[4 Marks]

Q.1. Verify Lagrange's mean value theorem for the following function: $f(x) = x^2 + 2x + 3$, for [4, 6].

Ans.

 $f(x) = x^2 + 2x + 3$ for [4, 6]

- i. Given function is a polynomial hence it is continuous.
- ii. f'(x) = 2x + 2 which is differentiable.
- f(4) = 16 + 8 + 3 = 27 and f(6) = 36 + 12 + 3 = 51
- $\Rightarrow f(4) \neq f(6)$. All conditions of mean value theorem are satisfied.
- \therefore There exist at least one real value $c \in (4, 6)$

such that
$$f'(c) = \frac{f(6)-f(4)}{6-4} = \frac{24}{2} = 12$$

 \Rightarrow 2c+2 = 12 or c = 5 \in (4, 6)

Hence, Lagrange' mean value theorem is verified.

Q.2. Verify Mean Value theorem for the function $f(x) = 2 \sin x + \sin 2x$ on $[0, \pi]$.

Ans.

We have,

 $f(x) = 2\sin x + \sin 2x$

f(x) is continuous in [0, π] being trigonometric function.

Also f(x) is differentiable on $(0, \pi)$.

Hence, condition of Mean Value theorem is satisfied.

Therefore, mean value theorem is applicable.

So, \exists a real number *c* such that

$$f'(c) = \frac{f(\pi) - f(0)}{\pi - 0} \qquad \dots(i)$$

Now $f(0) = 2 \sin 0 + \sin 0 = 0$

 $f(p) = 2 \sin \pi + \sin 2\pi = 0$

and $f'(x) = 2 \cos x + 2 \cos 2x$

 $\therefore \quad f'(c) = 2\cos c + 2\cos 2c$

From (*i*)

 $2\cos c + 2\cos 2c = \frac{0-0}{\pi}$

- \Rightarrow 2 cos c + 2 cos 2c = 0
- $\Rightarrow 2\cos c + 2(2\cos^2 c 1) = 0$
- $\Rightarrow \quad \cos c + 2 \cos^2 c 1 = 0$
- $\Rightarrow 2\cos^2 c + \cos c 1 = 0$
- $\Rightarrow 2\cos^2 c + 2\cos c \cos c 1 = 0$
- $\Rightarrow 2 \cos c (\cos c + 1) 1 (\cos c + 1) = 0$

- $\Rightarrow (\cos c + 1)(2\cos c 1) = 0$
- $\Rightarrow \cos c = -1 \text{ and } \cos c = \frac{1}{2}$
- \Rightarrow $c = \Pi$ and $c = \frac{\pi}{3}$
- \therefore $c=rac{\pi}{3}\in(0,\pi)$

Hence Mean Value theorem is verified.

Long Answer Questions-I-D (OIQ)

[4 Marks]

Q.1. Verify Lagrange's mean value theorem for the function $f(x) = x + \frac{1}{2}$ in [1, 3].

Ans.

Given, $f(x) = x + \frac{1}{x}$ or $f(x) = \frac{x^2+1}{x}$

- i. Since f(x) is a rational function such that the denominator is not zero for any value in [1, 3], it is a continuous function.
- ii. $f'(x) = 1 \frac{1}{x^2}$ which exist in (1, 3) \therefore f(x) is differentiable in (1, 3)

Thus, all the conditions of Lagrange's Mean Value theorem are satisfied. Hence, there exist at least one real value *c* such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} \qquad \dots(i)$$

where $f'(c) = 1 - \frac{1}{c^2}$; $f(b) = f(3) = \frac{10}{3}$ and f(a) = f(1) = 2 ...(ii)

From (i) and (ii), we get

 $\Rightarrow 1 - \frac{1}{c^2} = \frac{\frac{10}{3} - 2}{\frac{3}{3-1}}$ $\Rightarrow \frac{c^2 - 1}{c^2} = \frac{2}{3}$ $\Rightarrow 3c^2 - 3 = 2c^2$ $\Rightarrow c^2 = 3$ $\Rightarrow c = \pm\sqrt{3}$ Neglecting $c = -\sqrt{3}$ as $-\sqrt{3} \notin (1,3)$ $\therefore c = \sqrt{3} \in (1,3)$

Hence, Lagrange's mean value theorem is verified.

Q.2. Using Rolle's theorem, find the points on the curve $y = x^2$, where $x \in [-2, 2]$ and the tangent is parallel to *x*-axis.

Ans.

 $f(x) = x^2$

- i. f(x) is a polynomial, hence continuous in [-2, 2]
- ii. f'(x) = 2x which exist in [-2, 2]
 - \therefore f(x) is differentiable in [-2, 2]

iii.
$$f(-2) = (-2)^2 = 4$$

 $f(2) = (2)^2 = 4$
 $\therefore \quad f(2) = f(-2)$

Thus, all the conditions of Rolle's theorem are applicable, then there exist at least one real value *c*, such that

$$f(c) = 0$$

$$\Rightarrow 2c = 0$$

$$\Rightarrow c = 0$$

when $x = 0, y = (0)^{2} = 0$

 \therefore (0, 0) is the required point.