11.SIMPLE HARMONIC MOTION

S.H.M.

F = kx

General equation of S.H.M. is $x = A \sin(\omega t + \phi)$; $(\omega t + \phi)$ is phase of the motion and ϕ is initial phase of the motion.

Angular Frequency (ω): $\omega = \frac{2\pi}{T} = 2\pi f$

Time period (T): $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$

Speed: $v = \omega \sqrt{A^2 - x^2}$

Acceleration : $a = -\omega^{\kappa} x$

Kinetic Energy (KE): $\frac{1}{2} \text{ mv}^{is} = \frac{1}{2} \text{ m}\omega^{is} (A^{is} - x^{is}) = \frac{1}{2} \text{ k} (A^{is} - x^{is})$

Potential Energy (PE): $\frac{1}{2} \text{ Kx}^{\text{x}}$

Total Mechanical Energy (TME) = K.E. + P.E. = $\frac{1}{2}$ k (A⁸ x^8) + $\frac{1}{2}$ Kx⁸ = $\frac{1}{2}$ KA⁸ (which is constant)

SPRING-MASS SYSTEM

(2)
$$T = 2\pi \sqrt{\frac{\mu}{K}} \text{ , where } \mu = \frac{m_1 m_2}{(m_1 + m_2)} \text{ known as reduced mass}$$

COMBINATION OF SPRINGS

Series Combination : $1/k_{sg} = 1/k_{i} + 1/k_{g}$ Parallel combination : $k_{sg} = k_{i} + k_{g}$

SIMPLE PENDULUM $T = 2\pi \sqrt{\frac{\ell}{g}} = 2\pi \sqrt{\frac{\ell}{g_{eff.}}}$ (in accelerating Reference Frame); g_{sii} is net acceleration

due to psuedo force and gravitational force.

COMPOUND PENDULUM / PHYSICAL PENDULUM

Time period (T) :
$$T = 2\pi \sqrt{\frac{I}{mg\ell}}$$

where, I = I _ H + m $\ell^{\rm R}$; ℓ is distance between point of suspension and centre of mass.

TORSIONAL PENDULUM

Time period (T):
$$T = 2\pi \sqrt{\frac{I}{C}}$$
 where, $C = Torsional constant$

Superposition of SHM s along the same direction

$$x_i = A_i \sin \omega t & x_i = A_i \sin (\omega t + \theta)$$

 $x_{i} = A_{i} \sin \omega t & x_{ig} = A_{ig} \sin (\omega t + \theta)$ If equation of resultant SHM is taken as $x = A \sin (\omega t + \phi)$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\theta}$$
 & $\tan \phi = \frac{A_2\sin\theta}{A_1 + A_2\cos\theta}$

