Chapter

3

Pair of Straight Lines

Contents	
3.1	Equation of Pair of Straight lines
3.2	Angle between the Pair of Lines
3.3	Bisectors of the Angles between the Lines
3.4	Point of intersection of Lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
3.5	Equation of the lines joining the origin to the points of intersection of a given line and a given curve
3.6	Removal of first degree terms
3.7	Removal of the term xy from
	$f(x, y) = ax^2 + 2hxy + by^2$ without changing the origin
3.8	Distance between the pair of parallel straight lines
3.9	Some important results
Assignment (Basic and Advance Level)	
Answer Sheet of Assignment	

T he general equation of second degree $ax^2 + by^2 + 2gx + 2fy + c = 0$ represents pair of straight line; if $\Delta = 0$ and $ab - h^2 \le 0$

Clairaut (1729 A.D.) was the first to gave the distance formulae although in clumsy form. He also gave the intercept form of the linear equation.

In 1818, Gabriel Lame a civil engineer gave mE + mE' = 0 as the curve passing through the point of intersection of two loci E = 0 and E' = 0.

3.1 Equation of Pair of Straight lines

Let the equation of two lines be

$$a'x + b'y + c' = 0$$
(i) and $a''x + b''y + c'' = 0$ (ii)

Hence (a'x + b'y + c')(a''x + b''y + c'') = 0 is called the joint equation of lines (i) and (ii) and conversely, if joint equation of two lines be (a'x + b'y + c')(a''x + b''y + c'') = 0 then their separate equation will be a'x + b'y + c' = 0 and a''x + b''y + c'' = 0.

(1) Equation of a pair of straight lines passing through origin: The equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of straight line passing through the origin where a, h, b are constants.

Let the lines represented by $ax^2 + 2hxy + by^2 = 0$ be $y - m_1x = 0$ and $y - m_2x = 0$

where,
$$m_1 = \frac{-h + \sqrt{h^2 - ab}}{b}$$
 and $m_2 = \frac{-h - \sqrt{h^2 - ab}}{b}$ then, $m_1 + m_2 = -\frac{2h}{b}$ and $m_1 m_2 = \frac{a}{b}$

Then, two straight lines represented by $ax^2 + 2hxy + by^2 = 0$ are $ax + hy + y\sqrt{h^2 - ab} = 0$ and $ax + hy - y\sqrt{h^2 - ab} = 0$.

Note: \Box The lines are real and distinct if $h^2 - ab > 0$

- \Box The lines are real and coincident if $h^2 ab = 0$
- \Box The lines are imaginary if $h^2 ab < 0$
- ☐ If the pair of straight lines $ax^2 + 2hxy + by^2 = 0$ and $a'x^2 + 2h'xy + b'y^2 = 0$ should have one line common, then $(ab'-a'b)^2 = 4(ah'-a'h)(hb'-h'b)$.
- ☐ The equation of the pair of straight lines passing through origin and perpendicular to the pair of straight lines represented by $ax^2 + 2hxy + by^2 = 0$ is given by $bx^2 2hxy + ay^2 = 0$
- ☐ If the slope of one of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then $a^2b + ab^2 6abh + 8h^3 = 0$.
- ☐ If the slope of one of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ be λ times that of the other, then $4\lambda h^2 = ab(1 + \lambda)^2$.
- (2) General equation of a pair of straight lines: An equation of the form,

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

where a, b, c, f, g, h are constants, is said to be a general equation of second degree in x and y.

The necessary and sufficient condition for $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ to represent a pair of straight lines is that $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ or $\begin{vmatrix} a & h & g \\ h & b & f \end{vmatrix} = 0$

- (3) Separate equations from joint equation: The general equation of second degree be $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$. To find the lines represented by this equation we proceed as follows:
- **Step I :** Factorize the homogeneous part $ax^2 + 2hxy + by^2$ into two linear factors. Let the linear factors be a'x + b'y and a''x + b''y.
- **Step II:** Add constants c'and c" in the factors obtained in step I to obtain a'x + b'y + c' and a''x + b''y + c''. Let the lines be a'x + b'y + c' = 0 and a''x + b''y + c'' = 0.
- **Step III:** Obtain the joint equation of the lines in step II and compare the coefficients of x, y and constant terms to obtain equations in c' and c''.
 - **Step IV**: Solve the equations in c' and c'' to obtain the values of c' and c''.
 - **Step V**: Substitute the values of c' and c'' in lines in step II to obtain the required lines.

If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product. Then c has Example: 1 the value

[AIEEE 2004]

$$(a) - 2$$

Solution: (c) We know that, $m_1 + m_2 = \frac{-2h}{h}$ and $m_1 m_2 = \frac{a}{h}$.

Given,
$$m_1 + m_2 = 4m_1m_2 \Rightarrow \frac{-2c}{7} = 4\left(\frac{1}{-7}\right) \Rightarrow c = 2$$

If one of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ be y = mx, then Example: 2

(a)
$$bm^2 + 2hm + a = 0$$

(b)
$$bm^2 + 2hm - a = 0$$
 (c) $am^2 + 2hm + b = 0$ (d) $bm^2 - 2hm + a = 0$

(d)
$$hm^2 = 2hm + a = 0$$

Solution: (a) Substituting the value of y in the equation $ax^2 + 2hxy + by^2 = 0$

$$\Rightarrow ax^2 + 2hx(mx) + b(mx)^2 = 0 \Rightarrow a + 2hm + bm^2 = 0$$

If the equation $12x^2 - 10xy + 2y^2 + 11x - 5y + K = 0$ represent two straight lines, then the value of K is [MP PET 26] Example: 3

 $abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$, **Solution:** (b) Condition for pair of lines, Here a = 12, h = -5, b = 2, g = 11/2, f = -5/2, c = K

Then,
$$12 \times 2 \times K + 2 \times \frac{-5}{2} \times \frac{11}{2} - 12 \times \left(\frac{-5}{2}\right)^2 - 2 \times \left(\frac{11}{2}\right)^2 - K(-5)^2 = 0$$
. On solving, we get $K = 2$.

3.2 Angle between the Pair of Lines

- (1) The angle θ between the pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ is given by $\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$
 - (i) The lines are coincident if the angle between them is zero.

$$\therefore \text{ Lines are coincident } i.e., \ \theta = 0 \Rightarrow \tan \theta = 0 \Rightarrow \frac{2\sqrt{h^2 - ab}}{a + b} = 0 \Rightarrow h^2 - ab = 0 \Rightarrow h^2 = ab$$

Hence, the lines represented by $ax^2 + 2hxy + by^2 = 0$ are coincident, iff $h^2 = ab$

(ii) The lines are perpendicular if the angle between them is $\pi/2$.

$$\therefore \ \theta = \frac{\pi}{2} \ \Rightarrow \ \cot \theta = \cot \frac{\pi}{2} \ \Rightarrow \ \cot \theta = 0 \ \Rightarrow \ \frac{a+b}{2\sqrt{h^2 - ab}} = 0 \ \Rightarrow \ a+b=0 \ \Rightarrow \ \operatorname{coeff.} \ \text{of} \ x^2 + \operatorname{coeff.} \ \text{of}$$

$$y^2 = 0$$

Thus, the lines represented by $ax^2 + 2hxy + by^2 = 0$ are perpendicular iff a + b = 0 i.e., coeff. of $x^2 + \text{coeff.}$ of $y^2 = 0$.

(2) The angle between the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is given by

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| \implies \theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

(i) The lines are parallel if the angle between them is zero. Thus, the lines are parallel iff

$$\theta = 0 \implies \tan \theta = 0 \implies \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = 0 \implies h^2 = ab$$
.

Hence, the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are parallel iff $h^2 = ab$ and $af^2 = bg^2$ or $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$.

(ii) The lines are perpendicular if the angle between them is $\pi/2$.

Thus, the lines are perpendicular *i.e.*, $\theta = \pi/2 \Rightarrow \cot \theta = 0 \Rightarrow \frac{a+b}{2\sqrt{h^2 - ab}} = 0$

$$\Rightarrow a+b=0 \Rightarrow \text{coeff. of } x^2 + \text{coeff. of } y^2=0$$

Hence, the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are perpendicular *iff* a + b = 0

i.e., coeff. of x^2 + coeff. of $y^2 = 0$.

(iii) The lines are coincident, if $g^2 = ac$.

Example: 4 The angle between the lines $x^2 - xy - 6y^2 - 7x + 31y - 18 = 0$ is **[Karnataka CET 2003]**

Solution: (b) Angle between the lines is
$$\theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \tan^{-1} \left| \frac{2\sqrt{\left(\frac{-1}{2}\right)^2 - 1 \times (-6)}}{1 + (-6)} \right| = \tan^{-1} \left| \frac{2\sqrt{\frac{1}{4} + 6}}{1 + (-6)} \right| = \tan^{-1} |-1| = \tan^{-1}(1) = \frac{\pi}{4}$$
,

45 °

Example: 5 If the angle between the pair of straight lines represented by the equation $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ is $\tan^{-1}\left(\frac{1}{3}\right)$, where λ is a non-negative real number, then λ is

Solution: (a) Given that $\theta = \tan^{-1} \left(\frac{1}{3} \right) \Rightarrow \tan \theta = \frac{1}{3}$

Now, since
$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| \Rightarrow \frac{1}{3} = \left| \frac{2\sqrt{\left(\frac{-3}{2}\right)^2 - \lambda}}{\lambda + 1} \right| \Rightarrow (\lambda + 1)^2 = 9(9 - 4\lambda) \Rightarrow \lambda^2 + 38\lambda - 80 = 0$$

 $\Rightarrow \lambda^2 + 40\lambda - 2\lambda - 80 = 0 \Rightarrow \lambda(\lambda + 40) - 2(\lambda + 40) = 0 \Rightarrow (\lambda - 2)(\lambda + 40) = 0 \Rightarrow \lambda = 2 \text{ or } -40, \text{ but } \lambda \text{ is a non-}$ negative real number. Hence $\lambda = 2$.

The angle between the pair of straight lines represented by $2x^2 - 7xy + 3y^2 = 0$ is Example: 6 [Kurukshetra CEE 2002]

(a) 60°

Solution: (b) Angle between the lines is , $\theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \tan^{-1} \left| \frac{2\sqrt{\left(-\frac{7}{2}\right)^2 - (2)(3)}}{2 + 3} \right| \Rightarrow \theta = \tan^{-1} \left(\frac{2}{5} \cdot \frac{5}{2}\right) = \tan^{-1}(1) \Rightarrow \theta = \tan^{-1}\left(\frac{2}{5} \cdot \frac{5}{2}\right) = \tan$

 $\theta = 45^{\circ}$

3.3 Bisectors of the Angles between the Lines

(1) The joint equation of the bisectors of the angles between the lines represented by the equation $ax^{2} + 2hxy + by^{2} = 0$ is $\frac{x^{2} - y^{2}}{a - b} = \frac{xy}{b}$

$$\Rightarrow hx^2 - (a-b)xy - hy^2 = 0$$

Here, coefficient of x^2 + coefficient of $y^2 = 0$. Hence, the bisectors of the angles between the lines are perpendicular to each other. The bisector lines will pass through origin also.

Note :□ If a = b, the bisectors are $x^2 - y^2 = 0$ i.e., x - y = 0, x + y = 0

- \Box If h = 0, the bisectors are xy = 0 i.e., x = 0, y = 0.
- \Box If bisectors of the angles between lines represented by $ax^2 + 2hxy + by^2 = 0$ and $a'x^2 + 2h'xy + b'y^2 = 0$ are same, then $\frac{h'}{h} = \frac{a'-b'}{a-b}$.
- \Box If the equation $ax^2 + 2hxy + by^2 = 0$ has one line as the bisector of the angle between the coordinate axes, then $4h^2 = (a+b)^2$.
- (2) The equation of the bisectors of the angles between the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are given by $\frac{(x-\alpha)^2 - (y-\beta)^2}{a-b} = \frac{(x-\alpha)(y-\beta)}{b}$, where α , β is the point of intersection of the lines represented by the given equation.

The equation of the bisectors of the angles between the lines represented by $x^2 + 2xy \cot \theta + y^2 = 0$ is Example: 7

- (a) $x^2 y^2 = 0$
- (c) $(x^2 y^2)\cot\theta = 2xy$ (d) None of these

Solution: (a) Equation of bisectors is given by $\frac{x^2 - y^2}{a - b} = \frac{xy}{b}$ or $\frac{x^2 - y^2}{0} = \frac{xy}{\cot \theta} \implies x^2 - y^2 = 0$

If the bisectors of the lines $x^2 - 2pxy - y^2 = 0$ be $x^2 - 2qxy - y^2 = 0$, then Example: 8

[MP PET 1993; DCE 1999; Rajasthan PET 2003; AIEEE 2003]

(a)
$$pq + 1 = 0$$

(b)
$$pq - 1 = 0$$
 (c) $p + q = 0$

(c)
$$p + q = 0$$

(d)
$$p - q = 0$$

Solution: (a) Bisectors of the angle between the lines $x^2 - 2pxy - y^2 = 0$ is $\frac{x^2 - y^2}{xy} = \frac{1 - (-1)}{-p} \Rightarrow px^2 + 2xy - py^2 = 0$

But it is represented by $x^2 - 2qxy - y^2 = 0$. Therefore $\frac{p}{1} = \frac{2}{-2q} \Rightarrow pq = -1 \Rightarrow pq + 1 = 0$

3.4 Point of Intersection of Lines represented by $ax^2+2hxy+by^2+2gx+2fy+c=0$

Let $\phi = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

$$\frac{\partial \phi}{\partial x} = 2ax + 2hy + 2g = 0$$

(Keeping y as constant)

and
$$\frac{\partial \phi}{\partial y} = 2hx + 2by + 2f = 0$$

(Keeping x as constant)

For point of intersection $\frac{\partial \phi}{\partial x} = 0$ and $\frac{\partial \phi}{\partial x} = 0$

We obtain, ax + hy + g = 0 and hx + by + f = 0

On solving these equations, we get $\frac{x}{fh-bg} = \frac{y}{gh-af} = \frac{1}{ab-h^2}$ i.e. $(x,y) = \left(\frac{bg-fh}{h^2-ab}, \frac{af-gh}{h^2-ab}\right)$

Also, since $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$, from first two rows

 $a h g \Rightarrow ax + hy + g = 0$ and

h b f \Rightarrow hx + by + f = 0 and then solve, we get the point of intersection.

Note: \Box The point of intersection of lines represented by $ax^2 + 2hxy + by^2 = 0$ is (0, 0).

The point of intersection of the lines represented by the equation $2x^2 + 3y^2 + 7xy + 8x + 14y + 8 = 0$ is Example: 9

(a)
$$(0,2)$$

(c)
$$(-2,0)$$

(d)
$$(-2,1)$$

Let $\phi = 2x^2 + 3y^2 + 7xy + 8x + 14y + 8 = 0$ Solution: (c)

$$\frac{\partial \phi}{\partial x} = 4x + 7y + 8 = 0$$
 and $\frac{\partial \phi}{\partial y} = 6y + 7x + 14 = 0$

On solving these equations, we get x = -2, y = 0

Trick: If the equation is $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

The points of intersection are given by $\left\{\frac{hf-bg}{ab-b^2}, \frac{hg-af}{ab-b^2}\right\}$. Hence point is (-2, 0)

If the pair of straight lines xy - x - y + 1 = 0 and line ax + 2y - 3 = 0 are concurrent, then a =Example: 10

Given that equation of pair of straight lines xy - x - y + 1 = 0Solution: (d)

$$\Rightarrow$$
 $(x-1)(y-1) = 0$ \Rightarrow $x-1=0$ or $y-1=0$

The intersection point of x-1=0, y-1=0 is (1,1)

- Lines x-1=0, y-1=0 and ax+2y-3=0 are concurrent.
- The intersecting points of first two lines satisfy the third line.

Hence, $a+2-3=0 \Rightarrow a=1$

3.5 Equation of the Lines joining the Origin to the Points of Intersection of a given Line and a given Curve

The equation of the lines which joins origin to the point of intersection of the line lx + my + n = 0 and curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, can be obtained by making the curve homogeneous with the help of line lx + my + n = 0, which

$$ax^{2} + 2hxy + by^{2} + 2(gx + fy)\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right)^{2} = 0$$

We have
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

.....(i)

and
$$lx + my + n = 0$$

Suppose the line (ii) intersects the curve (i) at two points A and B. We wish to find the combined equation of the straight lines OA and OB. Clearly OA and OB pass through the origin, so their joint equation is a homogeneous

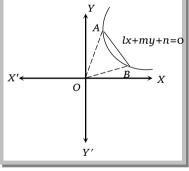
equation of second degree in x and y. From equation (ii), lx + my = -n $\Rightarrow \frac{lx + my}{n} = 1$

.....(iii)

v)

Now, consider the equation

$$ax^{2} + 2hxy + by^{2} + 2gx\left(\frac{lx + my}{-n}\right) + 2fy\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right)^{2} = 0$$
(i



Clearly, this equation is a homogeneous equation of second degree. So, it represents a pair of straight lines passing through the origin. Moreover, it is satisfied by the points A and B.

Hence (iv) represents a pair of straight lines OA and OB through the origin O and the points A and B which are points of intersection of (i) and (ii).

The lines joining the origin to the point of intersection of the circle $x^2 + y^2 = 3$ and the line x + y = 2Example: 11

(a)
$$y - (3 + 2\sqrt{2})x = 0$$

(a)
$$y - (3 + 2\sqrt{2})x = 0$$
 (b) $x - (3 + 2\sqrt{2})y = 0$ (c) $x - (3 - 2\sqrt{2})y = 0$ (d) $y - (3 - 2\sqrt{2})x = 0$

(d)
$$y - (3 - 2\sqrt{2})x = 0$$

Solution: (a,b,c,d) Make homogenous the equation of circle, we get $x^2 - 6xy + y^2 = 0$

$$\Rightarrow x = \frac{6y \pm \sqrt{(36 - 4)y^2}}{2} = \frac{6y \pm 4\sqrt{2}y}{2} = 3y \pm 2\sqrt{2}y$$

Hence, the equation are $x = (3 + 2\sqrt{2})y$ and $x = (3 - 2\sqrt{2})y$

Also after rationalizing these equations becomes $y - (3 + 2\sqrt{2})x = 0$ and $y - (3 - 2\sqrt{2})x = 0$.

Example: 12 The pair of straight lines joining the origin to the points of intersection of the line $y = 2\sqrt{2}x + c$ and the circle $x^2 + y^2 = 2$ are at right angles, if

[MP PET 1996]

(a)
$$c^2 - 4 = 0$$

(b)
$$c^2 - 8 = 0$$

(c)
$$c^2 - 9 = 0$$

(d)
$$c^2 - 10 = 0$$

Solution: (c) Pair of straight lines joining the origin to the points of intersection of the line $y = 2\sqrt{2}x + c$ and the circle $x^2 + y^2 = 2$ are

$$\Rightarrow x^2 + y^2 + (-2)\left(\frac{2\sqrt{2}x - y}{-c}\right)^2 = 0 \Rightarrow x^2 + y^2 - \frac{2}{c^2}\left(8x^2 + y^2 - 4\sqrt{2}xy\right) = 0 \Rightarrow x^2\left(1 - \frac{16}{c^2}\right) + y^2\left(1 - \frac{2}{c^2}\right) + \frac{8\sqrt{2}xy}{c^2} = 0$$

If these lines are perpendicular, $1 - \frac{16}{c^2} + 1 - \frac{2}{c^2} = 0$

$$\Rightarrow \frac{2c^2 - 18}{c^2} = 0 \Rightarrow c^2 - 9 = 0.$$

3.6 Removal of First degree Terms

Let point of intersection of lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ (i) is (α, β) .

Here
$$(\alpha, \beta) = \left(\frac{bg - fh}{h^2 - ab}, \frac{af - gh}{h^2 - ab}\right)$$

For removal of first degree terms, shift the origin to (α, β) *i.e.*, replacing x by $(X + \alpha)$ and y be $(Y + \beta)$ in (i).

Alternative Method: Direct equation after removal of first degree terms is

$$aX^{2} + 2hXY + bY^{2} + (g\alpha + f\beta + c) = 0$$

Where $\alpha = \frac{bg - fh}{h^2 - ab}$ and $\beta = \frac{af - gh}{h^2 - ab}$

3.7 Removal of the Term xy from $f(x, y) = ax^2 + 2hxy + by^2$ without changing the Origin

Clearly, $h \neq 0$. Rotating the axes through an angle θ , we have,

$$x = X \cos \theta - Y \sin \theta$$
 and $y = X \sin \theta + Y \cos \theta$

$$\therefore f(x,y) = ax^2 + 2hxy + by^2$$

After rotation, new equation is $F(X,Y) = (a\cos^2\theta + 2h\cos\theta\sin\theta + b\sin^2\theta)X^2$

$$+2\{(b-a)\cos\theta\sin\theta+h(\cos^2\theta-\sin^2\theta)XY$$

$$+(a\sin^2\theta - 2h\cos\theta\sin\theta + b\cos^2\theta)Y^2$$

Now coefficient of XY = 0. Then we get $\cot 2\theta = \frac{a-b}{2h}$

- Note: \square Usually, we use the formula, $\tan 2\theta = \frac{2h}{a-b}$ for finding the angle of rotation,
 - θ . However, if a = b, we use $\cot 2\theta = \frac{a b}{2h}$ as in this case $\tan 2\theta$ is not defined.
- **Example: 13** The new equation of curve $12x^2 + 7xy 12y^2 17x 31y 7 = 0$ after removing the first degree terms

(a)
$$12X^2 - 7XY - 12Y^2 = 0$$

(b)
$$12X^2 + 7XY + 12Y^2 = 0$$

(c)
$$12X^2 + 7XY - 12Y^2 = 0$$

(d) None of these

Solution: (c) Let
$$\phi = 12x^2 + 7xy - 12y^2 - 17x - 31y - 7 = 0$$

....(i)

$$\therefore \frac{\partial \phi}{\partial x} = 24x + 7y - 17 = 0 \text{ and } \frac{\partial \phi}{\partial y} = 7x - 24y - 31 = 0$$

Their point of intersection is $(x, y) \equiv (1, -1)$

Here $\alpha = 1$, $\beta = -1$

Shift the origin to (1, -1) then replacing x = X + 1 and y = Y - 1 in (i), the required equation is

$$12(X+1)^2 + 7(X+1)(Y-1) - 12(Y-1)^2 - 17(X+1) - 31(Y-1) - 7 = 0$$
 i.e., $12X^2 + 7XY - 12Y^2 = 0$

Alternative Method: Here $\alpha = 1$ and $\beta = -1$ and g = -17/2, f = -31/2, c = -7

$$\therefore g\alpha + f\beta + c = -\frac{17}{2} \times 1 - \frac{31}{2} \times -1 - 7 = 0$$

Removed equation is $aX^2 + 2hXY + bY^2 + (g\alpha + f\beta + c) = 0$

$$12X^2 + 7XY - 12Y^2 + 0 = 0 \Rightarrow 12X^2 + 7XY - 12Y^2 = 0$$
.

Mixed term xy is to be removed from the general equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$, one should Example: 14 rotate the axes through an angle θ given by $\tan 2\theta$ =

(a)
$$\frac{a-b}{2h}$$

(b)
$$\frac{2h}{a+b}$$
 (c) $\frac{a+b}{2h}$

(c)
$$\frac{a+b}{2h}$$

(d)
$$\frac{2h}{a-b}$$

Let (x', y') be the coordinates on new axes, then put $x = x' \cos \theta - y' \sin \theta$, $y = x' \sin \theta + y' \cos \theta$ in the Solution: (d) equation, then the coefficient of xy in the transformed equation is 0.

So,
$$2(b-a) \sin \theta . \cos \theta + 2h \cos 2\theta = 0 \Rightarrow \tan 2\theta = \frac{2h}{a-b}$$

3.8 Distance between the Pair of parallel Straight lines

If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a pair of parallel straight lines, then the

distance between them is given by $2\sqrt{\frac{g^2-ac}{a(a+b)}}$ or $2\sqrt{\frac{f^2-bc}{b(a+b)}}$

Distance between the pair of lines represented by the equation $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$ [Kerala (Engg.) 20 Example: 15

(a)
$$\frac{15}{\sqrt{10}}$$

(b)
$$\frac{1}{2}$$

(c)
$$\sqrt{\frac{5}{2}}$$

(d)
$$\frac{1}{\sqrt{10}}$$

Solution: (c) The distance between the pair of straight lines given by

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
 is $2\sqrt{\frac{g^2 - ac}{a(a+b)}}$, Here $a = 1, b = 9, c = 4$, $g = \frac{3}{2} = 2 \times \sqrt{\frac{\frac{9}{4} - (-4)}{1(1+9)}} = 2 \times \sqrt{\frac{\frac{25}{4}}{10}} = \sqrt{\frac{5}{2}}$

Distance between the lines represented by the equation $x^2 + 2\sqrt{3}xy + 3y^2 - 3x - 3\sqrt{3}y - 4 = 0$ is [Roorkee 1989] Example: 16 (a) 5/2

(b)
$$5/4$$

First check for parallel lines i.e., $\frac{a}{h} = \frac{h}{b} = \frac{g}{f} \implies \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = \frac{\frac{-3}{2}}{-3\sqrt{3}}$ Solution: (a)

which is true, hence lines are parallel. \therefore Distance between them is $2\sqrt{\frac{g^2-ac}{a(a+b)}}=2\sqrt{\frac{(-3/2)^2-1(-4)}{1(1+2)}}$

$$= 5 / 2$$

3.9 Some Important Results

- (1) The lines joining the origin to the points of intersection of the curves $ax^2 + 2hxy + by^2 + 2gx = 0$ and $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be mutually perpendicular, if g(a'+b') = g'(a+b).
 - (2) If the equation hxy + gx + fy + c = 0 represents a pair of straight lines, then fg = ch.
- (3) The pair of lines $(a^2 3b^2)x^2 + 8abxy + (b^2 3a^2)$ $y^2 = 0$ with the line ax + by + c = 0 form an equilateral triangle.
- (4) The area of a triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 is given by $\frac{n^2\sqrt{h^2 ab}}{am^2 2hlm + bl^2}$
- (5) The lines joining the origin to the points of intersection of line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually perpendicular, if $a^2(m^2 + 1) = 2c^2$.
- (6) If the distance of two lines passing through origin from the point (x_1, y_1) is d, then the equation of lines is $(xy_1 yx_1)^2 = d^2(x^2 + y^2)$
- (7) The lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will be equidistant from the origin, if $f^4 g^4 = c(bf^2 ag^2)$
- (8) The product of the perpendiculars drawn from (x_1, y_1) on the lines $ax^2 + 2hxy + by^2 = 0$ is given by

$$\frac{ax_1^2 + 2hx_1y_1 + by_1^2}{\sqrt{(a-b)^2 + 4h^2}}$$

(9) The product of the perpendiculars drawn from origin on the lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is

$$\frac{c}{\sqrt{(a-b)^2+4h^2}}$$

- (10) If the lines represented by the general equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are perpendicular, then the square of distance between the point of intersection and origin is $\frac{f^2 + g^2}{h^2 + b^2}$
- (11) The square of distance between the point of intersection of the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ and origin is $\frac{c(a+b) f^2 g^2}{ab h^2}$

Example: 17 The area of the triangle formed by the lines $4x^2 - 9xy - 9y^2 = 0$ and x = 2 is **[Roorkee 2000]**

(a) 2 (b) 3 (c) $\frac{10}{3}$ (d) $\frac{20}{3}$

Solution: (c) The area of triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 is given by $\left| \frac{n^2 \sqrt{h^2 - ab}}{am^2 - 2hlm + bl^2} \right|$

Here $a=4,b=-9,h=-\frac{9}{2},l=1,m=0,n=-2$, then area of triangle

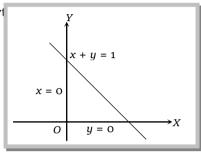
$$= \left| \frac{(-2)^2 \sqrt{\left(\frac{-9}{2}\right)^2 - 4 \times \frac{-9}{2}}}{-9 \times (1)^2} \right| = \left| \frac{4\sqrt{\frac{81}{4} + \frac{36}{2}}}{-9} \right| = \left| \frac{-30}{9} \right| = \frac{10}{3}$$

The orthocentre of the triangle formed by the lines xy = 0 and x + y = 1 is Example: 18

[IIT 1995]

- (a) (o, o)
- (b) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $\left(\frac{1}{3}, \frac{1}{3}\right)$ (d) $\left(\frac{1}{4}, \frac{1}{4}\right)$

- **Solution:** (a) Lines represented by xy = 0 is x = 0, y = 0. Then the triangle formed is right angled triangle at O(0, 1)
 - o), therefore O(0, 0) is its ort



- If the pair of straight lines given by $Ax^2 + 2Hxy + By^2 = 0$, $(H^2 > AB)$ forms an equilateral triangle with Example: 19 line ax + by + c = 0 then (A + 3B)(3A + B) is [EAMCET 2003]
 - (a) H^2

- (b) -H
- (c) $2H^2$
- (d) $4H^2$
- **Solution:** (d) We know that the pair of lines $(a^2 3b^2)x^2 + 8abxy + (b^2 3a^2)y^2 = 0$ with the line ax + by + c = 0 form an equilateral triangle. Hence comparing with $Ax^2 + 2Hxy + By^2 = 0$ then $A = a^2 - 3b^2$, $B = b^2 - 3a^2$, 2H = 8ab

Now $(A+3B)(3A+B) = (-8a^2)(-8b^2) \implies (8ab)^2 = (2H)^2 = 4H^2$.

