Chapter 8. Simultaneous Linear Equations

Ex 8.1

Answer 1A.

The given equations are $2x + y = 8 \qquad \dots(i)$ $3y = 3 + 4x \qquad \dots(ii)$ Now, consider equation 2x + y = 8 $\Rightarrow y = 8 - 2x \qquad \dots(iii)$ Substituting the value of y in eqn. (ii), we get 3(8 - 2x) = 3 + 4x $\Rightarrow 24 - 6x = 3 + 4x$ $\Rightarrow -6x - 4x = 3 - 24$ $\Rightarrow -10x = -21$ $\Rightarrow x = \frac{21}{10}$ Putting the value of x in eqn. (iii), we get $y = 8 - 2\left(\frac{21}{10}\right) = 8 - \frac{21}{5} = \frac{40 - 21}{5} = \frac{19}{5}$ Thus, the solution set is $\left(\frac{21}{10}, \frac{19}{5}\right)$.

Answer 1B.

The given equations are x + 3y = 5....(i) 7x - 8y = 6(ii) Now, consider equation x + 3y = 5⇒ x = 5 - 3v(iii) Substituting the value of x in eqn. (ii), we get 7(5-3y) - 8y = 6 $\Rightarrow 35 - 21y - 8y = 6$ ⇒ 35 - 29y = 6 ⇒-29y = -29 $\Rightarrow v = 1$ Putting the value of y in eqn. (iii), we get x = 5 - 3(1) = 5 - 3 = 2Thus, the solution set is (2, 1).

Answer 1C.

The given equations are 5x + 4y - 23 = 0(i) x + 9 = 6y(ii) Now, consider equation x + 9 = 6y $\Rightarrow x = 6y - 9$ (iii) Substituting the value of x in eqn. (i), we get 5(6y - 9) + 4y - 23 = 0 $\Rightarrow 30y - 45 + 4y - 23 = 0$ $\Rightarrow 30y - 45 + 4y - 23 = 0$ $\Rightarrow 34y - 68 = 0$ $\Rightarrow 34y - 68 = 0$ $\Rightarrow 34y = 68$ $\Rightarrow y = \frac{68}{34} = 2$ Putting the value of y in eqn. (iii), we get x = 6(2) - 9 = 12 - 9 = 3Thus, the solution set is (3, 2).

Answer 1D.

The given equations are 2x + 3y = 31....(i) 5x - 4 = 3y(ii) Now, consider equation 2x + 3y = 31⇒2x = 31- 3y $\Rightarrow x = \frac{31 - 3y}{2}$ (iii) Substituting the value of x in eqn. (ii), we get $5\left(\frac{31-3y}{2}\right) - 4 = 3y$ $\Rightarrow \frac{155 - 15y}{2} - 4 = 3y$ $\Rightarrow \frac{155 - 15y - 8}{2} = 3y$ ⇒147 - 15y = 6y ⇒21v = 147 \Rightarrow y = $\frac{147}{21}$ = 7 Putting the value of y in eqn. (iii), we get $x = \frac{31 - 3(7)}{2} = \frac{31 - 21}{2} = \frac{10}{2} = 5$ Thus, the solution set is (5, 7).

Answer 1E.

The given equations are 7x - 3y = 31(i) 9x - 5y = 41(ii) Now, consider equation 7x - 3y = 31 $\Rightarrow 7x = 31 + 3y$ $\Rightarrow x = \frac{31 + 3y}{7}$ (iii)

Substituting the value of x in eqn. (ii), we get

$$9\left(\frac{31+3y}{7}\right) - 5y = 41$$

$$\Rightarrow \frac{279+27y}{7} - 5y = 41$$

$$\Rightarrow \frac{279+27y-35y}{7} = 41$$

$$\Rightarrow 279-8y = 287$$

$$\Rightarrow -8y = 8$$

$$\Rightarrow y = -1$$

Putting the value of y in eqn. (iii), we get

$$x = \frac{31+3(-1)}{7} = \frac{31-3}{7} = \frac{28}{7} = 4$$

Thus, the solution set is $(4, -1)$.

Answer 1F.

The given equations are 13 + 2y = 9x....(i) 3y = 7x(ii) Now, consider equation 3y = 7x \Rightarrow y = $\frac{7}{3}$ ×(iii) Substituting the value of y in eqn. (i), we get $13 + 2\left(\frac{7}{3}x\right) = 9x$ $\Rightarrow 13 + \frac{14}{3} \times = 9 \times$ $\Rightarrow 9 \times -\frac{14}{3} \times = 13$ $\Rightarrow \frac{27 \times -14 \times}{3} = 13$ ⇒13x = 39 $\Rightarrow x = \frac{39}{13} = 3$ Putting the value of x in eqn. (iii), we get $y = \frac{7}{5} \times 3 = 7$ Thus, the solution set is (3, 7).

Answer 1G.

The given equations are 0.5x + 0.7y = 0.74(i) 0.3x + 0.5y = 0.5(ii) Now, consider equation 0.5x + 0.7y = 0.74 $\Rightarrow 0.5 \times = 0.74 - 0.7 \vee$ $\Rightarrow x = \frac{0.74 - 0.7y}{0.5} \qquad \dots (iii)$ Substituting the value of x in eqn. (ii), we get $0.3 \left(\frac{0.74 - 0.7y}{0.5} \right) + 0.5y = 0.5$ $\Rightarrow \frac{0.222 - 0.21}{0.5} + 0.5y = 0.5$ $\Rightarrow \frac{0.222 - 0.21y + 0.25}{0.5} = 0.5$ ⇒ 0.222 + 0.04y = 0.25 ⇒ 0.04y = 0.028 $\Rightarrow y = \frac{0.028}{0.04} = \frac{28}{40} = \frac{7}{10} = 0.7$ Putting the value of y in eqn. (iii), we get Thus, the solution set is (0.5, 0.7)

Answer 1H.

The given equations are 0.4x + 0.3y = 1.7(i) $0.7 \times -0.2 = 0.8$ (ii) Multiplying both the equations by 10, we get 4x + 3y = 17(iii) 7x - 2y = 8(iv) Now, consider equation 4x + 3y = 17 \Rightarrow 4x = 17 - 3y $\Rightarrow x = \frac{17 - 3\gamma}{4} \qquad \dots (v)$ Substituting the value of x in eqn. (iv), we get $7\left(\frac{17-3y}{4}\right) - 2y = 8$ $\Rightarrow \frac{119 - 21y}{4} - 2y = 8$ $\Rightarrow \frac{119 - 21y - 8y}{4} = 8$ ⇒119-29v = 32 ⇒-29y = 32-119 ⇒-29y = -87 \Rightarrow y = $\frac{-87}{20}$ = 3 Putting the value of y in eqn. (v), we get 17, 3(2), 17, 0, 0

$$x = \frac{17 - 3(3)}{4} = \frac{17 - 9}{4} = \frac{8}{4} = 2$$

Thus, the solution set is (2, 3).

Answer 1I.

The given equations are 3 - (x + 5) = y + 2(i) 2(x + y) = 10 + 2y(ii) Consider 3 - (x + 5) = y + 2 \Rightarrow 3-x-5=v+2 $\Rightarrow -x - 2 = y + 2$ \Rightarrow x + y = -4(iii) $\Rightarrow x = -4 - v$ Now, consider equation 2(x + y) = 10 + 2y \Rightarrow 2x + 2y = 10 + 2y $\Rightarrow 2x = 10$ $\Rightarrow x = 5$ Substituting the value of x in eqn. (iii), we get 5 = -4 - v⇒v=-4-5=-9 Thus, the solution set is (5, - 9).

Answer 1J.

The given equations are 7(y+3) - 2(x+2) = 14....(i) 4(v-2)+3(x-3)=2(ii) Consider 7(y+3) - 2(x+2) = 14 \Rightarrow 7v + 21 - 2x - 4 = 14 $\Rightarrow -2x + 7y = -3$ $\Rightarrow 2x - 7y = 3$ $\Rightarrow 2x = 7y + 3$ $\Rightarrow x = \frac{7y+3}{2}$ (iii) Now, consider equation 4(y-2)+3(x-3)=2 \Rightarrow 4y - 8 + 3x - 9 = 2 \Rightarrow 3x + 4v = 19 $\Rightarrow 3\left(\frac{7y+3}{2}\right) + 4y = 19 \qquad \dots [From (iii)]$ $\Rightarrow \frac{21y + 9 + 8y}{2} = 19$ $\Rightarrow 29v + 9 = 38$ ⇒29v = 29 $\Rightarrow v = 1$ Substituting value of y in eqn. (iii), we get $x = \frac{7(1)+3}{2} = \frac{10}{2} = 5$ Thus, the solution set is (5, 1).

Answer 2.

(i) 6x+3y=7xy 3x+9y=11xyDividing both sides of each equation by xy, we get, $\frac{6}{y} + \frac{3}{x} = 7$ (1) $\frac{3}{y} + \frac{9}{x} = 11$(2) Multiplying (2) by 2, $\frac{6}{y} + \frac{18}{x} = 22$(3) Subtracting (1) from (3), we get, $\frac{15}{x} = 15$ $\Rightarrow x = 1$ $\therefore \frac{3}{y} + 9 = 11$ $\Rightarrow \frac{3}{y} = 11 - 9 = 2$ $\Rightarrow y = \frac{3}{2}$ (...3)

Thus, the solution set is $\left(1, \frac{3}{2}\right)$.

(ii) 8v-3u=5uv

6v-5u=-2uv

Dividing both sides of each equation by uv, we get,

$$\frac{8}{u} - \frac{3}{v} = 5....(1)$$

$$\frac{6}{u} - \frac{5}{v} = -2....(2)$$

Multiplying (1) by 3 and (2) by 4, we get,

$$\frac{24}{u} - \frac{9}{v} = 15....(3)$$

$$\frac{24}{u} - \frac{20}{v} = -8....(4)$$

Subtracting (4) from (3), we get,
11

$$\frac{11}{v} = 23$$

$$\Rightarrow v = \frac{11}{23}$$

$$\therefore \frac{6}{u} - \frac{5}{11} \times 23 = -2$$

$$\Rightarrow \frac{6}{u} - \frac{115}{11} = -2$$

$$\Rightarrow \frac{6}{u} = -2 + \frac{115}{11} = \frac{-22 + 115}{11} = \frac{93}{11}$$
$$\Rightarrow u = \frac{6 \times 11}{93} = \frac{22}{31}$$
Thus, the solution set is $\left(\frac{22}{11}, \frac{11}{23}\right)$.

(iii) 3(2u+v) =7uv

3(u+3v) = 11uv

Dividing by uv, we get,

$$\frac{6}{v} + \frac{3}{u} = 7 \dots (1)$$

3(u + 3v) = 1 1uv
3u + 9v = 1 1uv

Dividing by uv, we get

$$\frac{3}{v} + \frac{8}{u} = 11....(2)$$

Multiplying (1) by 3, we get,

 $\frac{18}{v} + \frac{9}{u} = 21 \dots (3)$ Subtracting (2) from (3), we get, $\frac{15}{v} = 10$ $\Rightarrow v = \frac{15}{10} = \frac{3}{2}$ $\therefore \frac{3}{u} = 7 - 6 \times \frac{2}{3} = 7 - 4 = 3$ $\Rightarrow u = 1$ Thus, the solution set is $\left[1, \frac{3}{2}\right]$. (iv) 2(3u - v) = 5uv 2(u + 3v) = 5uv 2(3u - v) = 5uv $\Rightarrow 6u - 2v = 5uv$ $\Rightarrow 6u - 2v = 5uv$ $\Rightarrow \frac{6}{v} - \frac{2}{u} = 5 \dots (1)$ 2(u + 3v) = 5uv $\Rightarrow 2u + 6v = 5uv$ $\Rightarrow \frac{2}{u} + \frac{6}{v} = 5 \dots (2)$

Multiplying equation (1) by 3, we get,

 $\frac{18}{v} - \frac{6}{u} = 15 \dots (3)$ Adding (2) and (3), $\frac{20}{v} = 20$ $\Rightarrow v = 1$ $\therefore \frac{6}{u} = 5 - \frac{2}{1} = 3$ $\Rightarrow u = \frac{6}{3} = 2$ Thus, the solution set is (2, 1).

Answer 3A.

The given equations are 13a - 11b = 70(i) 11a-13b = 74(ii) Multiplying eqn. (i) by 13 and eqn. (ii) by 11, we get 169a - 143b = 910(iii) 121a-143b = 814(iv) Subtracting eqn. (iv) from eq. (iii), we get 48a = 96 $\Rightarrow a = 2$ Substituting the value of a in eqn. (i), we get 13(2) - 11b = 70⇒ 26 - 11b = 70 ⇒-11b = 70-26 $\Rightarrow -11b = 44$ ⇒b = -4 Thus, the solution set is (2, - 4).

Answer 3B.

```
The given equations are
41x + 53y = 135 ....(i)
53x + 41y = 147 ....(ii)
Multiplying eqn. (i) by 53 and eqn. (ii) by 41, we get
2173x + 2809y = 7155 ....(iii)
2173x + 1681y = 6027 ....(iv)
Subtracting eqn. (iv) from eq. (iii), we get
1128y = 1128
\Rightarrow v = 1
Substituting the value of y in eqn. (i), we get
41x + 53(1) = 135
\Rightarrow 41× + 53 = 135
⇒ 41x = 135 - 53
\Rightarrow 41x = 82
\Rightarrow x = 2
Thus, the solution set is (2, 1).
```

Answer 3C.

```
The given equations are
65x - 33y = 97
                    ....(i)
33x - 65v = 1
                   ....(ii)
Multiplying eqn. (i) by 33 and eqn. (ii) by 65, we get
2145x - 1089y = 3201 ....(iii)
2145x - 4225y = 65 ....(iv)
Subtracting eqn. (iv) from eq. (iii), we get
3136y = 3136
\Rightarrow v = 1
Substituting the value of y in eqn. (ii), we get
33x - 65(1) = 1
⇒ 33x - 65 = 1
\Rightarrow 33x = 1 + 65
⇒ 33x = 66
\Rightarrow x = 2
Thus, the solution set is (2,1).
```

Answer 3D.

The given equations are 103a + 51b = 617(i) 97a+49b = 583(ii) Sbtracting eqn. (ii) from (i), we get 6a+2b=34 ⇒ 3a+b = 17 [Dividing throughout by 2](iii) 200a + 100b = 1200 ⇒2a+b = 12 [Dividing throughout by 100](iv) Subtracting eqn. (iv) from eqn. (iii), we get a=5 Substituting the value of a in eqn. (iii), we get 3(5) + b = 17 \Rightarrow 15+b = 17 ⇒b=2 Thus, the solution set is (5,2).

Answer 4A.

 $\frac{3}{5}x - \frac{2}{3}y + 1 = 0$ \Rightarrow 9x - 10y + 15 = 0(i) \Rightarrow 9x - 10y = -15 $\frac{1}{3}y + \frac{2}{5}x = 4$ \Rightarrow 5v + 6x = 60 $\Rightarrow 6x + 5y = 60$(ii) Multiplying eqn. (ii) by 2, we get 12x + 10y = 120(iii) Adding eqns. (i) and (iii), we get 21x = 105 $\Rightarrow x = 5$ Substituting the value of x in eqn. (ii), we get 6(5) + 5y = 60 \Rightarrow 30 + 5y = 60 ⇒5y = 30 $\Rightarrow v = 6$ Thus, the solution set is (5,6).

Answer 4B.

 $\frac{x}{3} + \frac{y}{4} = 11$ \Rightarrow 4x + 3y = 132(i) $\frac{5x}{6} - \frac{y}{3} = -7$ \Rightarrow 5x - 2y = -42(ii) Multiplying eqn. (i) by 2 and eqn. (ii) by 3, we get 8x + 6y = 264....(iii) 15x - 6y = -126(iv) Adding eqns. (iii) and (iv), we get 23x = 138⇒x = 6 Substituting the value of x in eqn. (i), we get 4(6) + 3y = 132 \Rightarrow 24 + 3y = 132 ⇒3y = 108 ⇒ y = 36 Thus, the solution set is (6,36).

Answer 4C.

The given equations are $\frac{3}{2x} + \frac{2}{3y} = 5$ and $\frac{5}{x} - \frac{3}{y} = 1$ Let $\frac{1}{x} = a$ and $\frac{1}{y} = b$ Then, we have $\frac{3}{5}a + \frac{2}{3}b = 5$ ⇒ 9a + 4b = 30(i) And, 5a - 3b = 1(ii) Multiplying eqn. (i) by 3 and eqn. (ii) by 4, we get 27a+12b = 90(iii) 20a - 12b = 4(iv) Adding eqns. (iii) and (iv), we get 47a = 94⇒a=2 $\Rightarrow \frac{1}{x} = 2$ $\Rightarrow x = \frac{1}{2}$ Substituting the value of a (i), we get 9(2) + 4b = 30⇒18+4b=30 $\Rightarrow 4b = 12$ ⇒b=3 $\Rightarrow \frac{1}{v} = 3$ \Rightarrow y = $\frac{1}{3}$ Thus, the solution set is $\left(\frac{1}{2}, \frac{1}{3}\right)$.

Answer 4D.

The given equations are $\frac{3}{x} - \frac{1}{v} = -9$ and $\frac{2}{x} + \frac{3}{v} = 5$. Let $\frac{1}{x} = a$ and $\frac{1}{y} = b$ Then, we have 3a-b = -9(i) 2a+3b=5(ii) Multiplying eqn. (i) by 3, we get 9a - 3b = -27(iii) Adding eqns. (ii) and (iii), we get 11a = -22⇒a=-2 $\Rightarrow \frac{1}{2} = -2$ $\Rightarrow x = -\frac{1}{2}$ Substituting the value of a in eqn. (i), we get 3(-2) - b = -9 ⇒-6-b=-9 ⇒b = -6 + 9 ⇒b=3 $\Rightarrow \frac{1}{v} = 3$ \Rightarrow y = $\frac{1}{3}$ Thus, the solution set is $\left(-\frac{1}{2}, \frac{1}{3}\right)$.

Answer 4E.

The given equations are v - x = 0.8-x + y = 0.8(i) And, $\frac{13}{2(x+y)} = 1$ \Rightarrow 13 = 2x + 2v \Rightarrow 2x + 2y = 13(ii) Multiplying eqn. (i) by 2, we get -2x + 2y = 1.6(iv) Adding eqns. (ii) and (iii), we get 4v = 14.6⇒ y = 3.65 Substituting the value of y in eqn. (i), we get -x + 3.65 = 0.8⇒-x = -2.85 ⇒ x = 2.85 Thus, the solution set is (2.85, 3.65).

Answer 4F.

The given equations are $\frac{2}{x} + \frac{3}{y} = \frac{9}{xy}$ and $\frac{4}{x} + \frac{9}{y} = \frac{21}{xy}$. Let $\frac{1}{x} = a$ and $\frac{1}{y} = b$ Then, we have 2a + 3b = 9ab(i) 4a + 9b = 21ab(ii) Multiplying eqn. (i) by 2, we get 4a + 6b = 18ab(iii) Subtracting eqn. (iii) from eqn. (ii), we get 3b = 3ab $\Rightarrow a = 1$ $\Rightarrow \frac{1}{x} = 1$ $\Rightarrow x = 1$ Substituting the value of a in (i), we get 2(1) + 3b = 9(1)b $\Rightarrow 2 + 3b = 9b$ $\Rightarrow 6b = 2$ $\Rightarrow b = \frac{1}{3}$ $\Rightarrow \frac{1}{y} = \frac{1}{3}$ $\Rightarrow y = 3$ Thus, the solution set is (1, 3).

Answer 4G.

 $\frac{x + y}{xy} = 2$ $\Rightarrow x + y = 2xy \qquad \dots(i)$ $\frac{x - y}{xy} = 6$ $\Rightarrow x - y = 6xy \qquad \dots(ii)$ Adding eqns. (i) and (ii), we get 2x = 8xy $\Rightarrow y = \frac{1}{4}$ Substituting the value of y in eqn. (i), we get $x + \frac{1}{4} = 2x \times \frac{1}{4}$ $\Rightarrow \frac{4x + 1}{4} = \frac{x}{2}$ $\Rightarrow 8x + 2 = 4x$ $\Rightarrow 4x = -2$ $\Rightarrow x = -\frac{1}{2}$

Thus, the solution set is $\left(-\frac{1}{2}, \frac{1}{4}\right)$.

Answer 4H.

The given equations are $\frac{2}{x+1} - \frac{1}{y-1} = \frac{1}{2}$ and $\frac{1}{x+1} + \frac{2}{y-1} = \frac{5}{2}$. Let $\frac{1}{x+1} = a$ and $\frac{1}{y-1} = b$ Then, we have $2a-b = \frac{1}{2}$ (i) $a + 2b = \frac{5}{5}$ (ii) Multiplying eqn. (i) by 2, we get 4a - 2b = 1....(iii) Adding eqns. (ii) and (iii), we get $5a = \frac{7}{2}$ $\Rightarrow a = \frac{7}{10}$ $\Rightarrow \frac{1}{x+1} = \frac{7}{10}$ $\Rightarrow 10 = 7x + 7$ \Rightarrow 7x = 3 $\Rightarrow x = \frac{3}{7}$ Substituting the value of a in eqn. (iii), we get $4 \times \frac{7}{10} - 2b = 1$ $\Rightarrow \frac{14}{5} - 2b = 1$ $\Rightarrow 2b = \frac{14}{5} - 1 = \frac{9}{5}$

 $\Rightarrow \frac{1}{y-1} = \frac{9}{10}$ $\Rightarrow 10 = 9y - 9$ $\Rightarrow 9y = 19$ $\Rightarrow y = \frac{19}{9}$ Thus, the solution set is $\left(\frac{9}{10}, \frac{19}{9}\right)$.

 $\Rightarrow b = \frac{9}{10}$

Answer 4I.

The given equations are $\frac{6}{x+y} = \frac{7}{x-y} + 3$ and $\frac{1}{2(x+y)} = \frac{1}{3(x-y)}$. Let $\frac{1}{x+y} = a$ and $\frac{1}{x-y} = b$ Then, we have 6a = 7b + 3(i) ⇒6a-7b = 3 And, $\frac{1}{2}a = \frac{1}{3}b$ ⇒ 3a = 2b ⇒6a = 4b(ii) Substituting the value of 6a in eqn. (i), we get 4b - 7b = 3 $\Rightarrow -3b = 3$ $\Rightarrow b = -1$ 6a = -4 $\Rightarrow a = -\frac{2}{3}$ \Rightarrow x + y = $-\frac{3}{2}$ and x - y = -1Adding both these eqns., we get $2x = -\frac{5}{5}$ $\Rightarrow x = -\frac{5}{4}$ $\Rightarrow -\frac{5}{4} - y = -1$ \Rightarrow y = $-\frac{5}{4}$ + 1 = $-\frac{1}{4}$ Thus, the solution set is $\left(-\frac{5}{4}, -\frac{1}{4}\right)$.

Answer 4K.

The given equations are $\frac{2}{3x+2y} + \frac{3}{3x-2y} = \frac{17}{5}$ and $\frac{5}{3x+2y} + \frac{1}{3x-2y} = 2$. Let $\frac{1}{3x+2y} = a$ and $\frac{1}{3x-2y} = b$ Then, we have $2a + 3b = \frac{17}{5}$ (i) 5a+b=2(ii) Multiplying eqn. (i) by 5 and eqn. (ii) by 2, we get 10a + 15b = 17(iii) 10a + 2b = 4(iv) Subtracting eqn. (iv) from eqn. (iii), we get 13b = 13⇒b = 1 Substituting the value of b in eqn. (ii), we get 5a + 1 = 2⇒5a=1 $\Rightarrow a = \frac{1}{5}$ \Rightarrow 3x + 2y = 5 and 3x - 2y = 1 Adding these two equations, we get 6x = 6 $\Rightarrow x = 1$ \Rightarrow 3(1) + 2y = 5 $\Rightarrow 2y = 2$ $\Rightarrow \vee = 1$ Thus, the solution set is (1, 1).

Answer 4L.

$$\frac{xy}{x+y} = \frac{6}{5}$$

$$\Rightarrow \frac{x+y}{xy} = \frac{5}{6}$$

$$\Rightarrow \frac{1}{y} + \frac{1}{x} = \frac{5}{6} \qquad \dots (i)$$

$$\frac{xy}{y-x} = 6$$

$$\Rightarrow \frac{y-x}{xy} = \frac{1}{6}$$

$$\Rightarrow \frac{1}{x} - \frac{1}{y} = \frac{1}{6} \qquad \dots (ii)$$
Adding eqns. (i) and (ii), we get
$$\frac{2}{x} = 1$$

$$\Rightarrow x = 2$$

$$\Rightarrow \frac{1}{y} + \frac{1}{2} = \frac{5}{6}$$

$$\Rightarrow \frac{1}{y} = \frac{5}{6} - \frac{1}{2} = \frac{5-3}{6} = \frac{2}{6} = \frac{1}{3}$$

$$\Rightarrow y = 3$$
Thus, the solution set is (2, 3).

Answer 5.

 $2x+y = 23 \dots (1)$ $4x-y = 19 \dots (2)$ Adding (1) and (2), 6x = 42 $\Rightarrow x = 7$ $\therefore y = 23 - 2x = 23 - 14 = 9$ $\therefore x - 3y = 7 - 3(9) = 7 - 27 = -20$ 5y - 2x = 5(9) - 2(7) = 45 - 14 = 31

Answer 6.

 $10y = 7x-4 \dots (1)$ $12x+18y = 1 \dots (2)$ Multiplying (1) by 9 and (2) by 5, we get, $63x - 90y = 36 \dots (3)$ $60x + 90y = 5 \dots (4)$ Adding (3) and (4), we get, 123x = 41 $\Rightarrow x = \frac{41}{123} = \frac{1}{3}$ $\therefore 10y = \frac{7}{3} - 4 = \frac{7-12}{3} = \frac{-5}{3}$ $\Rightarrow y = \frac{-5}{3} \times \frac{1}{10} = \frac{-1}{6}$ $\therefore 4x + 6y = \frac{4}{3} - 1 = \frac{1}{3}$ $8y - x = \frac{-8}{6} - \frac{1}{3} = \frac{-8-2}{6} = \frac{-10}{6} = \frac{-5}{3}$

Answer 7.

$$4x + \frac{6}{y} = 15 \dots (1)$$

$$6x - \frac{8}{y} = 14 \dots (2)$$

Multiplying (1) by 4 and (2) by 3, we get,

$$16x + \frac{24}{y} = 60 \dots (3)$$

$$18x - \frac{24}{y} = 42 \dots (4)$$

Adding (3) and (4), we get,

$$34x = 102$$

$$\Rightarrow x = \frac{102}{34} = 3$$

$$\therefore \frac{6}{y} = 15 - 4x = 15 - 12 = 3$$

$$\Rightarrow y = \frac{6}{3} = 2$$

Thus, the solution set is (3, 2).
Now, $y = ax - 2$

$$\Rightarrow 2 = 3a - 2$$

$$\Rightarrow 3a - 4$$

$$\Rightarrow a = \frac{4}{3} = 1\frac{1}{3}.$$

Answer 8.

$$\frac{3}{x} - \frac{2}{y} = 0$$
(1)

$$\frac{2}{x} + \frac{5}{y} = 19$$
(2)
Multiplying (1) by 5 and (2) by 2, we get,

$$\frac{15}{x} - \frac{10}{y} = 0$$
(3)

$$\frac{4}{x} + \frac{10}{y} = 38$$
(4)
Adding (3) and (4), we get,

$$\frac{19}{x} = 38$$

$$\Rightarrow x = \frac{19}{38} = \frac{1}{2}$$

Now, $\frac{3}{x} = \frac{2}{y}$

$$\Rightarrow \frac{2}{y} = 6$$

$$\Rightarrow y = \frac{2}{6} = \frac{1}{3}$$

Thus, the solution set is $\left(\frac{1}{2}, \frac{1}{3}\right)$.
Now, $y = ax + 3$

$$\Rightarrow \frac{1}{3} = \frac{1}{2}a + 3$$

$$\Rightarrow \frac{a}{2} = \frac{1}{3} - 3 = \frac{1 - 9}{3} = \frac{-8}{3}$$

$$\Rightarrow a = \frac{-8}{3} \times 2 = \frac{-16}{3} = -5\frac{1}{3}$$

Answer 9.

The given equations are 7y - 3x = 7(i) 5y - 11x = 87(ii) 5x + 4y = 43(iii) Multiplying eqn. (i) by 5 and eqn. (ii) by 7, we get 35y - 15x = 35(iv) 35y - 77x = 609(v) Subtracting eqn. (iv) from eqn. (v), we get -62x = 574 $\Rightarrow x = -\frac{574}{62} = -\frac{287}{31}$ $\Rightarrow 7y - 3x\left(-\frac{287}{31}\right) = 7$ \Rightarrow 7y + $\frac{861}{31}$ = 7 $\Rightarrow 7y = 7 - \frac{861}{31} = \frac{217 - 861}{31} = -\frac{644}{31}$ $\Rightarrow y = -\frac{644}{7 \times 31} = -\frac{92}{31}$ Putting $x = -\frac{287}{31}$ and $y = -\frac{92}{31}$ in L.H.S. of eqn. (iii), we get LHS = $5 \times \left(-\frac{287}{31}\right) + 4 \times \left(-\frac{92}{31}\right) = -\frac{1435}{31} - \frac{368}{31} = -\frac{1803}{31} \neq 43$ \Rightarrow L.H.S. \neq R.H.S.

Hence, the given system of equations are not consistent.

Answer 10.

The given equations are 2x + 3y + 6 = 0(i) 4x - 3y - 8 = 0(ii) x + my - 1 = 0(iii) Adding eqns. (i) and (ii), we get 6x - 2 = 0 $\Rightarrow 6x = 2$ $\Rightarrow x = \frac{1}{3}$ Substituting the value of x in eqn. (i), we get $2x \frac{1}{3} + 3y + 6 = 0$ 2x - 18 - 2 - 20

$$\Rightarrow 3y = -6 - \frac{2}{3} = \frac{-18 - 2}{3} = \frac{-20}{3}$$
$$\Rightarrow y = -\frac{20}{9}$$

Substituting the value of \boldsymbol{x} and \boldsymbol{y} in eqn. (iii), we get

$$\frac{1}{3} + m \times \left(-\frac{20}{9}\right) - 1 = 0$$

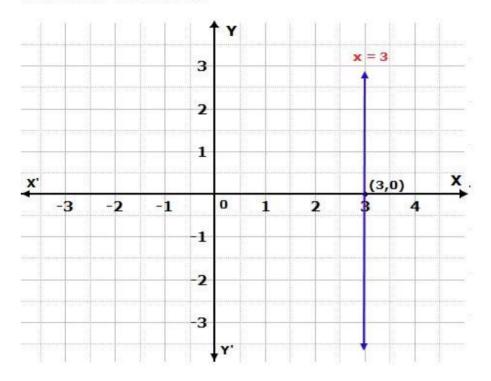
$$\Rightarrow -\frac{20}{9}m = 1 - \frac{1}{3} = \frac{2}{3}$$

$$\Rightarrow m = -\frac{2}{3} \times \frac{9}{20} = -\frac{3}{10}$$

Ex 8.2

Answer 1A.

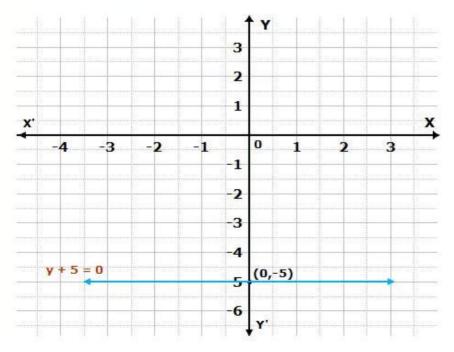
The graph of x = 3 is as follows:



Answer 1B.

Given equation, y + 5 = 0 i.e. y = -5

The graph is as follows:



Answer 1C.

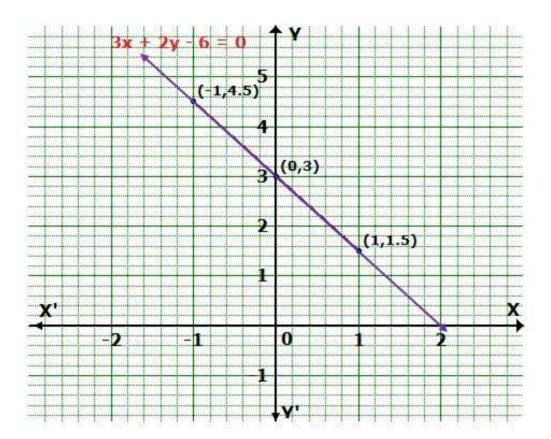
3x + 2y - 6 = 0 $\Rightarrow 3x + 2y = 6$ $\Rightarrow 2y = 6 - 3x$ $\Rightarrow y = \frac{6 - 3x}{2}$

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

Х	0	1	-1
y	З	1.5	4.5

Plotting the points (0, 3), (1, 1.5) and (-1, 4.5),

we get the following graph:



Answer 1D.

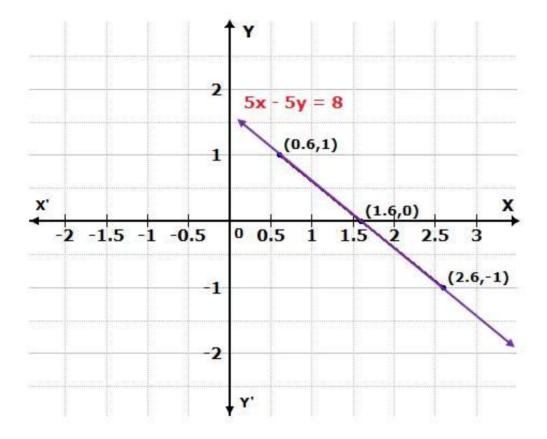
5x - 5y = 8 $\Rightarrow 5x = 8 - 5y$ $\Rightarrow x = \frac{8 - 5y}{5}$

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

Х	1.6	0.6	2.6
y	0	1	-1

Plotting the points (1.6, 0), (0.6, 1) and (2.6, -1),

we get the following graph:



Answer 2A.

Given,
$$\frac{1}{2} \times + \frac{1}{3}y = 1$$

$$\Rightarrow 3x + 2y = 6$$

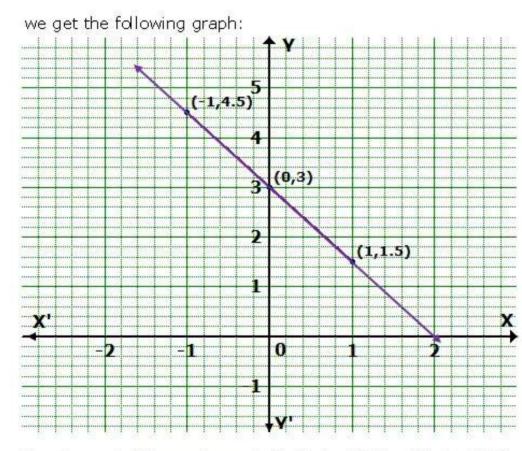
$$\Rightarrow 2y = 6 - 3x$$

$$\Rightarrow y = \frac{6 - 3x}{2}$$

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

Х	0	1	-1
У	3	1.5	4.5

Plotting the points (0, 3), (1, 1.5) and (-1, 4.5),



Thus, the graph of the equation meets the X-axis at (2, 0) and Y-axis at (0, 3).

Answer 2B.

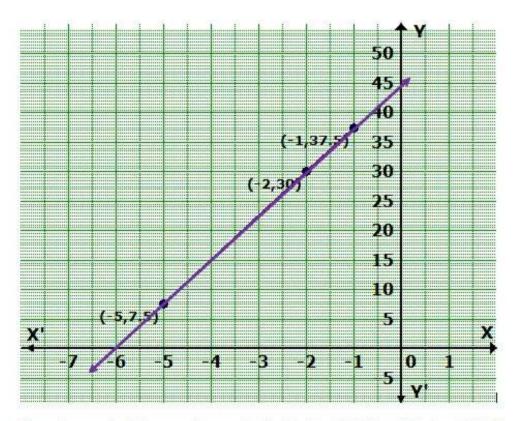
$$\frac{3x + 14}{2} = \frac{y - 10}{5}$$
$$\Rightarrow 15x + 70 = 2y - 20$$
$$\Rightarrow 15x - 2y = -90$$
$$\Rightarrow 2y = 90 + 15x$$
$$\Rightarrow y = \frac{90 + 15x}{2}$$

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

×	-5	-2	-1
·۷	7.5	30	37.5

Plotting the points (-5, 7.5), (-2, 30) and (-1, 37.5),

we get the following graph:



Thus, the graph of the equation meets the X-axis at (-6, 0) and Y-axis at (0, 45).

Answer 3.

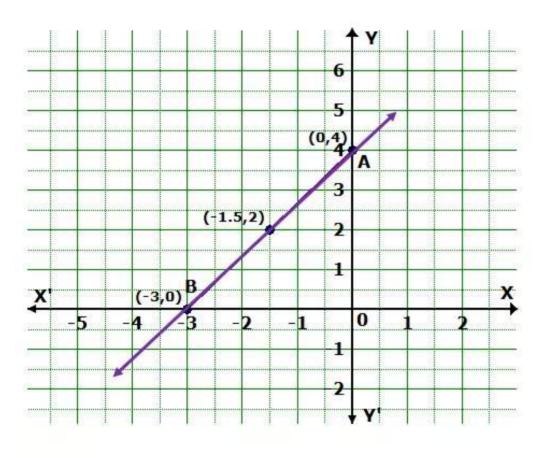
4x - 3y + 12 = 0 $\Rightarrow 4x = 3y - 12$ $\Rightarrow x = \frac{3y - 12}{4}$

Corresponding values of x and y can be tabulated as follows:

Х	-3	-1.5	0
γ	0	2	4

Plotting the points (-3, 0), (-1.5, 2) and (0, 4),

we get the following graph:



Area of $\triangle OAB = \frac{1}{2} \times OB \times OA = \frac{1}{2} \times 3 \times 4 = 6$ sq. units

Answer 4.

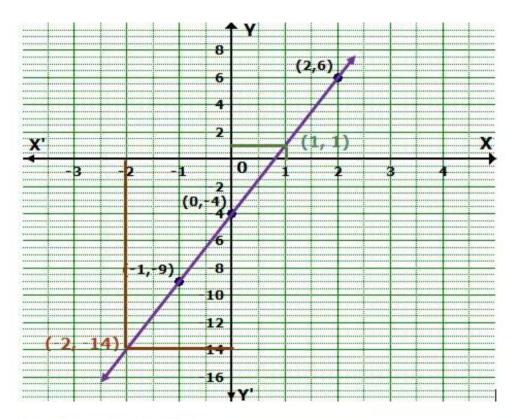
y = 5x - 4

Corresponding values of x and y can be tabulated as follows:

х	0	2	-1
У	-4	6	-9

Plotting the points (0, – 4), (2, 6) and (–1,–9),

we get the following graph:

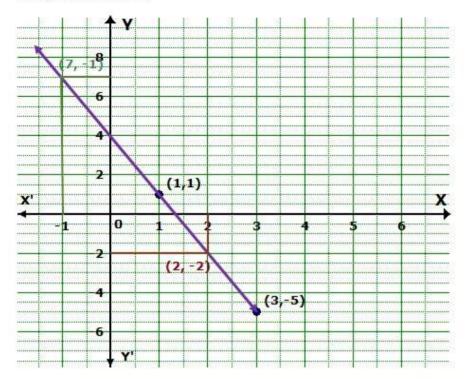


From the graph, we find that

a. When y = 1, x = 1. b. When x = -2, y = -14

Answer 5.

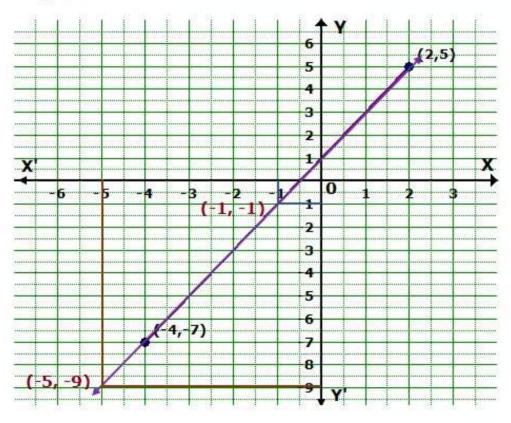
The graph is as follows:



From the graph, we find that p = -1 and q = -2.

Answer 6.

The graph is as follows:



From the graph, we find that a = -1 and b = -9.

Answer 7.

(i) x+3y=8

3x=2+2y x+3y=8 ____(1) 3x=2+2y ____(2)

Now, x+3y=8

$$\Rightarrow y = \frac{8 - x}{3}$$

Corresponding values of x and y can be tabulated as:

x	-1	2	5	
у	3	2	1	

Plotting points (-1, 3), (2, 2), (5, 1) and joining them, we get a line l, which is the graph of equation (1).

Again, 3x=2+2y

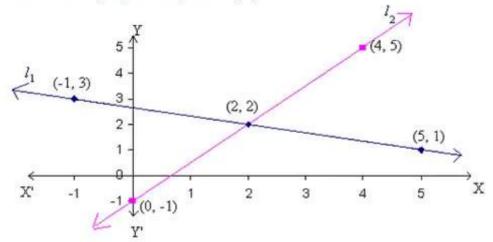
$$\Rightarrow x = \frac{2x + 2y}{3}$$

.

Corresponding values of x and y can be tabulated as :

x	2	4	0	
у	2	5	-1	

Plotting points (2, 2), (4, 5), (0, -1) and joining them, we get a line I_2 which is the graph of equation (2).



The two lines I_1 and I_2 intersect at the point (2, 2). Hence, x=2, y=2 is the unique solution of the given equation.

(ii)
$$2x+4y=7$$

 $3x+8y=10$
 $2x+4y=7$ ____(1)
 $3x+8y=10$ ___(2)
Now, $2x+4y=7$
 $\Rightarrow 4y = 7 - 2x$

$$\Rightarrow y = \frac{7 - 2x}{4}$$

Corresponding values of x and y can be tabulated as:

x	2	3	4
У	0.75	0.25	-0.25

Plotting points (2, 0.75), (3, 0.25), (4, -0.25) and joining them, we get a line I_1 which is the graph of equation (1).

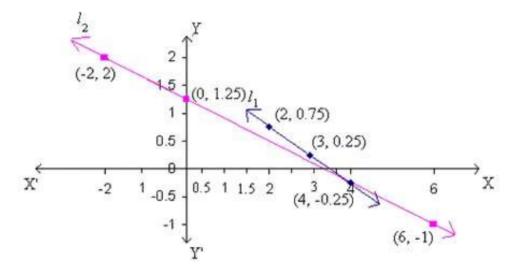
Again, 3x+8y=10

$$\Rightarrow \times = \frac{10 - 8y}{3}$$

Corresponding values of x and y can be tabulated as:

x	6	-2	0
У	-1	2	1.25

Plotting points (6, 1), (2, 2), (0, 1.25) and joining them, we get a line I_2 which is the graph of equation (2).



The two lines I_1 and I_2 intersect at the point (4, -0.25), ie, $\left(4, \frac{-1}{4}\right)$.

Hence x=4 and $y = \frac{-1}{4}$ is the unique solution of the given equations.

(iii) 2x-y=9

 \Rightarrow y = 2x - 9

Corresponding values of x and y can be tabulated as:

x	2	3	4	
у	-5	-3	-1	

Plotting points (2,-5), (3,-3), (4,-1) and joining them, we get a line I, which is the graph of equation (1).

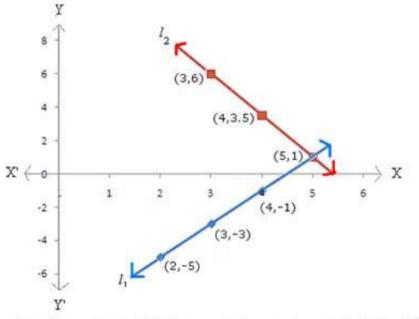
Again, 5x+2y=27

$$\Rightarrow y = \frac{27 - 5x}{2}$$

Corresponding values of x and y can be tabulated as:

x	5	4	3	
y	1	3.5	6	

Plotting points (5, 1), (4, 3.5), (3, 6) and joining them, we get a line l_2 which is the graph of equation (2).



The two lines I_1 and I_2 intersect at a unique point (5, 1).

Thus, x=5 and y=1 is the unique solution of the given equations.

(iv)
$$x+4y+9=0$$

$$x+4y=-9$$
 ____(1)
3y=5x-1 ____(2)
Now, $x+4y=-9 \Rightarrow x = -9-4y$

Corresponding values of x and y can be tabulated as:

x	4	-1	-5	
у	-3	-2	-1	

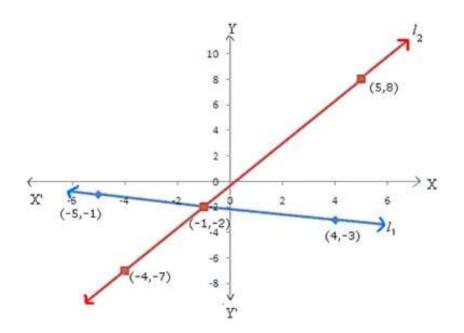
Plotting points (4,-3), (-1,-2) and (-5,-1) and joining them, we get a line l_1 which is the graph of equation (!).

Again,
$$3y=5x-1 \Rightarrow y = \frac{5x-1}{3}$$

Corresponding values of x and y can be tabulated as:

	New Jones	1972	1000	
Х	-4	-1	5	
v	-7	-2	8	

Plotting points (-4,-7), (-1-2), (5, 8) and joining them we get a line l_2 which is the graph of equation (2).



The two lines l_1 and l_2 intersect at a unique point (-1,-2). Thus, x=-1 and y=-2 is the unique solution of the given equations.

(v) x=4

$$\frac{3x}{3} - y = 5$$

x=4 ____(1)
 $\frac{3x}{3} - y = 5$ ____(2)

The graph of equation (1) will be the line I_1 which is at a distance of 4

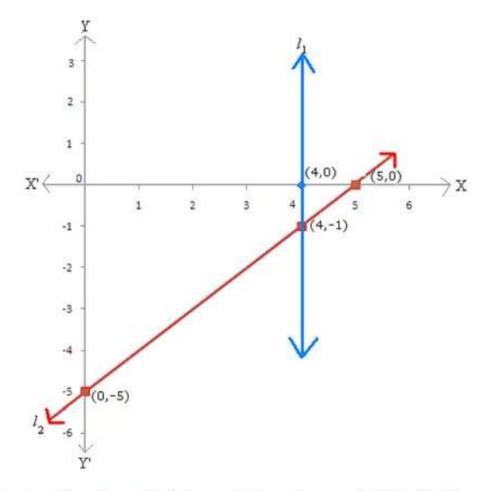
Units from the y-axis. (4, 0)

From (2), x-y=5

Corresponding values of x and y can be tabulated as:

x	4	0	5
У	-1	-5	0

Plotting points (4,-1), (0,-5), (5,0) and joining them, we get a line I_2 which is the graph of equation (2).



The two lines l_1 and l_2 intersect at a unique point (4,-1). Thus, x=4 and y=-1 is the unique solution of the given equations.

(vi) 3y=5-x

$$2x=y+3$$

 $3y=5-x$ ____(1)
 $2x = y+3$ ____(2)
 $3y = 5-x \Rightarrow y = \frac{5-x}{3}$

Corresponding values of x and y can be tabulated as:

x	2	-1	-4
У	1	2	3

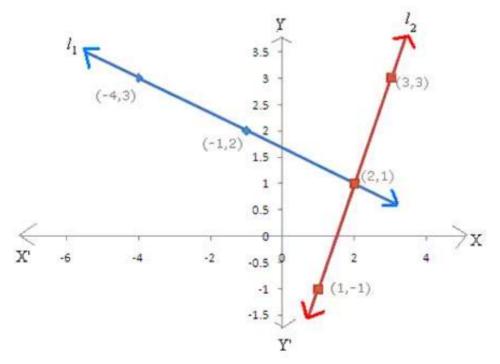
Plotting points (2, 1), (-1, 2), (-4, 3) and joining them, we get a line I_1 which is the graph of equation (1).

Again,
$$2x = y+3 \Rightarrow x = \frac{y+3}{2}$$

Corresponding values of x and y can be tabulated as:

x	2	1	3	
y	1	-1	3	

Plotting points (2, 1), (-1, 1), (3, 3) and joining them, we get a line l_2 which is the graph of equation (2).



The two lines I_1 and I_2 intersect at a unique point (2, 1).

Thus, x=2 and y=1 is the unique solution of the given equations.

(vii) x-2y=2

$$\frac{x}{2} - y = 1$$

x-2y=2 ____(1)
 $\frac{x}{2} - y = 1$ ___(2)

 $x-2y=2 \Rightarrow x = 2 + 2y$

Corresponding values of x and y can be tabulated as:

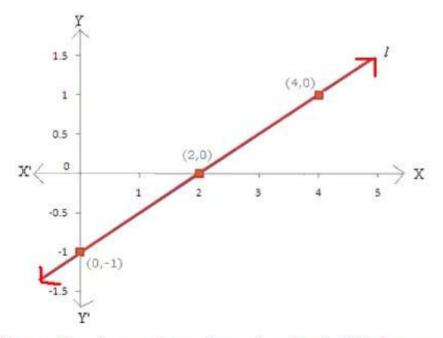
x	2	0	4	
у	0	-1	1	

Again, $\frac{x}{2} - y = 1 \Rightarrow y = \frac{x}{2} - 1$

Corresponding values of x and y can be tabulated as:

х	0	2	4	
У	-1	0	1	

Plotting points (0,-1), (2, 0), (4, 1) and joining them, we get a line l, which is the graph for both the equations (1) and (2).



Hence, the given system of equations has infinitely many solutions.

```
(viii) 2x-6y+10=0
3x-9y+25=0
2x-6y+10 = 0(1)
3x-9y+25=0(2)
```

$$2x-6y+10 = 0 \Rightarrow x = \frac{6y-10}{2} = 3y-5$$

Corresponding values of x and y can be tabulated as:

x	-5	-2	1	
у	0	1	2	

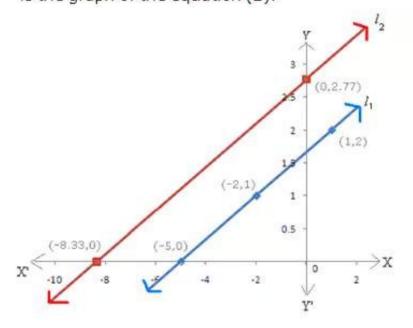
Plotting points (-5, 0), (-2, 1), (1, 2) and joining them, we get a line l_1 which is the graph of the equation (1).

Again,
$$3x-9y+25=0 \Rightarrow x = \frac{9y-25}{3}$$

Corresponding values of x and y can be tabulated as:

x	0	$\frac{-25}{3}$ = -8.33
У	$\frac{25}{9} = 2.77$	0

Plotting points $\left(0, \frac{25}{9}\right), \left(\frac{-25}{3}, 0\right)$ and joining them, we get a line I_2 which is the graph of the equation (2).



The lines I_1 and I_2 do not intersect each other.

Thus, the given equations do not have any solution.

(ix)
$$2 + \frac{3y}{x} = \frac{6}{x}$$
$$\frac{6x}{y} - 5 = \frac{4}{y}$$
$$2 + \frac{3y}{x} = \frac{6}{x} \Rightarrow 2x + 3y = 6$$
(1)

$$\frac{6x}{y} - 5 = \frac{4}{y} \Rightarrow 6x - 5y = 4$$
 (2)
$$2x + 3y = 6 \Rightarrow y = \frac{6 - 2x}{2}$$

3

Corresponding values of x and y can be tabulated as:

x	3	-3	0	
у	0	4	2	

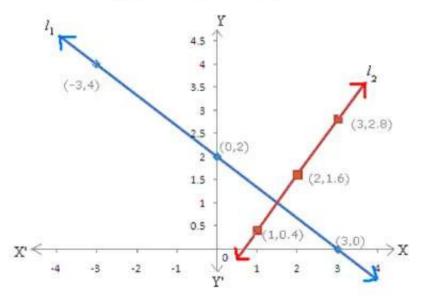
Plotting points (3, 0), (-3, 4), (0, 2) and joining them, we get a line I_1 which is the graph of equation (1).

$$6x-5y=4 \Rightarrow y = \frac{6x-4}{5}$$

Corresponding values of x and y can be tabulated as:

x	1	2	3	
У	0.4	1.6	2.8	

Plotting points (1, 0.4), (2, 1.6), (3, 2.8) and joining them we get a line l_2 which is the graph of equation (2).



The lines I_1 and I_2 intersect at a unique point $(\frac{3}{5}, 1)$.

(x)
$$x+2y-7=0.....(1)$$

 $2x-y-4=0....(2)$
 $x +2y -7 = 0 \Rightarrow x=7-2y$

Corresponding values of x and y can be tabulated as:

x	7	3	1	
У	0	2	3	

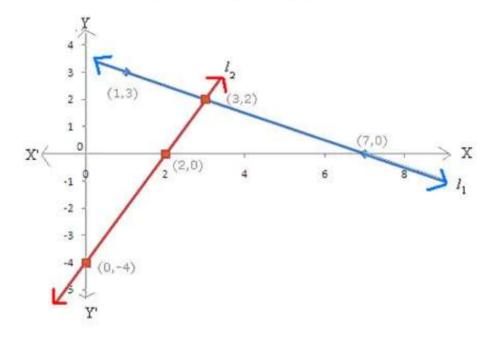
Plotting points (7, 0), (3, 2), (1, 3) and joining them, we get a line I_1 which is the graph of equation (1).

 $2x-y-4=0 \Rightarrow y=2x-4$

Corresponding values of x and y can be tabulated as:

x	0	3	2	
У	-4	2	0	

Plotting points (0,-4), (3, 2), (2, 0) and joining them, we get a line I_2 which is the graph of equation (2).



The lines I_1 and I_2 intersect at a unique point (3, 2).

Answer 8.

(i) The given equation are:

$$2y - x = 8$$
 ...(1)
 $5y - x = 14$...(2)
 $y = 2x + 1$...(3)
 $2y - x = 8 \Rightarrow x = 2y - 8$

Corresponding values of x and y can be tabulated as:

x	-4	-2	0
у	2	3	4

Plotting points (-4, 2), (-2, 3), (0, 4) and joining them we get a line l_1 which is the graph of equation (1).

Again, $5y - x = 14 \Rightarrow x = 5y - 14$

Corresponding values of x and y can be tabulated as:

х	-4	1	6
у	2	3	4

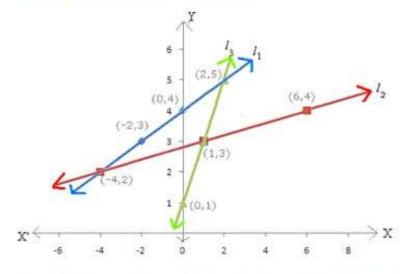
Plotting points (-4, 2), (1, 3), (6, 4) and joining them we get a line I_2 which is the graph of equation (2).

Again, y = 2x + 1

Corresponding values of x and y can be tabulated as:

х	0	1	2
у	1	3	5

Plotting points (0, 1), (1, 3), (2, 5) and joining them we get a line I_3 which is the graph of equation (3).



It can be seen that the lines I_1 , I_2 , and I_3 intersect each other form a triangle.

The vertices of \triangle ABC are A(-4, 2), B(1, 3) and C(2, 5).

(ii) The given equation are:

3y = x + 18 ...(1)x + 7y = 22 ...(2) y+ 3x = 26 ...(3) $3y = x + 18 \Rightarrow x=3y - 18$

Corresponding values of x and y can be tabulated as:

х	0	-3	-6
У	6	5	4

Plotting points (0, 6), (-3, 5) and (-6, 4) and joining them, we get a line l_1 which is the graph of equation (1).

Again, $x + 7y = 22 \Rightarrow x = 22 - 7y$

Corresponding values of x and y can be tabulated as:

х	1	8	-6
у	3	2	4

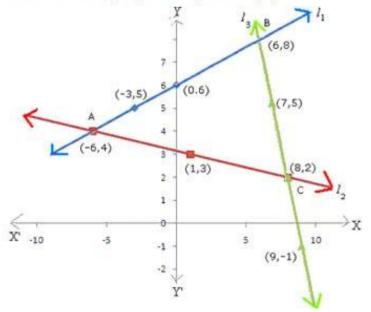
Plotting points (1, 3), (8, 2), (-6, 4) and joining them, we get a line l_2 which is the graph of equation (2).

Also, $y+3x = 26 \Rightarrow y=26-3x$

Corresponding values of x and y can be tabulated as:

x	7	8	9
у	5	2	-1

Plotting points (7, 5), (8, 2), (9, -1) and joining them, we get a line I_3 which is the graph of equation (3).



It can be seen that the lines $\mathsf{I}_1,\,\mathsf{I}_2$ and I_3 intersect each other to from triangle ABC

The vertices of \triangle ABC are A(-6, 4), B(6, 8) and C(8, 2).

Answer 9.

4x - 5y - 20 = 0 ...(1)

3x + 3y - 15 = 0 ...(2)

 $4x - 5y - 20 = 0 \Rightarrow 4x = 5y + 20$

Corresponding values of x and y can be tabulated as:

x	0	-5	5
у	-4	-8	0

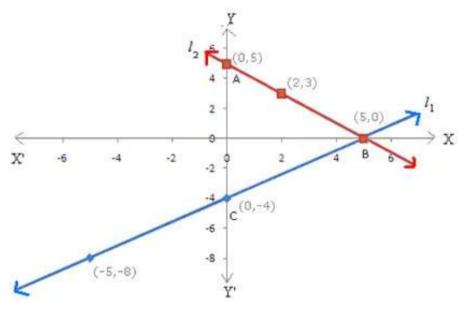
Plotting points (0,-4), (-5,-8), (5,0) and joining them, we get a line I_1 which is the graph of equation (1).

Again, $3x + 3y - 15 = 0 \Rightarrow x + y - 5 = 0 \Rightarrow x + y = 5$

Corresponding values of x and y can be tabulated as:

				Т
х	0	5	2	
у	5	0	3	

Plotting points (0, 5), (5, 0), (2, 3) and joining them, we get a line l_2 which is the graph of equation (2).



The lines I_1 and I_2 intersect at (5, 0). Thus, the solution of equations (1) and (2) is x = 5 and y = 0.

Now, it can be seen that Δ ABC is formed by the two lines I_1 and I_2 and the y-axis.

The vertices of \triangle ABC is A(0, 5), B(5, 0) and C(0,-4).

Answer 10.

x - y + 1 = 0	(1)
4x + 3y = 24	(2)

 $x - y + 1 = 0 \qquad \Rightarrow y = x + 1$

Corresponding values of x and y can be tabulated as:

x	0	3	-1
У	1	4	0

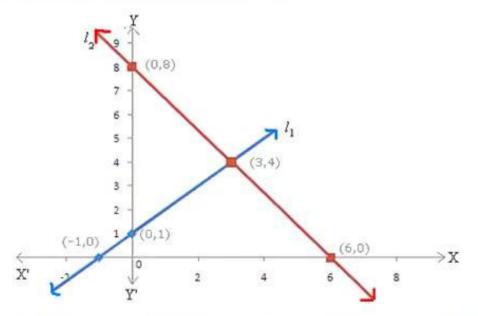
Plotting points (0, 1), (1, 2), (-1, 0) and joining them, we get a line l_1 which is the graph of equation (1).

$$4x+3y=24 \Rightarrow x = \frac{24-3y}{4}$$

Corresponding values of x and y can be tabulated as:

x	6	3	0
У	0	4	8

Plotting points (6, 0), (3, 4), (0, 8) and joining them, we get a line I_2 which is the graph of equation (2).



The lines l_1 and l_2 intersect at (3, 4). Thus, x = 3 and y = 4 is the unique solution of equation (1) and (2).

Now, from the graph, it can be seen that the lines I1 and I2

Intersect the x-axis at points (-1, 0) and (6, 0)

Answer 11.

$$3x + 2y + 6 = 0$$
 ...(1)

3x + 8y - 12 = 0 ...(2)

 $3x + 2y = -6 \Rightarrow 3x = -6 - 2y$ Corresponding values of x and y can be tabulated as:

х	-2	0	-2.66
У	0	-3	1

Plotting points (-2, 0), (0, 3), (-2.66, 1) and joining them, we get a line l_1 which is the graph of equation (1).

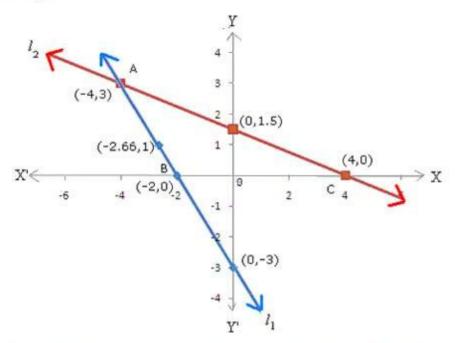
 $3x+8y-12=0 \Rightarrow 3x = 12-8y$

Corresponding values of x and y can be tabulated as:

х	4	-4	0
у	0	3	1.5

Plotting points (4, 0), (-4, 3), (0, 1.5) and joining them, we get a line I_2 which is the graph of equation (2).

It can be seen that the two lines l_1 and l_2 and the x-axis from a triangle ABC.



The coordinates of the vertices of \triangle ABC are A(-4, 3), B(-2, 0) and C(4, 0).

Answer 12A.

The given system of equations are 2x = 23 - 3y and 5x = 20 + 8y.

Now,
$$2x = 23 - 3y$$
(i)

$$\Rightarrow x = \frac{23 - 3y}{2}$$

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

Х	10	7	4
y	1	3	5

Plotting the points (10, 1), (7, 3) and (4, 5) and joining them, we get the line l_1 which is the graph of equation (i).

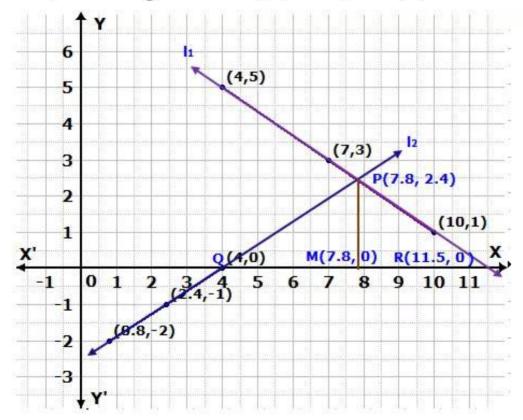
Again,
$$5x = 20 + 8y$$
(ii)

$$\Rightarrow x = \frac{20 + 8y}{5}$$

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

Х	4	2.4	0.8
y	0	-1	-2

Plotting the points (4,0), (2.4, -1) and (0.8, -2) and joining them, we get the line l_2 which is the graph of equation (ii).



The two lines I_1 and I_2 intersect at a point P(7.8, 2.4). $\therefore x = 7.8$, y = 2.4 is the solution of the given system of equations.

Draw PM perpendicular from P to X-axis. Now, PM = y-coordinate of P(7.8, 2.4) \Rightarrow PM = 2.4 units QR = 11.5 - 4 = 7.5 units \therefore Area of \triangle PQR = $\frac{1}{2} \times QR \times PM = \frac{1}{2} \times 7.5 \times 2.4 = 9$ sq. units

Answer 12B.

The given system of equations are 6x - 3y + 2 = 7x + 1 and 5x + 1 = 4x - y + 2.

Now, 6x - 3y + 2 = 7x + 1(i)

⇒×=1-3y

Corresponding values of x and y can be tabulated as follows:

Х	1	-2	4
y	0	1	-1

Plotting the points (1,0), (-2,1) and (4,-1) and joining them, we get the line I_1 which is the graph of equation (i).

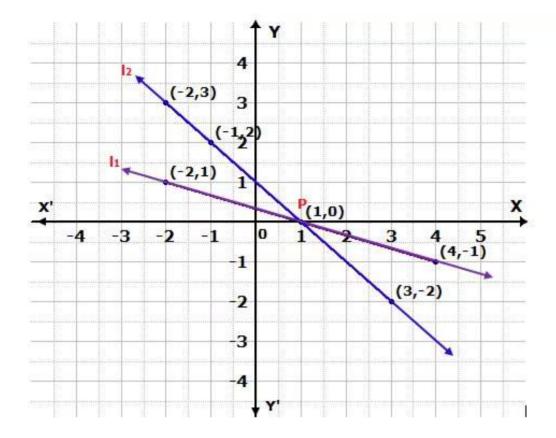
Again, 5x + 1 = 4x - y + 2(ii)

⇒×=1-y

Corresponding values of \boldsymbol{x} and \boldsymbol{y} can be tabulated as follows:

Х	-1	3	-2
y	2	-2	3

Plotting the points (-1,2), (3, -2) and (-2,3) and joining them, we get the line I_2 which is the graph of equation (ii).



The two lines I_1 and I_2 intersect at a point P(1, 0). $\therefore x = 1, y = 0$ is the solution of the given system of equations.

Since both the lines ${\rm I_1}$ and ${\rm I_2}$ are intersecting each other at X-axis, no triangle is formed by these lines with X-axis.

Ex 8.3

Answer 1.

Let the length and breadth of a rectangle be \times units and y units respectively.

According to given information, we have x = 2y $\Rightarrow x - 2y = 0$ (i)

Also, perimeter of a rectangle = 30 units $\Rightarrow 2(x + y) = 30$ $\Rightarrow x + y = 15$ (ii)

Subtracting eqn. (ii) from eqn. (i), we get -3y = -15 $\Rightarrow y = 5$

Substituting the value of y in eqn. (1), we get x - 2(5) = 0 $\Rightarrow x - 10 = 0$ $\Rightarrow x = 10$

Thus, the length and breadth of a rectangle are 10 units and 5 units respectively.

Answer 2.

Let the larger number be x and the smaller number be y.

According to given information, we have

```
x - y = 3

\Rightarrow x = 3 + y \qquad \dots(i)

Also, 3x + 2y = 19

\Rightarrow 3(3 + y) + 2y = 19 \qquad \dots[From (i)]

\Rightarrow 9 + 3y + 2y = 19

\Rightarrow 5y = 10

\Rightarrow y = 2

\Rightarrow x = 3 + 2 = 5
```

Thus, the required numbers are 5 and 2 respectively.

Answer 3.

Let the two numbers be \boldsymbol{x} and \boldsymbol{y} respectively.

Then, we have $x = 3y \dots(i)$ And, x + y = 68 $\Rightarrow 3y + y = 68$ $\Rightarrow 4y = 68$ $\Rightarrow y = 17$ $\Rightarrow x = 3 \times 17 = 51$

Thus, the two numbers are 51 and 17 respectively.

Answer 4.

Let the two numbers be x and y respectively.

Then, we have 4x + 3y = 15(i) 3x - 2y = 7(ii) Multiplying eqn. (i) by 2 and eqn. (ii) by 3, we get 8x + 6y = 30(iii) 9x - 6y = 21(iv) Adding eqns. (iii) and (iv), we get 17x = 51 $\Rightarrow x = 3$ $\Rightarrow 4(3) + 3y = 15$ $\Rightarrow 12 + 3y = 15$ $\Rightarrow 3y = 3$ $\Rightarrow y = 1$

Thus, the two numbers are 3 and 1 respectively.

Answer 5.

Let x be the digit at ten's place and y be the digit at unit's place. Then, the number is 10x + y. Number obtained by reversing the digits = 10y + x

```
According to given information, we have
```

```
x + y = 7 \qquad \dots(i)
And, (10y + x) - (10x + y) = 9
\Rightarrow 10y + x - 10x - y = 9
\Rightarrow 9y - 9x = 9
\Rightarrow 9(y - x) = 9
\Rightarrow y - x = 1 \qquad \dots(ii)
```

```
Adding eqns. (i) and (ii), we get

2y = 8

\Rightarrow y = 4

\Rightarrow x + 4 = 7

\Rightarrow x = 3
```

: Required number = 10x + y = 10x 3 + 4 = 30 + 4 = 34

Answer 6.

Let x be the digit at ten's place and y be the digit at unit's place. Then, the number is 10x + y. Number obtained by reversing the digits = 10y + x

```
According to given information, we have

(10x + y) + (10y + x) = 110

\Rightarrow 11x + 11y = 110

\Rightarrow 11(x + y) = 9

\Rightarrow x + y = 10 ....(i)

Also, x - y = 2 ....(ii)

Adding eqns. (i) and (ii), we get

2x = 12

\Rightarrow x = 6

\Rightarrow 6 + y = 10

\Rightarrow y = 4
```

:. Required number = 10x + y = 10x6 + 4 = 60 + 4 = 64

Answer 7.

Let x be the digit at ten's place and y be the digit at unit's place. Then, the number is 10x + y. Number obtained by reversing the digits = 10y + x

```
According to given information, we have (10x + y) + 7 = (10y + x) - 2
```

```
\Rightarrow 10x + y + 7 = 10y + x - 2

\Rightarrow 9x - 9y = -9

\Rightarrow 9(x - y) = -9

\Rightarrow x - y = -1 \qquad \dots (i)

Also, x + y = 5 \qquad \dots (ii)

Adding eqns. (i) and (ii), we get

2x = 4

\Rightarrow x = 2

\Rightarrow 2 + y = 5

\Rightarrow y = 3
```

:: Required number = 10x + y = 10x2 + 3 = 20 + 3 = 23

Answer 8.

Let the fraction be $\frac{x}{v}$. According to given information, we have $\frac{x+2}{y+2} = \frac{9}{10}$ and $\frac{x-3}{y-3} = \frac{4}{5}$ and 5x - 15 = 4y - 12 \Rightarrow 10x + 20 = 9y + 18 \Rightarrow 10x - 9y = -2(i) and 5x - 4y = 3(ii) Multiplying eqn. (ii) by 2, we get 10x - 8y = 6(iii) Subtracting eqn. (iii) from eqn. (i), we get -v = -8 $\Rightarrow y = 8$ $\Rightarrow 10x - 8(8) = 6$ $\Rightarrow 10x - 64 = 6$ $\Rightarrow 10 \times = 70$ $\Rightarrow x = 7$ \therefore Required fraction = $\frac{7}{8}$

Answer 9.

Let the two numbers be x and y.

According to given information, we have

 $\frac{x}{y} = \frac{2}{5}$ ⇒ 5x = 2v ⇒ 5x - 2y = 0(i) And, $\frac{x+4}{y-32} = \frac{5}{2}$ $\Rightarrow 2x + 8 = 5y - 160$ \Rightarrow 2x - 5y = -168(ii) Multiplying eqn. (i) by 5 and eqn. (ii) by 2, we get 25x - 10y = 0(iii) 4x - 10y = -336(iv) Subtracting eqn. (iv) from eqn. (iii), we get 21x = 336⇒×=16 \Rightarrow 5(16) - 2y = 0 \Rightarrow 80 - 2y = 0 ⇒2y = 80 ⇒ y = 40

Thus, the numbers are 16 and 40.

Answer 10.

Let the numerator and denominator of a fraction be ${\sf x}$ and ${\sf y}$ respectively.

 \therefore Fraction = $\frac{x}{y}$

According to given information, we have x + y = 12(i) And, $\frac{x}{y+3} = \frac{1}{2}$ $\Rightarrow 2x = y + 3$ $\Rightarrow 2x - y = 3$ (ii) Adding eqns. (i) and (ii), we get 3x = 15 $\Rightarrow x = 5$ $\Rightarrow 5 + y = 12$ $\Rightarrow y = 7$ \therefore Required fraction = $\frac{5}{7}$

Answer 11.

Let the numerator and denominator of a fraction be \times and y respectively.

 \therefore Fraction = $\frac{x}{y}$

According to given information, we have

 $\frac{x}{y+1} = \frac{1}{2}$ $\Rightarrow 2x = y+1$ $\Rightarrow 2x - y = 1 \dots (i)$ Also, $\frac{x+1}{y} = 1$ $\Rightarrow x+1 = y$ $\Rightarrow x - y = -1 \dots (ii)$ Subtracting eqn. (ii) from (i), we get x = 2 $\Rightarrow 2 - y = -1$ $\Rightarrow y = 3$ $\therefore \text{ Required fraction} = \frac{2}{3}$

Answer 12.

Let the present age of father = \times years and that of son = y years After 10 years, father's age = (\times + 10) years son's age = (y + 10) years

```
According to given information, we have

x = 7y ....(i)

And, (x + 10) = 3(y + 10)

\Rightarrow x + 10 = 3y + 30

\Rightarrow x - 3y = 20

\Rightarrow 7y - 3y = 20 ....[From (i)]

\Rightarrow 4y = 20

\Rightarrow y = 5

\Rightarrow x = 7 \times 5 = 35
```

Thus, the present age of son is 5 years and that of father is 35 years.

Answer 13.

Let the present age of Kapil = x years and that of Karuna = y years After 6 years, Kapil's age = (x + 6) years Karuna's age = (y + 6) years

```
According to given information, we have

\frac{x}{y} = \frac{2}{3}
\Rightarrow 3x = 2y
\Rightarrow 3x - 2y = 0 \qquad \dots(i)
And, \frac{x+6}{y+6} = \frac{5}{7}
\Rightarrow 7x + 42 = 5y + 30
\Rightarrow 7x - 5y = -12 \qquad \dots(ii)
Multiplying eqn. (i) by 5 and eqn. (ii) by 2, we get

15x - 10y = 0 \qquad \dots(iii)
14x - 10y = -24 \qquad \dots(iv)
```

```
Subtracting eqn. (iv) from eqn. (iii), we get

x = 24

\Rightarrow 3(24) - 2y = 0

\Rightarrow 72 - 2y = 0

\Rightarrow 2y = 72

\Rightarrow y = 36
```

Thus, the present age of Kapil is 24 years and that of Karuna is 36 years.

Answer 14.

Let the present age of father = \times years and that of his child = y years After 12 years, father's age = (x + 12) years child's age = (y + 12) years

According to given information, we have x = 3y(i)

Now, after 12 years 2(x + 12) = 3(y + 12) + 36 $\Rightarrow 2x + 24 = 3y + 36 + 36$ $\Rightarrow 2x - 3y = 48$ (ii) $\Rightarrow 2(3y) - 3y = 48$ $\Rightarrow 3y = 48$ $\Rightarrow y = 16$ $\Rightarrow x = 3 \times 16 = 48$

Thus, the present age of father is 48 years. *Question modified

Answer 15.

Let the two angles of a triangle be x and y respectively. Then, the 3^{d} angle will be $180^{\circ} - (x + y)$.

According to given information, we have $x + y = 180^{\circ} - (x + y)$ $\Rightarrow 2(x + y) = 180^{\circ}$ $\Rightarrow x + y = 90^{\circ}$ (i) And, $x - y = 20^{\circ}$ (ii) Adding eqns. (i) and (ii), we have $2x = 110^{\circ}$ $\Rightarrow x = 55^{\circ}$ $\Rightarrow 55^{\circ} + y = 90^{\circ}$ $\Rightarrow y = 35^{\circ}$ $\Rightarrow 3^{\circ}$ angle = $180^{\circ} - (55^{\circ} + 35^{\circ}) = 180^{\circ} - 90^{\circ} = 90^{\circ}$

Hence, the three angles of a triangle are 55°, 35° and 90°.

Answer 16.

In $\triangle ABC$, $\angle A = x^{\circ}$, $\angle B = (2x - 30)^{\circ}$, $\angle C = y^{\circ}$

Now, sum of the angles of a triangle is 180°. $\Rightarrow \angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow x^{\circ} + (2x - 30)^{\circ} + y^{\circ} = 180^{\circ}$ $\Rightarrow 3x^{\circ} + y^{\circ} = 210^{\circ} \dots (i)$

Also, it is given that $\angle A + \angle B = 90^{\circ}$ $\Rightarrow x^{\circ} + (2x - 30)^{\circ} = 90^{\circ}$ $\Rightarrow 3x^{\circ} = 120^{\circ}$ $\Rightarrow x^{\circ} = 40^{\circ} = \angle A$ $\Rightarrow \angle B = 2(40^{\circ}) - 30^{\circ} = 80^{\circ} - 30^{\circ} = 50^{\circ}$

Substituting the value of x° in eqn. (i), we get $\Rightarrow 3(40^\circ) + y^\circ = 210^\circ$ $\Rightarrow 120^\circ + y^\circ = 210^\circ$ $\Rightarrow y^\circ = 90^\circ = \angle C$

Thus, the three angles of a triangle are as follows: $\angle A = 40^{\circ}$, $\angle B = 50^{\circ}$ and $\angle C = 90^{\circ}$ It is a right-angled triangle right angle at C.

Answer 17.

Let x be the digit at ten's place and y be the digit at unit's place. Then, the number is 10x + y. Number obtained by reversing the digits = 10y + x

```
According to given information, we have

x = 3y + 3 ....(i)

And, 10y + x = 2(x + y) + 2

\Rightarrow 10y + x = 2x + 2y + 2

\Rightarrow 8y - x = 2

\Rightarrow 8y - (3y + 3) = 2 ....[From (i)]

\Rightarrow 8y - 3y - 3 = 2

\Rightarrow 5y = 5

\Rightarrow y = 1

\Rightarrow x = 3(1) + 3 = 3 + 3 = 6
```

: Required number = 10x + y = 10x6 + 1 = 60 + 1 = 61

Answer 18.

Let Anil's income = Rs. x and Sunita's income = Rs. y

```
According to given information, we have

\frac{x}{y} = \frac{3}{5}
\Rightarrow 5x = 3y
\Rightarrow 5x - 3y = 0 \qquad \dots(i)
And, \frac{x - 5000}{y - 5000} = \frac{1}{3} \qquad \dots[Expense = Income - Savings]
\Rightarrow 3x - 15000 = y - 5000
\Rightarrow 3x - y = 10000 \qquad \dots(ii)
Multiplying eqn. (ii) by 3, we get

9x - 3y = 30000 \qquad \dots(iii)
```

```
Subtracting eqn. (i) from eqn. (iii), we get

4x = 30000

\Rightarrow x = 7500

\Rightarrow 5(7500) - 3y = 0

\Rightarrow 37500 - 3y = 0

\Rightarrow 3y = 37500

\Rightarrow y = 12500
```

Hence, Anil's income is Rs. 7500 and Sunita's income is Rs. 12,500.

Answer 19.

Let the number of passed students be \times and the number of failed students be y.

According to the question,

 $\frac{x}{y} = \frac{3}{1}$ $\Rightarrow x = 3y \qquad \dots (i)$

Now, if 30 less appeared and 10 less failed, then we have Number of students appeared = x + y - 30number of failed students = y - 10 \therefore number of passed students = x - 20 $\Rightarrow \frac{x - 20}{y - 10} = \frac{13}{4}$ $\Rightarrow 4x - 80 = 13y - 130$ $\Rightarrow 4x - 13y = -50$ $\Rightarrow 4(3y) - 13y = -50$ [From (i)] $\Rightarrow 12y - 13y = -50$ $\Rightarrow -y = -50$ $\Rightarrow y = 50$ $\Rightarrow x = 3x 50 = 150$ $\Rightarrow x + y = 150 + 50 = 200$

Hence, 200 students appeared for the examination.

Answer 20.

Cost of an eraser = Rs.x Cost of a sharpener = Rs.y

According to given information, we have x = y - 1.50 $\Rightarrow x - y = -1.50$ (i) And, 4x + 3y = 29(ii)

Multiplying eqn. (i) by 3, we get 3x - 3y = -4.50(iii)

Adding eqns. (ii) and (iii), we get 7x = 24.50 $\Rightarrow x = 3.50$ $\Rightarrow 3.50 - y = -1.50$ $\Rightarrow y = 3.50 + 1.50 = 5$

Thus, the cost of an eraser is Rs. 3.50 and that of a sharpener is Rs. 5.

Answer 21.

Let the speed of the person in still water be x km/hr and the speed of the stream be y km/hr. Speed of the person downstream = (x + y)km / hr Speed of the person upstream = (x - y)km / hr

Time required to go 8 km downstream = 40 minutes = $\frac{40}{60}$ hours = $\frac{2}{3}$ hours

 $\Rightarrow \frac{8}{x+y} = \frac{2}{3}$ $\Rightarrow \frac{4}{x+y} = \frac{1}{3}$ $\Rightarrow 12 = x+y$ $\Rightarrow x+y = 12 \quad \dots(i)$

Time required to go 8 km upstream = 1 hour

 $\Rightarrow \frac{8}{x - y} = 1$ $\Rightarrow 8 = x - y$ $\Rightarrow x - y = 8 \quad \dots (ii)$ Adding eqns. (i) and (ii), we get 2x = 20 $\Rightarrow x = 10$ $\Rightarrow 10 - y = 8$ $\Rightarrow y = 2$

Thus, the speed of the person in still water is 10 km/hr and the speed of the stream is 2 km/hr.

Answer 22.

Let the speed of the boat in still water be \times km/hr and the speed of the stream be y km/hr. Speed of the boat upstream = (x - y)km / hr Speed of the boat downstream = (x + y)km / hr

Time required to go 18 km upstream = 3 hours

 $\Rightarrow \frac{18}{x - y} = 3$ $\Rightarrow \frac{6}{x - y} = 1$ $\Rightarrow x - y = 6 \qquad \dots (i)$

Time required to go 24 km downstream = 2 hours

 $\Rightarrow \frac{24}{x+y} = 2$ $\Rightarrow \frac{12}{x+y} = 1$ $\Rightarrow x+y = 12 \dots (ii)$ Adding eqns. (i) and (ii), we get 2x = 18 $\Rightarrow x = 9$ $\Rightarrow 9 - y = 6$

, ⇒y=3

Thus, the speed of the boat in still water is 9 km/hr and the speed of the stream is 3 km/hr.

Answer 23.

Let the speed of Salman = \times km / hr and the speed of Kirti = y km / hr Total distance = 28 km

When they walk in the same direction, 28x - 28y = 28 $\Rightarrow x - y = 1$ (i)

When they walk in the opposite direction, 4x + 4y = 28 $\Rightarrow x + y = 7$ (ii)

```
Adding eqns. (i) and (ii), we get

2x = 8

\Rightarrow x = 4

\Rightarrow 4 + y = 7

\Rightarrow y = 3
```

Thus, the speed of Salman is 4 km/hr and that of Kirti is 3 km/hr.

Answer 24.

Let x gallons of 12% alcohol and y gallons of 4% alcohol be mixed.

```
Then, we have

x + y = 20 ....(i)

And, 12% of x + 4\% of y = 9\% of 20

\Rightarrow \frac{12}{100} x + \frac{4}{100} y = \frac{9}{100} \times 20

\Rightarrow 12x + 4y = 180

\Rightarrow 3x + y = 45 ....(ii)

Subtracting eqn. (i) from eqn. (ii), we get

2x = 25

\Rightarrow x = 12.5

\Rightarrow 12.5 + y = 20

\Rightarrow y = 7.5
```

Hence, 12.5 gallons of 12% alcohol and 7.5 gallons of 4% alcohol should be used.

Answer 25.

Let the unit price for each pen = Rs. x and the unit price for each pendl = Rs. y According to given information, we have 9x + 5y = 32(i) 7x + 8y = 29(ii) Multiplying eqn. (i) by 8 and eqn. (ii) by 5, we get 72x + 40y = 256(iii) 35x + 40y = 145(iv) Subtracting eqn. (iv) from eqn. (iii), we get 37x = 111 $\Rightarrow x = 3$ $\Rightarrow 9(3) + 5y = 32$ $\Rightarrow 27 + 5y = 32$ $\Rightarrow 5y = 5$ $\Rightarrow y = 1$

Thus, the unit price for each pen is Rs. 3 and that for each pencil is Rs. 1.

Answer 26.

Let Sunil has x number of oranges and Kafeel has y number of oranges.

In 1st case (if Sunil gives 2 oranges to Kafeel): 3(x-2) = y + 2 $\Rightarrow 3x - 6 = y + 2$ $\Rightarrow 3x - y = 8$ (i) In 2nd case (if Kafeel gives 2 oranges to Sunil):

x + 2 = y - 2 $\Rightarrow x - y = -4 \quad \dots (ii)$

Subtracting eqn. (ii) from eqn. (i), we get 2x = 12 $\Rightarrow x = 6$ $\Rightarrow 6 - y = -4$ $\Rightarrow y = 10$

Thus, Sunil has 6 oranges and Kafeel has 10 oranges.

Answer 27.

Pocket money of Samidha = Rs. x Pocket money of Shreya = Rs. y

According to given information, we have $x - 500 = y \qquad \dots(i)$ $\Rightarrow x - y = 500$

And, $y - 500 = \frac{3}{5} \times$ $\Rightarrow 5y - 2500 = 3x$ $\Rightarrow 5(x - 500) - 2500 = 3x$ $\Rightarrow 5x - 2500 - 2500 = 3x$ $\Rightarrow 2x = 5000$ $\Rightarrow x = 2500$ $\Rightarrow y = 2500 - 500 = 2000$

Thus, pocket money of Samidha is Rs. 2500 and that of Shreya is Rs. 2000.

Answer 28.

Let the C.P. of S1 mobile = Rs. x and the C.P. of S2 mobile = Rs. y

In 1^{*} case : SP. of S1 mobile = Rs. x + 4% of Rs. x = Rs. $\left(x + \frac{4}{100}x\right)$ = Rs. $\frac{104}{100}x$ = Rs. $\frac{26x}{25}$ SP. of S2 mobile = Rs. y + 6% of Rs. y = Rs. $\left(y + \frac{6}{100}y\right)$ = Rs. $\frac{106}{100}y$ = Rs. $\frac{53y}{50}$ $\therefore \frac{26x}{25} + \frac{53y}{50} = 10490$ $\Rightarrow 52x + 53y = 524500$ (i) In 2nd case : SP. of S1 mobile = Rs. x + 6% of Rs. x = Rs. $\left(x + \frac{6}{100}x\right)$ = Rs. $\frac{106}{100}x$ = Rs. $\frac{53x}{50}$ SP. of S2 mobile = Rs. y + 4% of Rs. y = Rs. $\left(y + \frac{4}{100}y\right)$ = Rs. $\frac{104}{100}y$ = Rs. $\frac{26y}{25}$ $\therefore \frac{53x}{50} + \frac{26y}{25} = 10510$ $\Rightarrow 53x + 52y = 525500$ (ii) Adding eqns. (i) and (ii), we get 105x + 105y = 1050000 $\Rightarrow x + y = 10000$ (iii) Subtracting eqn. (i) from eqn. (ii), we get x - y = 1000(iv) Adding eqns. (iii) and (iv), we get $2x = 11000 \Rightarrow x = 5500$ $\Rightarrow 5500 - y = 1000 \Rightarrow y = 4500$

Thus, the cost price of S1 mobile is Rs. 5500 and that of S2 mobile is Rs. 4500.

Answer 29.

Let A alone will do the work in x days and B alone will do the same work in y days. Then, A's 1 day work = $\frac{1}{2}$ and B's 1 day work = $\frac{1}{2}$ According to given information, we have $\frac{1}{x} + \frac{1}{y} = \frac{1}{6\frac{2}{5}}$ $\Rightarrow \frac{1}{x} + \frac{1}{y} = \frac{3}{20} \qquad \dots (i)$ And, $\frac{1}{x} = 1\frac{1}{4} \times \frac{1}{2}$ $\Rightarrow \frac{1}{x} = \frac{5}{4y}$ $\Rightarrow \frac{1}{x} - \frac{5}{4y} = 0$ (ii) Subtracting eqn. (ii) from eqn. (i), we get $\frac{1}{v} + \frac{5}{4v} = \frac{3}{20}$ $\Rightarrow \frac{9}{4v} = \frac{3}{20}$ $\Rightarrow 4y = \frac{9 \times 20}{3} = 60$ ⇒v = 15 $\Rightarrow \frac{1}{x} - \frac{5}{4(15)} = 0 \Rightarrow \frac{1}{x} = \frac{1}{12} \Rightarrow x = 12$ Thus, A alone will do the work in 12 days and

B alone will do the same work in 15 days.