*¢ and v =2xyt
respectively, where ¢ is time. The equation of stream-
lines is: [2006]
(A) x?*y = constant

(B) xy? = constant

(C) xy = constant

(D) Not possible to determine



9.

10.

11.

In a steady flow through a nozzle, the flow velocity on
the nozzle axis is given by v = u_ (1 + 3x/L)i, where
x is the distance along the axis of the nozzle from its
inlet plane and L is the length of the nozzle. The time
required for a fluid particle on the axis to travel from

the inlet to the exit plane of the nozzle is: [2007]
L )/

A) — (B) —in4
u, 3u,,
L L

C) — D

©) 4, (D) 250

Which combination of the following statements about

steady incompressible forced vortex flow is correct?

P: Shear stress is zero at all points in the flow.

Q: Vorticity is zero at all points in the flow.

R: Velocity is directly proportional to the radius from
the centre of the vortex.

S: Total mechanical energy per unit mass is constant
in the entire flow field.

Select the correct answer using the codes given below.

[2007]
(A) Pand O
(C) PandR

(B) Rand S
(D) Pand S

For the continuity equation given by V-V =0 to be
valid, where V is the velocity vector, which one of

[2008]
(B) irrotational flow
(D) incompressible flow

the following is a necessary condition?
(A) Steady flow
(C) In viscid flow

Direction for questions 12 and 13: The gap between a
moving circular plate and a stationary surface is being
continuously reduced, as the circular plate comes down at
a uniform speed V' towards the stationary bottom surface,
as shown in the figure. In the process, the fluid contained
between the two plates flows out radially. The fluid is
assumed to be incompressible and inviscid.

—— R —]
— Moving
. circular plate
£ :
h . %4
vy :
/
' 3 Stationary
surface
12. The radial velocity ¥, at any radius », when the gap

width is 4, is: [2008]
Vr Vr
A =— B v.=—
@ v, = ®) v, ==
Vh
© v =22 D) v, =2
p
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13.

14.

15.

16.

17.

18.

The radial component of the fluid acceleration at

r=Ris: [2008]
2 2
(A) R ®) R
e e
V2R V2h
© X D) -1
2h? 2R

Consider steady, incompressible and irrotational
flow through a reducer in a horizontal pipe where the
diameter is reduced from 20 cm to 10 cm. The pres-
sure in the 20 cm pipe just upstream of the reducer is
150 kPa. The fluid has a vapour pressure of 50 kPa
and a specific weight of 5 kN/m?. Neglecting fric-
tional effects, the maximum discharge (in m%/s) that
can pass through the reducer without causing cavita-

tion is: [2009]
(A) 0.05 (B) 0.16
(C) 0.27 (D) 0.38

You are asked to evaluate assorted fluid flows for their
suitability in a given laboratory application. The fol-
lowing three flow choices, expressed in terms of the
two-dimensional velocity fields in the xy-plane, are
made available.

P u=2y,v=-3x

0. u=3xy,v=0

R u=-2x,v=2y

Which flow(s) should be recommended when the ap-
plication requires the flow to be incompressible and

irrotational? [2009]
(A) Pand R B) 0
(C) QandR (D) R

Velocity vector of a flow field is given as
V = 2xyi —x*zj. The vorticity vector at (1, 1, and 1)

is: [2010]
(A) 4i-j (B) 4i—k
(C) i-4j (D) 7—4k

A streamline and an equipotential line in a flow field.
[2011]

(A) Are parallel to each other

(B) Are perpendicular to each other

(C) Intersect at an acute angle

(D) Are identical

Figure shows the schematic for the measurement of
velocity of air (density = 1.2 kg/m?) through a con-
stant area duct using a pitot tube and a water-tube
manometer. The differential head of water (density =
1000 kg/m?) in the two columns of the manometer is
10 mm. Take acceleration due to gravity as 9.8 m/s.
The velocity of air in m/s is [2011]
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19.

20.

21.

Flow
—

10 mm

(A) 6.4 (B) 9.0

(©) 12.8 (D) 25.6

A large tank with a nozzle attached contains three
immiscible, inviscid fluids as shown. Assuming that
the changes in 4,, h, and h, are negligible, the instan-

taneous discharge velocity is: [2012]
:V h1 P
: h2 P2
h3 P3 \_

(A) \/Zgh3 (1_,_&@4_/’_2@]

pshy p3 g
(B) 2g(h+hy +hy)
©) \/Zg(plhl + Pl + p3iy J
PLtp2tp3
(D) \/2g(P1h2}% + Palhy + pshhy )
Pl + pahy + p3hy

Water is coming out from a tap and falls vertically
downwards. At the tap opening, the stream diameter
is 20 mm with uniform velocity of 2 m/s. Acceleration
due to gravity is 9.81 m/s?. Assuming steady, invis-
cid flow, constant atmospheric pressure everywhere
and neglecting curvature and surface tension effects,
the diameter in mm of stream 0.5 m below the tap is

approximately [2013]
(A) 10 (B) 15
(©) 20 (D) 25

For an incompressible flow field, J/,which one of the

following conditions must be satisfied? [2014]
(A) V-V=0 (B) VxV =0

= = o - -
© -Vyr=0 (D) E+(V~V)V=O

220,

23.

24.

25.

26.

27.

Consider the following statements regarding stream-

line (s):

(1) Itisa continuous line such that the tangent at any
point on it shows the velocity vector at that point

(i1) There is no flow across streamlines

(i) @:Q:éis the differential equation of a

u oy w
streamline, where u, v and w are velocities in di-
rections x, y and z respectively

(iv) In an unsteady flow, the path of a particle is a
streamline
Which one of the following combinations of the
statements is true? [2014]

(A) (0, (i), (iv)

®B) (i), (i), (iv)

(©) (), (i), (iv)

(D) (0, (i, (iii)

Consider a velocity field V = K(yi+xK), where K is
a constant. The vorticity, €, is [2014]
(A) K B) K
(C) K72 (D) K/2
Match the following pairs: [2015]
Equation Physical Interpretation
P 5 | Incompressible continuity
Vxy=0 equation
Q . V -0 Il Steady flow
R DV_, Il Irrotational flow
Dt
s v = v Zerg acceleration of fluid
ot particle

(A) P-1V, Q-1, R-II, S-III

(B) P-1V, Q-III, R-1, S-1I

(C) P-III, Q-L, R-1V, S-1I

(D) P-III, Q-L, R-II, S-IV

The velocity field of an incompressible flow is given
by

V=(ax+ay+ap)i+ (bx+by+bgz)y+(cx+
¢,y + c;2)k, where a, = 2 and ¢, =—4. The value of b,
is . [2015]
Water (p = 1000 kg/m?) flows through a venturimeter
with inlet diameter 80 mm and throat diameter 40 mm.
The inlet and throat guage pressures are measured to
be 400 kPa and 130 kPa respectively. Assuming the
venturimeter to be horizontal and neglecting friction,
the inlet velocity (in m/s) is . [2015]
If the fluid velocity for a potential flow is given by
V(x, y) = u(x, y)i + v(x, y)j with usual notations, then
the slope of the potential line at (x, y) is: [2015]




28. A Prandtl tube (Pitot-static tube with C = 1) is used
to measure the velocity of water. The differential
manometer reading is 10 mm of liquid column with
a relative density of 10. Assuming g = 9.8 m/s%, the
velocity of water (in m/s)is ____. [2015]

29. The instantaneous stream-wise velocity of a turbulent
flow is given as follows:

ul,y,z, )= (x,y,2) + ' (x,,2,1)
The time-average of the fluctuating velocity u” (x, y,

z, t) is: [2016]
(A) u'/2 B) —u/2
(C) zero (D) u/2

30. The volumetric flow rate (per unit depth) between two
streamlines having stream functions ¥, and V', is:
[2016]
(A) ¥, +,) (B) ¥, ¥,
©) ¥/Y, (D) ¥, -7,

31. A channel of width 450 mm branches into two sub-
channels having width 300 mm and 200 mm as shown
in figure. If the volumetric flow rate (taking unit depth)
of an incompressible flow through the main channel is
0.9 m>3/s and the velocity in the sub-channel of width
200 mm is 3 m/s, the velocity in the sub-channel of

width 300 mm is m/s.
Assume both inlet and outlet to be at the same
elevation. [2016]
Width = 300 mm
Width = 450 mm /'
Flow rate = 0.9m°/s
e

NG

Width =200 mm
Velocity = 3 m/s

32. For a certain two-dimensional incompressible flow,
velocity field is given by 2xyi — y?j. The streamlines
for this flow are given by the family of curves. [2016]
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(B) x)? = constant
(D) xy = constant

(A) x?y? = constant
(C) 2xy —y? = constant
33. The water jet exiting from a stationary tank through
a circular opening of diameter 300 mm impinges on
a rigid wall as shown in the figure. Neglect all minor
losses and assume the water level in the rank to remain
constant. The net horizontal force experienced by the
wall is kN. [2016]

Density of water is 1000 kg/m?.

Acceleration due to gravity g = 10 m/s2.

A\VA Stationary rigid wall

e

1
i
(W T e W

Circular opening of
diameter 300 mm

34. For a two-dimensional flow, the velocity field is

X ~ y
i
x2+y2 xI+y

i = 2}'

where i and j are the basis vectors in the x-y
Cartesian coordinate system. Identify the CORRECT

statements from below. [2016]
(1) The flow in incompressible
(2) The flow is unsteady
: -y
(3) y-component of acceleration, a, = ————
Y (2242
—(x+
(4) x-component of acceleration, a_ %
(x+y7)

(A) (2) and (3)
(©) (1) and (2)

(B) (1) and (3)
(D) (3) and (4)
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EXERCISES

Practice Problems |

1. B 2. A 3. D 4. A 5. B 6. C 7. D 8. A 9. D 10. B
11. A 12. D 13. A 14. D 15. C 16. A 17. B 18. A 19. B 20. C
Practice Problems 2

1. A 2. C 3.D 4. B 5. C 6. A 7. 8. A 9. A 10. A
11. C 12. A 13. C 14. B 15. D 16. B 17. B 18. B 19. C 20. B
21. C 22. B 23. A 24. B 25. D 26. C 27. D 28. D 29. C 30. D
Previous Years’ Questions

1. C 2. C 3.D 4. D 5.D 6. B 7. A 8. D 9. B 10. B
11. D 12. A 13. B 14. B 15. D 16. D 17. B 18. C 19. A 20. B
21. A 22. D 23. A 24. C 25. 1.9t02.1 26. 6 27. B 28. 1.30to 1.34
29. C 30. D 31. 1 32. B 33. 8.7-8.8 34. B
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