Centre of Triangle

- 1. Centre of a triangle : What do you mean by centroid, Incentre, Circumcentre and orthocentre of a triangle ?
 - 1.1. Centroid: In a triangle line joining the midpoint of a side to the opposite vertex is called a median. The three medians of a triangle meet at a point and the point is called centroid (G) of the triangle. In the adjacent figure points D, E and F are respectively mid point of sides BC, CA and AB. We must learn B that

- (a) $\frac{AG}{GD} = \frac{BG}{GE} = \frac{CG}{GF} = \frac{2}{1}$ i.e., Centroid divides median in the ratio \2:1.
- (b) area of $\triangle AGC$ = area of $\triangle BGC$ = area of $\triangle AGB$ i.e., lines joining centroid to the vertices of triangle divide the triangle into three equal areas.
- 1.2. Incentre: Lines bisecting internal angles (in two equal part) of a triangle are called internal bisector of angles. The internal bisectors of a triangle meet at a point and the point is called incentre of the triangle. In the figure, it is important to note that $\frac{BD}{DC} = \frac{AB}{AC} = \frac{c}{b}$

1.3. Circumcentre: Perpendiculars drawn on mid points of sides of a triangle (i.e. perpendicular bisector) meet at a point and the point is called circumcentre of the triangle. Geometrically, circumcentre is equidistant from vertices of a triangle; thus assuming this as centre we can draw a circle passing through all the three vertices of the triangle so,

AO = BO = CO.

1.4. Orthocentre: In a triangle, perpendicular drawn from vertices to the opposite sides (called altitudes) meet at a point and the point is called orthocentre.

Lucent's SSC Higher Mathematics

Important properties of centroid : If AD, BE and CF are medians of ABC and G be its centroid then. 188

triangle ADC
$$\frac{AG}{2.1.} = \frac{BG}{GD} = \frac{GC}{GF} = \frac{2}{1}$$
or, $\frac{AG}{AD} = \frac{2}{3}$, $\frac{GD}{AD} = \frac{1}{3}$ etc.

2.2. A medians divides triangle into two equal areas

i.e. ar
$$(\Delta ABD)$$
 = ar $\Delta (ACD)$ = $\frac{1}{2}$ ar (ΔABC)

ar
$$\Delta$$
 (BEC) = ar Δ (BEA) = $\frac{1}{2}$ ar (Δ ABC) etc.

2.3. Lines joining centroid to vertices of a triangle divide the triangle into three equal areas.

i.e. ar
$$(\Delta AGB)$$
 = ar (ΔBGC) = ar (ΔCGA) = $\frac{1}{3}$ ar ΔABC

2.4. Since GD is the median of triangle BGC.

$$\therefore \text{ ar } (\Delta BGD) = \text{ar } (\Delta CGD) = \frac{1}{2} \text{ ar } (\Delta BGC) = \frac{1}{2} \cdot \frac{1}{3} \text{ ar } (ABC)$$

$$\therefore \text{ ar } (\Delta BGD) = \frac{1}{6} \times \text{ar } (\Delta ABC) \text{ etc.}$$

2.5. G is also the centroid of ΔDEF.

2.6. Since E and F are respectively mid points of AB and AC therefore, $EF \mid \mid BC$ and $EF = \frac{1}{2}BC$

2.7. If E and F, respectively mid point of AC and AB then

$$\angle AEF = \angle ACB$$

$$\angle AFE = \angle ABC$$

∴ ∆AFE ~ ∆ABC.

2.8. If G be centroid and O is the point of interection of AG and EF then

$$\triangle AOE \sim \triangle ADC$$
 (: EF | | DC $\Rightarrow \angle AEO = \angle ACD$

$$\angle AOE = \angle ADC$$
)

$$\therefore \quad \frac{AO}{AD} = \frac{AE}{AC} = \frac{1}{2}$$

$$2AO = AD \Rightarrow AO = OD$$
 (: E is mid point) B'
i.e., point O is midpoint of AD

i.e., point O is midpoint of AD.

2.9. In the above figure if $FN \perp rBC$ and $EM \perp rBC$ then FN = EM[Also see solved example 16]

$$\therefore \text{ area of } \Delta BFC = \frac{1}{2} \times BC \times FN.$$

∴ area of
$$\triangle BFC = \frac{1}{2} \times BC \times FN$$
; area of $\triangle BEC = \frac{1}{2} \times BC \times EM$
∴ area of $\triangle BFC = 2rea$

$$\therefore \text{ area of } \Delta BFC = \text{ area of } \Delta BEC$$

2.10. Since D, E, F are mid point of sides

then,
$$\triangle BDF = \triangle EFD = \triangle FEA = \triangle DCE$$

then, $\triangle BDF = ar (\triangle CDE) = ar (\triangle AEF)$

and $ar (\triangle BDF) = ar (\triangle FDE) = \frac{1}{4} (ar \triangle ABC)$

..
$$G$$
, is also centroid of $\triangle DEF$

∴ G, is also centrotal
∴ ar
$$(\Delta DGE)$$
 = ar (ΔEGF) = ar $\Delta (DGF)$

$$= \frac{1}{4} \times \frac{1}{3} \text{ ar } (\Delta ABC)$$

$$= \frac{1}{12} \text{ ar } (\Delta ABC)$$

Relation among sides and medians of a triangle: Suppose ABC is a triangle whose medians are AD, BE and CF.

triangle whose Metallian triangle whose Metallian
$$AC = b$$
, then

If
$$AB = C$$
, $2b^2 + 2c^2 - a^2$
3.1. $AD = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

3.1. BE =
$$\frac{1}{2}\sqrt{2a^2 + 2c^2 - b^2}$$

3.3.
$$CF = \frac{1}{2}\sqrt{2a^2 + 2b^2 - c^2}$$

3.4.
$$3(AB^2 + BC^2 + CA^2) = 4(AD^2 + BE^2 + CF^2)$$

or,
$$AB^2 + BC^2 + CA^2 = \frac{4}{3} (AD^2 + BE^2 + CF^2)$$

$$\angle BAD = \angle CAD = \frac{\angle A}{2}$$

$$\angle ABE = \angle CBE = \frac{\angle B}{2}$$

and
$$\angle BCF = \angle ACF = \frac{\angle C}{2}$$

4.1. If AD is bisector of
$$\angle A$$
 then $\frac{BD}{DC} = \frac{AB}{AC} = \frac{c}{b}$

i.e., angle bisector AD divides side BC in the ratio AB: AC.

Similarly,
$$\frac{CE}{EA} = \frac{BC}{BA}$$
, $\frac{AF}{FB} = \frac{CA}{CB}$

4.2.
$$\frac{AI}{ID} = \frac{AB + AC}{BC} = \frac{c + b}{a}$$

4.2. $\frac{AI}{ID} = \frac{AB + AC}{BC} = \frac{c + b}{a}$ (How to recall : AB and AC are connected with AI while ID stand on between the stand on the stand o with AI while ID stand on BC

Similarly,
$$\frac{BI}{IE} = \frac{BA + BC}{AC}$$
, $\frac{CI}{IF} = \frac{CA + CB}{AB}$

4.3.
$$BD = \frac{ac}{b+c}$$
, $CD = \frac{ab}{b+c}$

$$CE = \frac{bc}{c+a}, EA = \frac{ba}{c+a}$$

$$AF = \frac{cb}{a+b}$$
, $BF = \frac{ca}{a+b}$

Explanation : Since $\frac{BD}{DC} = \frac{AB}{AC} = \frac{c}{b}$

let
$$BC = ck$$
 and $DC = bk$

$$BD + DC = ck + bk$$

or,
$$BC = (c+b)k$$

or,
$$a = (b+c)k$$

or,
$$k = \frac{a}{b+c}$$

$$BD = ck = \frac{ac}{b+c}, CD = bk = \frac{ba}{b+c}$$

(How to recall : Since BD : CD = c : b, thus multiplying by $\frac{a}{b+c}$

We get,
$$BD = \frac{ac}{b+c}$$
, $CD = \frac{ab}{b+c}$ etc)

4.4.
$$\angle BIC = 180^{\circ} - \frac{B}{2} - \frac{C}{2}$$

= $180^{\circ} - \left(\frac{B+C}{2}\right) = 180^{\circ} - \left(\frac{180^{\circ} - A}{2}\right) = 90^{\circ} + \frac{\angle A}{2}$

Similarly,
$$\angle AIC = 90^{\circ} + \frac{\angle B}{2}$$

$$\angle AIB = 90^{\circ} + \frac{\angle C}{2}$$

[SSC Tier-I 2014]

- 4.5. Radius of incircle of $\triangle ABC$ i.e., inradius $r = \frac{\triangle}{S}$ Where, Δ = area of triangle, and s = semiperimeter of the triangle.
- Circumcentre: In the given figure O is the circumentre 5. of $\triangle ABC$. Hence,
 - 5.1. OD, OE and OF are respectively perpendicular bisector of sides BC, AC and AB i.e., BD = DC and OD Ir BC etc.
 - 5.2. Circumcentre O is equidistant from vertices A, B, C of the triangle i.e., OA = OB = OC = R

5.3. R is called circumradius and $R = \frac{abc}{4\Delta}$ Where, Δ is area of triangle.

5.4. Angle subtends by arc of a circle at centre is double the angle subtends by it at circumference.

i.e.,
$$\angle BOC = 2\angle A$$

 $\angle COA = 2\angle B$
and $\angle AOB = 2\angle C$

5.5. $\triangle OBD = \triangle OCD$

$$\angle BOD = \angle COD = \angle A$$
and $\angle OBC = \angle OCB = 90^{\circ} - A$

5.6. If ABC is a right angled triangle (with $\angle A = 90^{\circ}$) then circumcentre O is the mid point of hypotenuse BC.

Since,
$$OB = OC = OA = r$$
,

Hence in a right angled triangle, mid point of hypotenuse is equidistant from the vertices of the triangle.

5.7. If ABC is an obtused angle triangle its circumcentre lies out side the triangle ABC.

i. Important properties of orthocentre

In the given figure $AD \perp r BC$, $BE \perp r AC$ and $CF \perp r AB$. Altitudes AD, BE and CF meet at P which is orthocentre of the $\triangle ABC$

6.1. In ∆ABD

$$\angle BAD = 180^{\circ} - 90^{\circ} - \angle B \qquad (\because \angle ADB = 90^{\circ})$$
$$= 90^{\circ} - \angle B$$

Similarly in $\triangle ADC$, $\angle CAD = 90^{\circ} - \angle C$ etc

See the remaining angles in the figure.

6.2. Angle around orthocentre P: In ΔΒΡD.

$$\angle BPD + \angle PBD = 90^{\circ}$$

or,
$$\angle BPD + 90^{\circ} - \angle C = 90^{\circ}$$

or,
$$\angle BPD = \angle C$$

See the remaining angles in the figure,

6.3.
$$\angle BPC = \angle B + \angle C$$

 $= 180^{\circ} - \angle A$
 $\angle CPA = \angle C + \angle A = 180^{\circ} - \angle B$
 $\angle APB = \angle A + \angle B = 180^{\circ} - \angle C$

$$DC = c^2 + a^2 - b^2 = b^2 + a^2 - c^2$$

6.5. Pair of similar triangles are

$$\Delta PEA \sim \Delta PDB$$

Write the ratio of sides of triangle yourself. Questions may be asked on these ratio.

D

- 6.6. It must be noted that ΔPDB, ΔPDC, ΔPEC, ... etc. are right angled triangles.
- 6.7. P is orthocentre of ΔABC. Draw a circumcircle to the triangle ABC Since angles in the same segment (or the same base or in the same arc) of a circle are equal,

On base BL, $\angle BCL = \angle BAL = 90^{\circ} - / R$

On base CL, $\angle CBL = \angle CAL = 90^{\circ} - \angle C$ On base BC, $\angle BMC = \angle A$ etc.

See the remaining angles in the figure.

- 8. The orthocentre of a right angles triangle is that point where triangle forms the right angle.
- The orthocentre of an obtuse angled triangle lies out side the triangle.
 In figure, orthocentre P lies outside the triangle.

Mixed properties of centres of a triangle.

- 7.1. In an equilateral triangle all the four centres are coincident i.e., centroid, incentre, circumcentre and orthocentre of an equilateral triangle lie at the same point.
- 7.2. Centroid (G), orthocentre (P) and circumcentre (O) of a triangle are always collinear (i.e., lie in a straight line) and PG: GO = 2:1.
- 7.3. The orthocentre of a right angled triangle lies at the right angled vertex while its circumcentre is mid point of hypotenuse.
- 7.4. Circumcentre and orthocentre of an obtuse angled triangle always lie outside the triangle.
- 7.5. The sum of diameters of circumcircle and incircle of a right angled triangle is equal to the sum of its perpendicular sides.

In the given figure *ABC* is a right angled triangle with $\angle A = 90^{\circ}$. If radius of circumcircle and incircle of the triangle be respectively *R* and *r* then 2(R + r) = b + c

(See solved example-21)

- 7.6. The distance between incentre and circumcentre of a triangle is $\sqrt{R^2 2rR}$ where R is circumradius and r is inradius.
- 7.7. In an equilateral triangle, length or radius of the circumcircle is equal to twice the radius of its incircle i.e., if $\triangle ABC$ is equilateral then R = 2r.
- 7.8. Ceva Theorem: If O is any point inside the triangle ABC and AO, BO, CO meet sides BC, CA, AB respectively at point D, E, F then

$$\frac{BD}{DC} \times \frac{CE}{EA} \times \frac{AF}{EB} = 1$$

Since Ceva Theorem is true for any point inside the triangle, it is therefore also true for centroid, incentre, orthocentre and circumcentre of the triangle.

7.9. Menelaus Theorem: If a transverse cuts the sides BC, CA and $DC \times CE$ $EA \times AF$

Converse of the theorem is also true.

Solved Example

If distance of centroid of triangle ABC from vertex A is 6 cm them f_{lin}

Solution: Since, AG:GD=2:1

$$\therefore \quad \frac{6}{GD} = \frac{2}{1}$$

$$\Rightarrow$$
 $GD = 3$

$$AD = AG + GD = 6 + 3 = 9$$

2. If I be the incentre of triangle ABC and $\angle A = 70^{\circ}$ then find the value $\sqrt{AB} = 70^{\circ}$ ZBIC.

Solution: Recall that
$$\angle BIC = 90^{\circ} + \frac{A}{2}$$

Hence,
$$\angle BIC = 90^{\circ} + \frac{70^{\circ}}{2} = 125^{\circ}$$

In a triangle ABC if $\angle A = \theta$ and perpendiculars drawn from vertices B and C to respective opposite sides meet in P then find the value of $\angle BPC$ in terms of θ .

Solution: See the figure, In Quadrilateral AEPF

$$\theta + 90^{\circ} + 90^{\circ} + \angle EPF$$

= 360° or,
$$\angle EPF = 180^{\circ} - \theta$$

$$\therefore$$
 $\angle BPC = \angle EPF = 180^{\circ} - \theta$

(Vertically opposite angle)

Shortcut : Learn that $\angle BPC = \angle B + \angle C = \pi - A$

195

Let the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. If bisector of the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. If bisector of the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. If bisector of the circumcentre of the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. If bisector of the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. If bisector of the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. If bisector of the circumcentre of a triangle ABC whose $\angle A = 50^{\circ}$. The characteristic $A = 50^{\circ}$. If bisector $A = 50^{\circ}$ intersect at $A = 50^{\circ}$. If bisector $A = 50^{\circ}$ and $A = 50^{\circ}$. If bisector $A = 50^{\circ}$ and $A = 50^{\circ}$. If bisector $A = 50^{\circ}$ and $A = 50^{\circ}$. If bisector $A = 50^{\circ}$ and $A = 50^{\circ}$. If bisector $A = 50^{\circ}$ and $A = 50^{\circ}$. Since angle subtened at the centre of the circle is double the angle subtened at circumference

subtened at circumstrence
$$\angle BOC = 50^{\circ} \times 2 = 100^{\circ}$$

$$OB = OC$$

$$\angle OBC = \angle OCB = \frac{180^{\circ} - 100^{\circ}}{2} = 40^{\circ}$$

$$\ln \Delta BPC, \angle BPC + \angle PBC + \angle PCB = 180^{\circ}$$

$$2^{\circ} = 2^{\circ} + \frac{1}{2} \times 40^{\circ} + \frac{1}{2} \times 40^{\circ} = 180^{\circ}$$

$$LOBC = 20CD - 2$$

$$\ln \Delta BPC, \angle BPC + \angle PBC + \angle PCB = 180^{\circ}$$

$$\angle BPC + \frac{1}{2} \times 40^{\circ} + \frac{1}{2} \times 40^{\circ} = 180^{\circ}$$

$$\angle BPC = 180^{\circ} - 20^{\circ} - 20^{\circ} = 140^{\circ}$$

$$\angle BPC = 90^{\circ} + \frac{\angle BOC}{2} = 90^{\circ} + A = 90^{\circ} + \frac{100^{\circ}}{2} = 140^{\circ}$$

Three points P, Q, R lie on the side BC of triangle ABC such that $BP = RC \cdot R = RC$. If G be centroid of ABC then where pQ = QR = RC. If G be centroid of $\triangle ABC$ then what is ratio of areas of APGR and AABC.

 $S_{olution}$: Clearly Q is mid point of side BC i.e., AQ is median of $\triangle ABC$. We know that

Area of
$$\triangle BGC = \frac{1}{3} \times \text{area of } \triangle ABC$$

But height of $\triangle BGC$ and $\triangle PGR$ are equal. Let this height be h.

$$\therefore \text{ area } \Delta BGC = \frac{1}{2} \times BC \times h$$

and area of
$$\Delta PGR = \frac{1}{2} \times PR \times h$$

Now,
$$\frac{\text{area of } \Delta PGR}{\text{area of } \Delta ABC} = \frac{\text{area of } \Delta PGR}{3 \times \text{area of } \Delta BGC}$$

$$= \frac{\frac{1}{2} \times PR \times h}{3 \times \frac{1}{2} \times BC \times h} = \frac{PR}{3BC}$$
$$= \frac{PR}{3 \cdot 2PR} = \frac{1}{6}$$

Atriangle DEF is formed by joining mid points of sides of triangle ABC. Again mid points of sides of triangle DEF are joined together to form a new triangle PQR. If sides of triangle ABC are respectively 4, 5 and 6 on then what is the distance between centroid of $\triangle PQR$ and $\triangle DEF$.

olution: Centroid of a given triangle and a triangle formed by mid points of the given triangle are coincident (i.e., lie at the same point);

 S_0 required distance = 0

7. n equidistant points A_1 , A_2 , A_3 A_n are taken on base BC of A_1 , A_2 = A_1 , A_3 = A_4 , A_5 is A_4 is A_5 is A_5 is A_6 .

AABC.

Solution: See the figure, a total of (n + 1) triangles will be formed when the same and height are equal.

:. Area of
$$\triangle ABC = (n+1)$$
 area of $\triangle AA_4A_5$
= $(n+1)k$ cm²

8. Points E and F lie respectively on side AC and AB of a triangle ABC and ABC there is a side ABC the side ABC there is a side ABC the side ABC there is a side ABC the side ABCPoints E and F He respectively that $EF \mid \mid BC$ and 2EF = BC. If G be the centroid of $\triangle ABC$ then find that $\triangle ABC$ then find the solution in the points of sides of triangles. that EF | | BC and ZLI - D. area of triangle formed by joning mid points of sides of triangle [1]

therefore E and F are respectively mid points of sides AC and AB.

We know that line joining the mid points of sides of a triangle divides the triangle in four

Area of
$$\triangle DEF = \frac{1}{4} \times \text{area of } \triangle ABC$$
 (here D is mid point of side Now, G is also the centroid of triangle Days

Now, G is also the centroid of triangle DEF and lines joining centroid and vertices of a triangle divides the triangle into three equal areas.

Hence, area of
$$\triangle EGF = \frac{1}{3} \times \text{area of } \triangle DEF = \frac{1}{3} \times \frac{1}{4} \times \text{area of } \triangle ABC$$

Area of formed by mid points.

- Area of formed by mid points of sides of $\Delta EGF = \frac{1}{4} \times \text{area of } \Delta EGF$ $= \frac{1}{4} \times \frac{1}{3} \times \frac{1}{4} \times \text{area of } \Delta ABC = \frac{1}{48} \times \text{area of } \Delta ABC$
- The angles of a triangle are in the ratio 3:4:5. If I be the incentre of AAR then find the manufactor of AAR the manufactor of the ratio 3:4:5. then find the measure of $\angle ADC$ and $\angle DIC$ where AD, is the bisectored

Solution: Let
$$\angle A = 3k$$
, $\angle B = 4k$ and $\angle C = 5k$ then, $\angle A + \angle B + \angle C = 180^{\circ}$

Centre of Triangle

$$3k + 4k + 5k = 180^{\circ}$$

$$180^{\circ} = 15^{\circ}$$

$$LA = 45^{\circ}, \ LB = 60^{\circ}, \ LC = 75^{\circ}$$

$$LA = 45^{\circ}, \ LADC = 180^{\circ} - \frac{LA}{2} - LC$$

$$10 \text{ triangle } ACD, \ LADC = 180^{\circ} - \frac{45^{\circ}}{2} - 75^{\circ}$$

$$= 105^{\circ} - 22\frac{1^{\circ}}{2} = 82\frac{1^{\circ}}{2}$$

197

In triangle CID,
$$\angle CID = 180^{\circ} - \angle ADC - \frac{\angle C}{2} = 180^{\circ} - 82\frac{1^{\circ}}{2} - \frac{75^{\circ}}{2}$$

= $180^{\circ} - 82\frac{1^{\circ}}{2} - 37\frac{1^{\circ}}{2} = 180^{\circ} - 120^{\circ} = 60^{\circ}$

In triangle ABC, AB = 6, AC = 7 and BC = 8. If AD is bisector of $\angle A$ and the incentre of trinagle ABC then find the length of BD. In triangle ABC then find the length of BD and CD. Also list the incentre of $AI \cdot ID$ find the value of AI: ID.

Solution: We know that if AD is bisector of $\angle A$ then $\frac{BD}{DC} = \frac{AB}{AC} = \frac{6}{7}$

Let
$$BD = 6k$$
, $DC = 7k$

then,
$$BD + DC = BC$$

$$\Rightarrow 6k + 7k = 8$$

$$\Rightarrow \qquad k = \frac{8}{13}$$

$$BD = 6k = 6 \times \frac{8}{13} = \frac{48}{13}$$

$$CD = 8k = \frac{7 \times 8}{13} = \frac{56}{13}$$

Shortcut:
$$BD = \frac{ac}{b+c} = \frac{8 \times 7}{6+7} = \frac{56}{13}$$

Now,
$$\frac{AI}{ID} = \frac{AB + AC}{BC} = \frac{6 + 7}{8} = \frac{13}{8}$$

11. In a triangle ABC, if AB = 20 cm, AC = 21 cm and BC = 29 cm, then find the distance between vertex A and mid point of BC.

Solution : Since
$$20^2 + 21^2 = 400 + 441 = 841 = 29^2$$

ΔABC is a right angled triangle, whose hypotenuse is BC.

Since mid point of hypotenuse of a right angled triangle is equidistant from each

$$AD = BD = DC = \frac{29}{2}$$
 cm
or, $AD = 14.5$ cm

Lucent's SSC High

198

12. In triangle ABC, $6\angle A = 4\angle B = 3\angle C$. If AD, BE and CF are altituded and O is its point of intersection then find the measure and O is its point of intersection. In triangle ABC, $6\angle A = 4\angle B = 3\angle B$ In triangle ABC, $6\angle A = 4\angle B = 3\angle B$ In triangle and O is its point of intersection then find the measure of triangle and O is its point of intersection then find the measure of triangle and O is its point of intersection then find the measure of the triangle and O is its point of intersection then find the measure of the triangle and O is its point of intersection then find the measure of the triangle and O is its point of intersection then find the measure of the triangle and O is its point of intersection then find the measure of the triangle and O is its point of intersection then find the measure of the triangle and O is its point of intersection then find the measure of the triangle and O is its point of the triangle and O is its LCOD, LBOD and LBOC.

Solution: Let
$$6A = 4B = 3C = K$$

 $\frac{K}{4} \angle B = \frac{K}{4}, \angle C = \frac{K}{3}$

ution: Let
$$6A = 4B = 3C$$

then, $\angle A = \frac{K}{6}, \angle B = \frac{K}{4}, \angle C = \frac{K}{3}$
 $\therefore \angle A + \angle B + \angle C = 180^{\circ}$

$$\therefore \ \angle A + \angle B$$

$$\Rightarrow \frac{K}{6} + \frac{K}{4} + \frac{K}{3} = 180^{\circ}$$

$$\Rightarrow \frac{K}{6} + \frac{K}{4} + \frac{K}{3} = 180^{\circ}$$

$$\Rightarrow \frac{2K + 3K + 4K}{12} = 180^{\circ} \Rightarrow K = \frac{180^{\circ} \times 12}{9} = 240^{\circ}$$

$$\Rightarrow \frac{2K + 3K + 4K}{12} = 180^{\circ} \Rightarrow K = \frac{180^{\circ} \times 12}{9} = 240^{\circ}$$

$$\Rightarrow \frac{2R+1}{12}$$

$$\therefore A = 40^{\circ}, B = 60^{\circ} \text{ and } C = 80^{\circ}$$

$$\therefore A = 40^{\circ}, B = 60^{\circ} \text{ and } C = 80^{\circ}$$

In right angled $\triangle BCF$, $90^{\circ} + \angle BCF + \angle B = 180^{\circ}$

or,
$$90^{\circ} + \angle BCF + 60^{\circ} = 180^{\circ}$$

or,
$$90^{\circ} + \angle BCI$$
 $+ 20^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$
 $\therefore \angle BCF = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$

In right angled $\triangle OCD$, $\angle ODC + \angle OCD + \angle COD = 180^{\circ}$

or,
$$90^{\circ} + 30^{\circ} + \angle COD = 180^{\circ}$$

or,
$$\angle COD = 60^{\circ}$$

In right angled $\triangle BEC$, $90^{\circ} + \angle C + \angle EBC = 180^{\circ}$

or,
$$90^{\circ} + 80^{\circ} + \angle EBC = 180^{\circ}$$

or,
$$\angle EBC = 10^{\circ}$$

In right angled $\triangle BOD$, $90^{\circ} + \angle OBD + \angle BOD = 180^{\circ}$

or,
$$90^{\circ} + 10^{\circ} + \angle BOD = 180^{\circ}$$

or,
$$\angle BOD = 80^{\circ}$$

$$\therefore \angle BOC = \angle COD + \angle BOD = 60^{\circ} + 80^{\circ} = 140^{\circ}$$

Shortcut: See the figure of orthcentre in theory part. All the angles can be found directly.

13. If O be the orthocentre of ABC, OF $\perp r$ AB and OE $\perp r$ AC. If OE = 2 cm and BE = 5 cm then find the value of $OF \times OC$.

Solution: In ΔOBF and ΔOCE,

$$\angle OFB = \angle OEC = 90^{\circ}$$
 and $\angle BOF = \angle EOC$

Hence,
$$\frac{OB}{OC} = \frac{OF}{OE}$$
 or, $\frac{OB}{OF} = \frac{OC}{OE}$

or,
$$OB \times OE = OF \times OC$$

or,
$$OF \times OC = OB \times OE$$

$$= (BE - OE) (OE)$$

$$= (5-2) \times 2 = 6 \text{ cm}^2$$

(Vertically opposite angle)

Acircle is drawn circumscribing the $\triangle ABC$. If produced part of altitudes AD, BE and CF are bisect on P, Q, R respectively

Solution: In $\triangle CPD$, $\angle CDP = 90^{\circ}$

and $\angle DPC = \angle B$

(angle on the same segment of base AC)

In $\triangle PDC$, $\angle PDC = 90^{\circ}$ $\triangle AFR$, $\angle AFR = 90^{\circ}$,

and $\angle ARF = \angle B$

(angle on same segment of base AC)

$$\therefore \quad \Delta CDP \sim \Delta AFR \implies \frac{CD}{AF} = \frac{CP}{AR} = \frac{DP}{FR}$$

15. If the distance between centroid and orthocentre of a triangle is 12 cm then find the distance between its orthocentre and circumcentre.

Solution: We know that orthocentre (P), centroid (G) and circumcentre (O)

are collinear and
$$\frac{PG}{GO} = \frac{2}{1}$$

According to question GP = 12.1G

$$(\cdot : GO = \frac{1}{2} \cdot PG)$$

$$=\frac{3}{2}PG=\frac{3}{2}\times 12=18$$
 cm

16. If AD, BE and CF are medians of triangle ABC then prove that median AD divides line segment EF.

Solution: Join E - D and E - F

AFDE will be a parallelogram

(:
$$ED \parallel AB \Rightarrow ED \parallel AF$$
 and $FD \parallel AC \Rightarrow FD \parallel AE$)

Hence AD and EF are diagonals of a parallelogram. Its point of intersection P divides diagonal AD of parallelogram which is median AD of AABC.

200

17. If H be orthocentre of $\triangle ABC$ and mid point of AH, BH, CH concertively P, Q, R then prove that H is also the orthocentre of $\triangle ABC$ If H be orthocentre of $\triangle ABC$ and ABC are respectively P, Q, R then prove that H is also the orthocentre of $\triangle P$ (Learn the P to $\triangle ABC$). (Learn the property) Solution: In $\triangle HBC$, Q is mid point of HB and R is mid point of HC.

Hence $QR \mid \mid BC$ and $QR = \frac{1}{2}BC$

But
$$AD \perp r BC \Rightarrow PD \perp r QR$$

Similarly we can prove that $QE \perp r PR$ and RF $\perp r PQ$

Hence, PD, QE and RF lies on altitudes of $\triangle PQR$. So H, is orthocentre of $\triangle PQR$.

Seccond part:
$$QR \mid \mid BC \Rightarrow \angle EQR = \angle EBC$$

and $QP \mid \mid AB \Rightarrow \angle PQE = \angle ABE$

Adding we get $\angle PQR = \angle ABC$ i.e., $\angle Q = \angle B$

Similarly we can prove that $\angle A = \angle P$ and $\angle R = \angle C$

$$\therefore \quad \Delta ABC \sim \Delta PQR$$

[do your self : $\Delta HQM \sim \Delta HBD$, $\Delta HQR \sim \Delta HBC$ etc.]

18. If O be the orthocentre of $\triangle ABC$ then orthocentre of $\triangle OBC$ is A. Justify

(Learn the property).

Solution: In figure, AD, BE and CF are respectively altitudes on sides BC, CA and AB. O is orthocentre.

In $\triangle OBC$, CE is perpendicular to produced part of BO.

Clearly point of intersection of produced part of BF and CE is A. Thus A is orthocentre of $\triangle OBC$.

19. ABCD is a parallelogram. L and M are respectively mid points of sides \overline{AB} and \overline{AD} . Prove that LC and MC divides diagonals \overline{BD} in three equal

Q is mid point of AC.

CM and DQ are medians of ΔACD which

Hence P is centroid of $\triangle ACD$.

$$\therefore \quad \frac{DP}{PQ} = \frac{2}{1}$$

M

201

Similarly in
$$\triangle ABC$$
, $\frac{BR}{RQ} = \frac{2}{1}$ [diago

... (ii)

[diagonals of parallelogram bisect each other]

But
$$DQ = QB$$

 $DP + PQ = QR + RB$
 $DP + PQ = QR + 2Q$

... (iii)

$$pO = QR + 2QR$$

(from (i) &(ii))

But
$$PP + PQ = QR + RB$$

 $PP + PQ = QR + 2QR$
 $PQ = 3QR \Rightarrow PQ = QR$

$$2PQ + PQ = QR$$

$$2PQ + PQ = QR$$

$$3PQ = 3QR \Rightarrow PQ = QR$$

$$PQ = QR + RB$$
Now, from (3), $DP + PQ = QR + RB$

$$PQ = QR$$

$$(\cdot,\cdot PQ = QR)$$

... (iv)

Now,
$$PQ = RB$$

$$PR = PQ + QR = 2PQ = DP$$

$$PR = PQ + QR = PQ = RB$$

... (v)

$$PR = PQ + QR$$
From (iv) and (v), $DP = RB = PR$

prove that sum of any two medians of a triangle is greater than the third (Learn the property) median.

Solution: In the given figure,

AD, BE and CF are medians of triangle ABC.

G is centroid of $\triangle ABC$.

GD is produced to H such that AG = GH

Now, see the triangle $\triangle ABH$,

Here F is mid point of side AB and G, is the mid B^A point of a side AH.

... (i)

Now, see the $\triangle ACH$.

here E is mid point of side AC and G is mid point of side AH.

$$: EG \parallel CH \Rightarrow GB \parallel HC$$

... (ii)

from (i) and (ii), 'BHCG is a parallelogram.

$$BG = CH \text{ and } GC + BG > GH$$

[CH = BG]

or,
$$BG + GC > AG$$

(:: AG = GH and GC = BH)

or,
$$\frac{3}{2}BG + \frac{3}{2}GC + \frac{3}{2}AG$$

or,
$$BE + CF > AD$$

$$(:\frac{3}{2} BG = BE \text{ etc.})$$

Solution: Clearly hypotenuse BC = 2R

$$a = 2R$$

and from
$$r = \frac{\Delta}{s}$$
, $r = \frac{\frac{1}{2}bc}{\left(\frac{a+b+c}{2}\right)} = \frac{bc}{a+b+c}$

 $= \frac{1}{a+b+c}$ Thus sum of diameters of two circles = Sum of mutually perpendicular.

Exercise-6A

- 1. In the adjacent figure DE is parallel to BC and ratio In the adjacent BDEC is 4:5. What is the value of DE : BC?
 - (a) 1:2
- (b) 2:3
- (c) 4:5
- (d) None of these
- 2. In the given figure AB, EF and CD are parallel lines. It is given that EG = 5cm, GC = 10cm, AB= 15 cm and DC = 18 cm, What is the value of AC?

- (b) 24 cm
- (c) 25 cm
- (d) 28 cm
- 3. In the adjacent figure, $\angle ABD = \angle PQD =$ $\angle CDQ = \frac{\pi}{2}$. If AB = x, PQ = z and CD = ythen which one of the following is true.

(a)
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$$
 (b) $\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$

(b)
$$\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$$

(c)
$$\frac{1}{z} + \frac{1}{y} = \frac{1}{x}$$

(c)
$$\frac{1}{z} + \frac{1}{y} = \frac{1}{x}$$
 (d) $\frac{1}{x} + \frac{1}{y} = \frac{2}{z}$

- 4. $\triangle PQR$ is right angled at Q; PR = 5 cm and QR = 4 cm. Another $\triangle ABC$ given whose side are respectively 3 cm, 4 cm and 5 cm then which one of the following is true?
 - (a) area of $\triangle PQR$ is double the area of $\triangle ABC$
 - (b) area of $\triangle ABC$ is double the area of $\triangle PQR$
 - (c) $\angle B = \frac{\angle Q}{2}$
 - (d) Both triangles are congruent
- 5. If ratio of length of medians of two equilateral triangles are 3:2 then what is the ratio of their sides?
 - (a) 1:1
- (b) 2:3
- (c) 3:2
- (d) \(\sigma 3:\sigma 2\)

In which of the following triangle centroid and orthocentre are coincident?

(b) Isosceles triangle

(a) Scalene triangle

- (d) Right angled triangle
- (c) Equilateral triangle (c) Equilibrium (c) Equilibriu Consider the AD and BE intersects at G. Suppose O is a point on AD $BC \cap AD \cap AO : OD = 2:7$. such that AO:OD=2:7.

Assertion (A): $AO = \frac{(2GD)}{3}$

Reason (R): $OD = \frac{(2AG)}{3}$

- (a) Both Assertion A and Reason R are correct and Reason R is a correct explanation of Assertion A.
- (b) Both Assertion of Assertion 4 correct explanation of Assertion A.
- (c) Assertion A is correct, Reason R is wrong.
- (d) Assertion A is wrong, Reason R is correct.
- ABC is a given triangle. AD, BE and CF are altitudes of $\triangle ABC$.

Assertion (A): $(AB^2 + BC^2 + CA^2) > (AD^2 + BE^2 + CF^2)$

Reason (R): $(AE^2 - AF^2) + (BF^2 - BD^2) + (CD^2 - CE^2) = 0$

- (a) Both Assertion A and Reason R are correct and Reason R is a correct explanation of Assertion A.
- (b) Both Assertion A and Reason R are correct but Reason R is not the correct explanation of Assertion A.
- (c) Assertion A is correct, Reason R is wrong.
- (d) Assertion A is wrong, Reason R is correct.
- ABC is a given triangle. An external point X of $\triangle ABC$ is such that CD = CX, where D is the point of intersection of BC and AX. If $\angle BAX =$ LXAC, then which one of the following is true?
 - (a) $\triangle ABD$ and $\triangle ACX$ are similar (b) $\angle ABD < \angle ACD$

(c) AC = CX

- (d) $\angle ADB > \angle DXC$
- 10. How many point (s) in the plane of ΔABC is equidistant from its vertices? (d) 3

(a) 0

(b) 1

(c) 2

11. In a triangle ABC, interal bisector of $\angle ABC$ and external bisector of $\angle ACB$ meet in D. Which one of the following is true?

(a) $\angle BDC = \angle BAC$

(b) $\angle BDC = \frac{1}{2} \angle ABC$

(c) $\angle BDC = \angle DBC$

- (d) None of these
- 12. The median BD of $\triangle ABC$ meets side AC at D. If $BD = \frac{1}{2}AC$, then which one of the following is true.
 - (a) $\angle ACB = 1$ right angle
- (b) $\angle BAC = 1$ right angle
- (c) $\angle ABC = 1$ right angle
- (d) None of the above

13. In the given figure, M is the mid point of line segment AB whose length is 2a. Semicircles having diameters AM, MB and AB are drawn at the same side of the line. The radius of a circle touching all the three semicircle is (c) $\frac{u}{3}$ (b) $\frac{a}{2}$ (d) a (a) $\frac{2a}{3}$ 14. Point of concurrency of altitudes of a triangle is called (b) Orthocentre (a) Circumcentre (c) Incentre

15. Number of circles passing through all the three vertices of a triangle infinity (d) infinity (d) Centroid (d) infinity 16. Consider the following statements: Consider the rollowing

Statement-I: Suppose PQR is a triangle with PQ = 3 cm, QR = 4 cm and the plane of R. Statement-I: Suppose PQR is a considered of the plane of triangle RP = 5 cm. If D is a point either outside or inside of the plane of triangle RP = 6 cm. Statement-II: $\triangle PQR$ is a right angled triangle. Regarding two statements described above which one of the following (a) Both statement I and II are true and statement II is a correct (b) Both statements I and II are true but statement II is not the correct (c) Statement I is true and statement II is false. (d) Statement I is false and statement II is correct. 17. $\triangle ABC$ is a given triangle and AD is perpendicular to BC. It is given that length of three sides AB, BC, CA are rational numbers. Which one of the following is true? (a) AD and BD both must be rational. (b) AD must be rational but BD is not necessarily rational. (c) BD must be rational but AD is not necessarily rational. (d) neither AD nor BD is necessarily rational. 18. Centroid of $\triangle ABC$ is 8 cm away from vertex A. What is the length of median passing through vertex A? (a) 20 cm (b) 16 cm (c) 12 cm 19. If distance of a vertex of an equilateral triangle from its centroid is 6 cm (a) 24 cm² (b) $27\sqrt{3} \text{ cm}^2$ (c) 12 cm² 20. In $\triangle PQR$, PQ = 4 cm, QR = 3 cm and RP = 3.5 cm, $\triangle DEF$ is similar to ΔPQR . If EF = 9 cm then perimeter of ΔDEF is— (b) 21 cm (d) Cannot be determined as data is insufficient

					203
	angle b	isector of ΔAB	C and BD	: DC = 2	2:3. If AB = 7 cm then
	AD is an are		(b) 3		, chi then
;1	AL 3				
ă.	(3) 7 10	4.4.7		ata insu	
3	(c) 21 · · · · · (A) :	AD is angle bi	sector of Z	A of the	triangle ABC . If $AB = CD = 4$ cm.
	Assertion 7 cm,	AC = 8 cm the	en BD = 3	cm and	CD = 4 cm.
*	ml The	e aligic blocks	or AD of t	ne trian	CD = 4 cm. gle divides base BC in
	Reason AB : AC). 	D		and be in
	Reason (R): AC the ratio AB: AC	on A and Reas	on K are c	orrect ar	nd Reason R is a correct
	(a) Bouldanation	of Assertion A ion A and Reas	1.	2	
	noth Asserti	ion A and Rea	son K are	correct l	out Reason R is not the
	Assertion A	is correct, Rea is wrong, Rea of ABC and A	son R is v	vrong.	
	(c) Assertion A	is wrong, Rea	SON K IS C	orrect.	
	(d) As incentre	e of ABC and Δ	$\angle A = 30^{\circ}$. A	Accordin	ngly what is $\angle BOC$?
23.	O is the Itte	(b) 105°	(c)	$110^{\rm o}$	ngly what is ∠BOC ? (d) 90°
	(4)	A ADC and Al) RF CF	ara ita Il	
-1	O is centrold of	, then area of (b) 30 cm ²	quadrilate	ral BDC	OF is—
	AAC 2	(b) 30 cm ²	(C)	40 cm ²	(d) 25 cm ²
	(a) 20 cm ²	- timely orth	ocentre or	d aires	(a) 25 cm
	FOC	pectively ordi	uced part	mooto e	meentre of $\triangle PQR$. Point side QR in S . If $\angle POS =$
25.	p and O are join	120° then	RPS - 2	meets s	side QR in S. If $\angle PQS =$
	60° and ZQCK	= 130° , then $\angle 1$ (b) 35°		100°	
	200	(0)	(-)		(d) 60°
•6	I CITY	ncentre O of the	e triangle.	ABC per	pendicular OD is drawn of ∠BOD?
20.	to BC. II ZDITE		292370221		
	(a) 30°	(0) 90	(C)	00	(a) 45°
000	a is the circum	centre of a tria	angle ABC	. If $\angle BA$	$AC = 85^{\circ}$ and $\angle BCA = 75^{\circ}$
27.	then what is the	e value of ∠O	AC?		
	(a) 40°	(b) 60°	(c)	70°	(d) 90°
	(a) 10	RC medians C	D and BE	interse	ct at point O. What is the
28.	In a triangle At	$\triangle ODE$ and $\triangle \triangle$	ABC?	microci	et at point O. What is the
		(b) 6:1	(c)	1 · 12	(d) 12:1
	(a) 1:6				
29.					oint on side BC of $\triangle ABC$
	such that OD 1	BC. If $\angle BOD$	$=15^{\circ}$ the	$n \angle ABC$	∑ = ?
	(a) 75°	(b) 45°	(c)	150°	(d) 90°
30.	The radius of in	circle of an eq	uilateralt	riangle	is 3 cm. What is the length
	11 STM 0 AMED SANS	of the triang	No. 100 margaret and 100 margaret 100 margar		0
				2 2	(1) 0
	(a) 12 cm	(b) $\frac{9}{2}$ cm	(c)	4 cm	(d) 9 cm
31	. I is the incentre	of the triance	ARC IF	/ ABC =	= 60° and $\angle ACB = 50^{\circ}$ then
	LBIC is	of the triang.	ie ABC. II	LIIDC -	Tay for Marie
	(a) 55°	(b) 125°	(0)	700	(d) 65°
		11/1 1/1			Commence of the Commence of th

17	the value of	ZBAC ?			OC "					
	(a) 20°	(b) 40°	(c)) 55°	OC = J	00.8				
	(c) Circumo (d) None of	(b) 40° es of centres of a tri tres are collinear) circumcentre, centre orthocentre, centre entre, orthocentre these	e, centro	oid	w alway	slie in ashan				
34.	(c) Circumcentre, orthocentre, centroid (d) None of these If distance between orthocentre and circumcentre of a triangle is then what is the distance between its centroid and circumcentre of a triangle is the distance between its centroid and circumcentre? (a) 4 cm (b) 2 cm (c) 8/3 cm (d) 4/4									
	then what is the distance between its centroid and a trian.									
	(a) 4 cm	(b) 2 cm	(c)	$\frac{8}{3}$ cm	(d)	umcentre?				
	(c) Circumo	of centres given be entre and centroic entre and orthoce these	entre		aria cer	gle? htroid				
	110 11:	these distance between gle? hypotenuse d to hypotenuse			y Poten	1190				
37.	If hypotenus its orthocent	d to hypotenuse e of a right angle is re and centroid?	s 15 cm	then what	is the d	istance between				
	(a) 5 cm	(b) 10 cm	(c)	$\frac{10}{2}$ cm	(4)	20				
38.	A non right the triangle i	angle bisector of n those two parts			- erec T	3110				
	(a) 1:1	(b) $1:\sqrt{2}$	(c)	1:2	(4)	1 5				
39.	(a) $1:1$ (b) $1:\sqrt{2}$ (c) $1:2$ (d) $1:\sqrt{2}-1$ In a $\triangle ABC$, $BC=9$ cm, $AC=40$ cm and $AB=41$ cm. If bisector of angle A meets side BC at D then ratio of area of $\triangle ABD$ ad $\triangle ABC$ is									
	(a) 40:41		(b)	9:40						
	(c) 9:41	. 57 1 6		41:81						
E, F	and I be the	10– 42): In a triang 1 1 1 1 1 1 1 1 1 1	ectively	v meet sid	n, BC = les BC, (6 cm and CA CA and AB at				
	What is BD :		. 01.	Lagar 9		TULDSTALL				
	(a) 5:7	(b) 7:5	(c)	5:6	(d)	6:5				
	709732707	ength of AE?				Tala				
	a) $\frac{42}{11}$ cm	(b) 6 cm	(c)	$\frac{13}{2}$ cm	(d)	35 11 cm				
	What is <i>CI : II</i> a)2 : 1	F? (b) 11:7	(c)	3:1	(d)	13:5				

	niperime	eter	of a triangle and centroid	is S and of the	and its centr	oid is	G. What is the d by mid points	
	the sell between	an oi	ven triangle	?	8.0 10	nine(by mid points	
,,	distance of the	He B.	5	(- \				
7.	The semiperime distance between distance between of the sides of the	(b)	<u>5</u>	(c)	18	(d)	0	
	.) 3	a me	dians of a tria	angle	are respecti	velv	0 10 .	
	(a) 3 (d) 0 (a) 3 (d) 0 (b) 6 (e) 18 (d) 0 (c) 18 (d) 0 (d) 0 (d) 30 (e) 18 (d) 0 (e) 5 (d) 0 (find three medians of a triangle are respectively 9 cm, 12 cm and 11 length of three medians of the triangle in cm ² ? (b) 72 (c) 96 (d) 36							
17417	It leng then wha	(b)	72	(c)	96	(d)	36 ratio of area of f triangle is	
11	.501.							
	(a) atre of a	isos	cining I to th	e res	pective vont	tnen	ratio of area of	
500	If incelled formed	by J	Olitica I to II.		Pective vert	ices o	f triangle is	
1,	(a) 48 If incentre of a triangle formed			(b)	$\frac{2-\sqrt{2}}{2}:\frac{2-\sqrt{2}}{2}$	<u>√2</u> : ,	$\sqrt{2} - 1$	
	1.1: 12						MATERIA INTER	
	(a) $1:1:\sqrt{2}$ (c) $\sqrt{2}-1:\sqrt{2}$	-1:4	/2 + 1	(a)	None of the	ese	s incentre their	
	(c) 12 male	d iso	osceles triang	gle Z	$C = 90^{\circ}$ and	I is it	s incentre their	
	In a right and	AIB	and $\triangle ABC$ is	3				
10.	In a right angle ratio of area of a	(b)	$1:\sqrt{2}-1$	(c)	$1:\sqrt{2}$	(d)	1:2	
	. 1 · NZ T -		925 12 IZ	10000	oints of side	es of	1:2 a triangle and a des. The ratio of	
							a triangle and a des. The ratio of	
47.	riangle is form	eu a	to the area of	orig	inal triangle	is		
	of the	11-1	1 . 8	(c)	1:16	(d)	1 · 64	
			22 274	000000000000000000000000000000000000000			cm side AC - h	
	Directions (48— cm and $BC = a =$	51):	an answer t	he fo	llowing que	stions	cm, side $AC = b$	
_	cm and $BC = a =$: /, u	AD:		0 1		T.	
= 0	The length of m	edia	n AD 1s		(50		[78	
48.	The length of $\frac{53}{2}$ cm	(h)	$\frac{1}{5}\sqrt{55}$ cm	(c)	$\sqrt{\frac{53}{2}}$ cm	(d)	$\sqrt{\frac{63}{3}}$ cm	
	(a) $\frac{55}{2}$ cm	(0)	2.	A 201-00	1 (DD :		1 2	
02	. hisacto	r of a	ingle A then	iengi	n of bD is		2413	
49.	If AD is disector (a) $\frac{16}{5}$	(b)	<u>21</u>	(c)	12 5	(d)	14 5	
	(a) 😤	(0)	5				o .	
-0	If AD be the alti	itude	then what is	s BD	in cm ?		40	
7 U.	(a) $\frac{29}{12}$	(h)	39	(c)	<u>29</u>	(d)	<u>69</u> 14	
	(a) 12	(0)	12	200000	14		14	
51	If AD be the alti	tude	e then BD : D	C ?		(1)	39:29	
	(-) 20 . 69	(b)	69:29	(C)	29:39	(d)		
52	If area of a triar	igle :	is 81 cm ² and	l its s	semiperimet	er is	27 cm then area	
J£.	of incircle of the	tria	ngle is				201522	
	(a) 6= cm2	(h)	3rr cm ²	(c)	18π cm ²	55 25	9π cm ²	
53	If sides of a triar	nole	are respectiv	ely 5	cm, 6 cm an	d7cr	n then radius of	
	the circumcircle	of t	he triangle is					
	carcamenere	OI L			25	(1)	17 cm	
	(a) 9 cm	(b)	$\frac{35}{\sqrt{6}}$ cm	(c)	$\frac{35}{4\sqrt{6}}$ cm	(d)	2	
		g 8	√ O					

208	
54. The sides of a triangle are of the sides of a triangle is (c) 7 cm (d) 85	1
Circumeter 75 cm	BIOLOGIC
(a) 5 cm 15 cm and 17 cm. The sum	
(a) 5 cm (b) 7.5 cm and 17 cm. The sum of radii of circumcircle and incircle of the triangle is (b) 7.5 cm (c) 25 cm (d) 12.5 cm	
circumcircle and 115 cm (c) 25 cm	
(a) 23 cm la are 9 cm, 40 cm and 41 cm. The distance have	
(a) 23 cm (b) 11.3 cm, 40 cm and 41 cm. The distance between its orthocentre and circumcentre is (c) $\sqrt{29}$ cm (d) 15 cm	
its orthocentre and so 5 cm (c) $\sqrt{2}$ cm (d) 15 cm	
(a) 29 cm (b) 20.5 cm (a) 29 cm (b) 20.5 cm (b) 20.5 cm (c) 20.5 cm (d) 16	
57. If ratio of sides of a tradition ?	f
circumradius and 16.7 (c) 12:7 (d) 16:5	
(a) 2.1	
(a) 2:1 (b) 10.7 The greatest side of a triangle is two more than double of its smalle side while middle one is one unit less than greatest side. If the smalle side while middle one is one unit less than greatest side. If the smalle side while middle one is one unit less than greatest side.	st
side while middle one is one unit less side while middle one is one unit less side while middle one is one unit less side is equal to the least odd prime number then ratio of circumradi side is equal to the triangle is	St
side is equal to the reangle is and inradius of the triangle is (b) 7:2 (c) 7:3 (d) 4:1	18
and inradius of the triangle is (a) 12:7 (b) 7:2 (c) 7:3 (d) 4:1	
(a) 12.1. APC if $A = 90^{\circ}$, $b = 3$ and $c = 4$ then $R : r$ is	
(a) 5:3 (b) 7:3 60. If sides of a triangle are 3 cm, 4 cm and 5 cm then what is the distance of a triangle are 3 cm, 4 cm and 5 cm then what is the distance of a triangle are 3 cm, 4 cm and 5 cm then what is the distance of the side	n _c
60. If sides of a triangle are between its incentre and circumcentre?	.ice
(a) $\frac{5}{4}$ cm (b) $\sqrt{\frac{5}{2}}$ cm	
(c) $\frac{\sqrt{5}}{2}$ cm (d) None of then	
If triangle formed by medians of a right angled triangle is also a r	ight
angled triangle then what is the ratio of sides of the original right an	gled
triangle?	
(a) $1:\sqrt{2}:\sqrt{3}$ (b) $2:\sqrt{3}:\sqrt{7}$	
Actual Company of the	
(c) $\sqrt{2}:\sqrt{3}:\sqrt{5}$ (d) $3:4:5$	
Answers-6A	
	3. (b)
	i. (a)
2. (a) 15. (b) 11. (c) 15. (c)	i. (a) I. (b)
17. (c) 15. (c) 25. (c) 21. (d) 25. (d)	2. (b)
25. (b) 26. (c) 27. (d) 26. (c) 25. (e) 36. (d) 31. (e)). (a)
60. (c) 61. (b) 66. (c) 60. (b) 67. (a) 60. (b) 67.	3. (b)
11. (a) 12. (a) 10. (a) 11. (b) 40. (a) 11. (c)	6. (b)
49. (d) 50. (c) 51. (a) 52. (d) 53. (c) 54. (a) 55. (b) 56). (D)

61. (a)

57. (b) 58. (b) 59. (d) 60. (c)

Exaplanation

DE || BC and : area (
$$\triangle ADE$$
) : area (trapezium BDEC) = 4 : 5
1. $\triangle ABC \sim \triangle ADE$

1. (b) :
$$\triangle ABC \sim \triangle ADE$$

$$\Rightarrow \frac{\text{area of } \Delta ADE}{\text{area of } \Delta ABC} = \left(\frac{DE}{BC}\right)^2$$

$$\Rightarrow \frac{4}{4+5} = \left(\frac{DE}{BC}\right)^2$$

$$\Rightarrow DE:BC=2:3$$

$$\Rightarrow \frac{EG}{GC} = \frac{EF}{CD}$$

$$\triangle EGF \sim CGD$$

$$\Rightarrow \frac{EG}{CG} = \frac{EF}{CD} \Rightarrow \frac{5}{10} = \frac{EF}{18}$$

$$\Rightarrow EF = 9 \text{ cm}$$

$$EC = \frac{EF}{AC} \Rightarrow \frac{15}{AC} = \frac{9}{15}$$

$$\Rightarrow AC = \frac{15 \times 15}{9} = 25 \text{ cm}$$

3. (a)
$$\therefore \angle ABD = \angle PQD = 90^{\circ}$$

$$\Rightarrow \quad \frac{x}{z} = \frac{BD}{QD}$$

$$\therefore \angle CDB = \angle PQB = 90^{\circ}$$

$$\therefore \quad \Delta BCD \sim \Delta BPQ$$

$$\Rightarrow \frac{z}{y} = \frac{BQ}{BD} \Rightarrow \frac{z}{y} = \frac{BD - QD}{BD} \Rightarrow \frac{z}{y} = 1 - \frac{QD}{BD}$$

$$\Rightarrow \frac{z}{y} = 1 - \frac{z}{x} \Rightarrow \frac{z}{x} + \frac{z}{y} = 1 \Rightarrow \frac{1}{x} + \frac{1}{y} = \frac{1}{z}$$

$$QP^2 = (5)^2 - (4)^2 \implies QP = 3$$

Since sides of $\triangle ABC$ are also 3 cm, 4 cm, 5 cm therefore the two triangles are congruent.

- (c) Ratio of medians of two equilateral triangle =
- 6. (c) All the centres in, an equilateral triangle are coincident, so centroid and orthocentre are also coincident

$$\therefore OA = \frac{2}{9}AD, OD = \frac{7}{9}AD$$

We know that centroid divides median in the ratio 2:1, Therefore, $AG = \frac{2}{3}AD$, $GD = \frac{1}{3}AD$

(A)
$$OA = \frac{2}{9}AD$$

$$OA = \left(2 \cdot \frac{1}{3} AD\right) \frac{1}{3}$$

$$= (2GD) \frac{1}{3} = \frac{2GD}{3}$$
 [from (i)]

(R)
$$OD = \frac{7}{9}AD = \left(7 \cdot \frac{2}{3}AD\right) \cdot \frac{1}{3 \times 2} = \frac{7AG}{6}$$

In $\triangle ABD$,

$$AB^2 > AD^2$$

... (i)

In ABEC,

$$BC^2 > BE^2$$

... (ii)

In $\triangle ACF$,

$$AC^2 > CF^2$$

... (iii)

adding (i), (ii) and (iii)

$$(AB^2 + BC^2 + AC^2) > (AD^2 + BE^2 + CF^2)$$

Now (R),
$$(AE^2 - AF^2) + (BF^2 - BD^2) + (CD^2 - CE^2)$$

= $(OA^2 - OE^2) - (OA^2 - OF^2) + (OB^2 - OF^2)$

$$-(OB^2 - OD^2) + (OC^2 - OD^2) - (OC^2 - OE^2)$$

Both (A) and (R) ave correct but (R), (A) is not the correct explanation of (A).

= 0

$$CD = CX$$
 (given)

$$\angle 3 = \angle 4$$
 (opposite angles of equal sides)

but,
$$\angle 3 = \angle 5$$

Hence,
$$\angle 4 = \angle 5$$

In $\triangle ABD$ and $\triangle ACX$,

$$\angle 1 = \angle 2$$
 (given)

$$4 = 45$$

$$\triangle ABD \sim \Delta ACX \ (A-A \ condition)$$

In the plane of the triangle circumcentre is the only point which is equidistant from all the three vertices of the triangle.

equidistant

$$ABCD$$
, $ABCD$, $ABCD = \frac{A+B}{2}$
 $ABC = \frac{B}{2}$, $ABCD = \frac{A+B}{2}$
 $ABDC = \pi - \frac{B}{2} - \frac{A+B}{2}$
 $ABDC = \pi - \frac{A}{2} - B$

Given,
$$CD = BD = DA$$
It is possible only when $\triangle ABC$ is a right angled triangle.

triangle.

$$AB = 2a \implies AM = a$$

and $AC = CM = BD = MD = \frac{a}{2}$
 $AB = 2a \implies AM = a$

and $AC = CM = BD = MD = \frac{a}{2}$
 $AB = 2a \implies AM = a$
 AB

 ΔOCD is an isosceles triangle and M is mid point of CD

(::
$$OC = OD$$
)

$$\Rightarrow \angle OMC = 90^{\circ}$$
In $\triangle OMC$, $OC^2 = OM^2 + CM^2$

In
$$\triangle OMC$$
, $\bigcirc C = CM$

$$\Rightarrow \left(r + \frac{a}{2}\right)^2 = (a - r)^2 + \left(\frac{a}{2}\right)^2$$

 $\Rightarrow r = \frac{a}{2}$ 14. (b) Point of concurrency of altitudes of a triangle is called orthocentre

24. (b) See the figure, Δ will be divided into 6 equal parts.

Area of quadrilateral $BDOF = 2 \times \text{area of } \Delta OAE$

$$= 2 \times 15 = 30 \text{ cm}^2$$

25. (b) In ΔPQR,

$$\angle QPR = \frac{1}{2} \angle QCR = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$$

$$\angle PQR = \angle PQS = 60^{\circ}$$
 (given)

$$\therefore \angle PRQ = 180^{\circ} - 65^{\circ} - 60^{\circ} = 55^{\circ}$$

· O is the orthocentre

Thus in $\triangle PSR$

$$\angle RPS = 180^{\circ} - 90^{\circ} - \angle PRS$$

= $180^{\circ} - 90^{\circ} - 55^{\circ}$
= 35°

$$= 180^{\circ} - 90^{\circ} - 55^{\circ}$$
 (:: $\angle PRS = \angle PRQ = 90^{\circ}$)

$$\therefore$$
 $\angle RPS = 35^{\circ}$

26. (c)
$$\angle BOD = \frac{1}{2} \times \angle BOC = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

27. (a)
$$\angle B = 180^{\circ} - 75^{\circ} - 85^{\circ} = 20^{\circ}$$

 $\therefore \angle OAC = 2 \angle B = 40^{\circ}$

28. (c) In $\triangle ODE$ and $\triangle BOC$,

$$\angle BOC = \angle DOE$$

$$\angle DEO = \angle OBC$$

Both triangles are similar.

$$\frac{\triangle ODE}{\triangle BOC} = \frac{DE^2}{BC^2}$$

$$DE \mid \mid BC \text{ and } DE = \frac{1}{2}BC$$

$$\therefore \quad \frac{\triangle ODE}{\triangle ABC} = \frac{\triangle ODE}{3 \times \triangle BOC} = \frac{1}{3} \cdot \frac{DE^2}{BC^2} = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$$

29. (c) BO is bisector of $\angle B$

$$\angle ODB = 90^{\circ};$$

$$\angle BOD = 15^{\circ}$$

$$\angle OBD = 180^{\circ} - 90^{\circ} - 15^{\circ} = 75^{\circ}$$

$$\angle ABC = 2 \times 75^{\circ} = 150^{\circ}$$

30. (d) In an equilateral triangle ratio or circumradius is 1:2.

circumradius = 6 cm
Circumradius = 6 cm
Length of each median =
$$3 + 6 = 9$$
 cm

. Length of each
$$\frac{A}{2}$$

:. Length of each
$$A = 90^{\circ} + \frac{A}{2}$$
31. (b) Shortcut: $\angle BIC = 90^{\circ} + \frac{A}{2}$

$$= 90^{\circ} + \frac{180^{\circ} - B - C}{2}$$

$$= 90^{\circ} + \frac{180^{\circ} - 60^{\circ} - 50^{\circ}}{2}$$

$$= 90^{\circ} + 35^{\circ} = 125^{\circ}$$

32. (b) Shortcut:

$$\angle BOC = 90^{\circ} + \frac{A}{2}$$

$$\Rightarrow 110^\circ = 90^\circ + \frac{A}{2}$$

$$\Rightarrow A = 40^{\circ}$$

40

4

 $\Rightarrow A = 40^{\circ}$ 33. (c) Note that except incentre all the three centres are in a line.

33. (c) Note that except files and (G) and circumcentre (O) always lie 34. (b) The orthocentre (P), centroid (G) and circumcentre (O) always lie on a straight line and PG:GO=2:1. As in question PO = 6 cm

$$OG = \frac{1}{3} \times 6 = 2 \text{ cm}$$

35. (c) In an obtused angled triangle circumcentre and orthocentre always lie outside the circle.

 $\therefore OA = OB = OC = radius = \frac{BC}{2} = \frac{hypotenuse}{2}$ 37. (a) If P be orthocentre, G be centroid, O be circumcentre then $\frac{PG}{OG} = \frac{2}{1}$

But in right angled triangle $OP = \frac{\text{hypotenuse}}{2} = \frac{15}{2} \text{ cm}$

:
$$PG = \frac{2}{3} \text{ OP} = \frac{2}{3} \times \frac{15}{2} = 5 \text{ cm}$$

38. (b) In figure, $\angle A = 90^{\circ}$, $\angle B = \angle C = 45^{\circ}$ CD, is bisector of non right angle C.

We have
$$\frac{AD}{DB} = \frac{AC}{BC} = \frac{k}{\sqrt{k^2 + k^2}} = \frac{1}{\sqrt{2}}$$

Hence,
$$\frac{\text{Area } \triangle ACD}{\text{Area } \triangle ABD} = \frac{\frac{1}{2} \times AD \times \text{height}}{\frac{1}{2} \times DB \times \text{height}}$$

= $\frac{AD}{DB}$, (height of both triangles are equal) = 1: $\sqrt{2}$

Centre of Triangle

215

$$0^2 + 40^2 = 41$$

(d) $9^2 + 40^2 = 41^2$ ABC is a right angled triangle with $\angle C = 90^{\circ}$ See the figure,

AD is bisector of $\angle A$.

$$\frac{CD}{BD} = \frac{AC}{AB} = \frac{40}{41} \Rightarrow CD = 40k, BD = 41k$$

Area
$$\triangle ABD$$

$$Area \triangle ABC = \frac{\frac{1}{2} \times BD \times AC}{\frac{1}{2} \times BC \times AC}$$

$$= \frac{BD}{BC} = \frac{41k}{40k + 41k} = \frac{41}{81}$$

41 k D

40. (a)
$$BD:DC = \frac{AB}{AC} = \frac{5}{7}$$

41. (d)
$$\frac{AE}{CE} = \frac{AB}{BC} = \frac{5}{6}$$

$$AE = \frac{5}{5+6} \times 7 = \frac{35}{11} \text{ cm}$$

(d) Recall that
$$\frac{CI}{IF} = \frac{CA + CB}{AB} = \frac{7+6}{5} = \frac{13}{5}$$

43. (d) The two triangles mentioned in the questions have centroid at the same point.

same point.
41. (b)
$$9^2 + 12^2 = 81 + 144 = 225 = 15^2$$

. 9, 12 and 15 are sides of a right angled triangle.

Area of triangle = $\frac{4}{3}$ (Area of triangle formed by taking medians as side of the triangle)

$$= \frac{4}{3} \times \left(\frac{1}{2} \times 9 \times 12\right) = 4 \times 9 \times 2 = 72 \text{ cm}^2$$

45. (b) Let in $\triangle ABC$, $\angle C = 90^{\circ}$, AC = BC = x

then
$$AB = \sqrt{x^2 + x^2} = \sqrt{2}x$$

$$\frac{CI}{IF} = \frac{CA + CB}{AB} = \frac{x + x}{\sqrt{2}x} = \frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{1} \text{ (here, } CF \perp rAB)$$

$$\therefore \frac{\text{area } \triangle AIB}{\text{area } \triangle ABC} = \frac{\frac{1}{2} \times IF \times AB}{\frac{1}{2} \times CF \times AB}$$

$$=\frac{IF}{CF}=\frac{IF}{CI+IF}=\frac{1}{\sqrt{2}+1}$$

$$= \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \sqrt{2}-1$$

Remaining area = area of ($\triangle CIA$) + area of ($\triangle CID$) = 1 - ($\sqrt{2}$ -1).

By symmetry area of $\triangle CIA = \text{area of } \triangle CIB = \frac{2-\sqrt{2}}{2}$

46. (a) See the solution of question no. 45.

47. (c) Required ratio =
$$\frac{\frac{1}{4} \times \frac{1}{4}}{1} = \frac{1}{16}$$

48. (b)
$$AD = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

= $\frac{1}{2}\sqrt{2(6)^2 + 2(4)^2 - 7^2} = \frac{1}{2}\sqrt{72 + 32 - 49} = \frac{1}{2}\sqrt{55}$

49. (d)
$$BD = \frac{ac}{b+c} = \frac{7 \times 4}{6+4} = \frac{28}{10} = \frac{14}{5}$$

50. (c)
$$BD = \frac{AB^2 + BC^2 - AC^2}{2BC} = \frac{c^2 + a^2 - b^2}{2a} = \frac{4^2 + 7^2 - 6^2}{2 \times 7} = \frac{29}{14}$$

51. (a) From above question,
$$BD = \frac{29}{14}$$

and
$$CD = \frac{b^2 + a^2 - c^2}{2a} = \frac{36 + 49 - 14}{2 \times 7} = \frac{69}{14}$$

:.
$$BD : DC = 29 : 69$$

52. (d)
$$r = \frac{\Delta}{s} = \frac{81}{27} = 3 \text{ cm}$$

:. Area =
$$\pi r^2 = \pi (3)^2 = 9\pi \text{ cm}^2$$

53. (c) Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{9 \times 4 \times 3 \times 2} = 6\sqrt{6} \text{ cm}^2 \qquad (\because s = \frac{5+6+7}{2})$$

$$= \frac{abc}{2} = \frac{5 \times 6 \times 7}{35} \qquad 35$$

$$\therefore R = \frac{abc}{4\Delta} = \frac{5 \times 6 \times 7}{4 \times 6\sqrt{6}} = \frac{35}{4\sqrt{6}} \text{ cm}$$

54. (a)
$$\cdot \cdot \cdot 6^2 + 8^2 = 10^2$$

Given triangle is right angled.

Hypotenuse = diameter of circumcircle

or,
$$10 = 2r$$

$$\Rightarrow r=5$$

55. (b) Given triangle is a right angled triangle. If radius of its incircle is and that of circumcircle is R then

$$2(r+R)=a+b,$$

(where a and b are perpendicular sides)

or,
$$2(r+R) = 8+15=23$$

or,
$$r + R = \frac{23}{2} = 11.5 \text{ cm}$$

$$9^2 + 40^2 = 81 + 1600 = 1681 = 41^2$$

Given triangle is right angled.

If AB = 9, AC = 40 and BC = 41 then A is orthocentre and mid point of hypotenuse BC is circumcentre of the triangle.

is circumcentre of the triangle.

$$AM = BM = CM = \text{radius of circumcircle.}$$
 $AM = BM = CM = \text{radius of circumcircle.}$

$$AM = BNI = 0$$

 $AM = \frac{41}{2} = 20.5 \text{ cm}$
or $AM = \frac{41}{2} = b = 5k$

$$b = 5k, \quad c = 6k,$$

$$s = \frac{4k + 5k + 6k}{2} = \frac{15k}{2}$$

or,
$$AM = \frac{41}{2} = 20.5 \text{ cm}$$

or, $AM = \frac{41}{2} = 20.5 \text{ cm}$
 $b = 5k$, $c = 6k$, $s = \frac{4k + 5k + 6k}{2} = \frac{15k}{2}$
 $\frac{R}{r} = \frac{\left(\frac{abc}{4\Delta}\right)}{\left(\frac{\Delta}{s}\right)} = \frac{abcs}{4\Delta^2} = \frac{abcs}{4s(s-a)(s-b)(s-c)}$

$$= \frac{abc}{4(s-a)(s-b)(s-c)} = \frac{(4k)(5k)(6k)}{4\left(\frac{7k}{2}\right)\left(\frac{5k}{2}\right)\left(\frac{3k}{2}\right)}$$

$$=\frac{4 \times 5 \times 6 \times 8}{4 \times 7 \times 5 \times 3} = \frac{6 \times 8}{7 \times 3} = \frac{16}{7}$$

- 58. (b) Least odd prime number = 3 = smallest side
 - Greatest side = $2 \times 3 + 2 = 8$ and middle side = 8 1 = 7Now, solve as in above questions.
- 59. (d) Given triangle is a right angled triangle.

(d) Given
$$a = \sqrt{3^2 + 4^2} = 5 = 2R \implies R = \frac{5}{2}$$

$$r = \frac{\Delta}{s} = \frac{\frac{1}{2} \cdot bc}{\frac{a+b+c}{2}} = \frac{bc}{a+b+c} = \frac{3 \times 4}{3+4+5} = 1$$

$$R: r = 5: 2$$

60. (c) Distance between incentre and circumcentre = $\sqrt{R^2 - 2Rr}$ From above question $R = \frac{5}{2}$ and r = 1

Required distance =
$$\left(\frac{5}{2}\right)^2 - 2 \times \frac{5}{2} \times 1 = \sqrt{\frac{25}{4} - 5} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}$$
 cm

61. (a) Required ratio is $1:\sqrt{2}:\sqrt{3}$. Learn it and try to prove it.

Exercise—6B

- 1. $\ln \triangle ABC$, AD is the median and $AD = \frac{1}{2}BC$. If $\angle BAD = 30^\circ$, then measure of LACB is (d) 45° (c) 90°
 - (a) 30°
- (b) 60°
- [SSC: Tier-I 2012]

Je B

The state of the s	e centroid	- of ABDG	is		Of AAR
72 cm²,	then the a	rea of ABDG	(c)	24 cm ²	rans of AABC with
					(d) o
()					(d) 8 cm ²
* WC	ilim	id and AD b	e a medi	an with I	ength 12 cm of data
3. If G is	the centro	AC is			The Carlo
then th	e value of	70 10	(c)	10 cm	الم الم
(a) 4 c	m	(b) 8 cm	(-,		(d) 6 cm
			1 - A D	7 IC / PO	C = 120°, then (BAC)
4. O is th	e orthocen	tre of the tria	ngle Abo	1250	C = 120° th
(2) 15	000	(b) 60°	(c)	135°	(d) one (b)
(a) 13					100
		AARC is O. If	LBAC =	85°, ∠BC	A = 80°, then 20AC
5. Circui	mcentre of	(P) 30°	(c)	60°	(d) then (n)
(a) 80)°	(0) 30			(a) 120 -040
					ISSC To
6. The	length of th	ne circum-rac	ius of a	triangle h	ISSC Tierland aving sides of length
12 cm	n, 16 cm and	d 20 cm is		Variable of the second	of length
	5 cm	(b) 10 cm	(c)	18 cm	(d) 16 cm
08.170,800					ISSC
7. If D	is the mid-	point of the s	ide BC of	ΔABC ar	ISSC Tierland the area of
7. HD	n2 than the	area of $\triangle ABC$	is		$SSCT_{ler-l}$ ind the area of ΔABD_{l}
	16 cm ²	(b) 24 cm ²	(c)	32 cm^2	(4)
27.72		M. Chi.			(d) 48 cm ²
N ABC	St belance	I. The media	ne CD ar	d Dr :	ISSC Tier-I 2010 ersect each other at 0
a. ABC	is a triang	APC :-	ins CD ar	id be inte	ersect each other
(a)	1:3	(b) 1:4	(c)	1:6	(d) 1:12
					Icca-
9. AB	is a diamet	er of the circ	umcircle	of $\triangle APB$	
			e point P	on AB . If A	; N is the foot of $P = 8 \text{ cm}$ and $BP = 60$
		of BN is			$= 6 \mathrm{cm} \mathrm{and} BP = 6 \mathrm{cm} $
(a)	3-6 cm	(b) 3 cm	(c)	3.4 cm	(1)
					(d) 3.5 cm
10. The	bisector of	LA of AABC	cute RC	. D .	[SSC Tier-120
tria	ngle at E. T	hen	cuto DC	at D and	(SSC Tier-120) the circumcircle of t
(a)	AB:AC=	BD : DC			
(c)	AB:AD =	AC : AF	(b)	AD: AC	= AE : AB
			(d)	AB:AD	= AE : AC
	the centre	of the circl			[SSC Tier-120
11. O is	/RAO	0° (PCO	assing thr	ough the	points A, B and C su
11. O is that	LDAU = 3		and		r Janua 11, D and C st
11. O is that (a)	70°	(b) 1400			What is the value of
		(b) 140°	(c)	210°	(d) 2000
12. In a	in obtuse a	(b) 140°	(c)	210°	(d) 2000
12. In a	in obtuse a	(b) 140°	(c)	210°	(d) 2000
12. In a	in obtuse a	ngled triangle $\angle BOC = 54^{\circ}$	(c)	210°	(d) 2000
12. In a	in obtuse a	(b) 140°	(c) ABC, ∠A then ∠BA	210°	vnat is the value of

Let BE and CF be the two medians of a $\triangle ABC$ and G be their intersection.

Let BE and CF be the two medians of a $\triangle ABC$ and G be their intersection.

Let BE and CF be the two medians of a $\triangle ABC$ and G be their intersection.

Let BE and CF be the two medians of a $\triangle ABC$ and G be their intersection.

Let BE and CF be the two medians of a $\triangle ABC$ and G be their intersection. Let BE and C AG at O. Then AO: OG is

Also let EF cut AG at O: 1:2 [SSC Tier-1 2012]

[SSC Tier-1 2012] [SSC Tier-1 20]

[SSC Tier-I 2012]

Ois the circum centre of the triangle ABC with circumradius 13 cm. Let Ois the circum and OD is perpendicular to BC. Then the length of OD

(b) 4 cm Ois the circum and OD is perpendicular to BC. Then the length of OD is BC = 24 cm and (b) 4 cm (c) 5 cm (d) 7 (a) 3 cm [SSC Tier-I 2012]

If G is the centroid of $\triangle ABC$ and AG = BC then $\angle BGC$ is (b) 90° (c) 60°

The three medians AD, BE and CF of $\triangle ABC$ intersect at point G. If the major $\triangle ABC$ is 60 sq. cm then the area of the quadrilatoral BD CT. The three lines area of the quadrilateral BDGF is area of $\triangle ABC$ is 60 sq. cm (c) 30 sq. cm (b) 20 sq. cm (a) 15 sq. cm [SSC Tier-I 2012]

19. In a $\triangle ABC$, $\angle B = 90^\circ$, $\angle C = 45^\circ$ and D is mid point of AC. If $AC = 4\sqrt{2}$ unit then BD is

(a) $\frac{5}{2}$ unit

(b) 2 unit

(c) $2\sqrt{2}$ unit

(d) $4\sqrt{2}$ unit [SSC Tier-I 2012]

Answers-6B

8. (d) 7. (c) 5. (d) 6. (b) 4. (b) 3. (b) 2. (a) 1. (b) 16. (c) 15. (b) 14. (b) 13. (d) 12. (b) 11. (b) 9. (a) 10. (a) 17. (b) 18. (b) 19. (c)

Exaplanation

1. (b) $AD = \frac{1}{2}BC \Rightarrow AD = CD = BD$ In $\triangle ABD$, $AD = BD \Rightarrow \angle ABD = \angle BAD$ or, $\angle ABD = 30^{\circ}$ $\therefore LADB = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$ 60° And $\angle ADC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ But, $AD = CD \implies \angle ACD = \angle DAC$ \Rightarrow $\angle ACD + \angle DAC = 180^{\circ} - 60^{\circ} = 120^{\circ}$

120° - 60° = / ACB Scanned by CamScanner

2. (a) If G be the centroid of the triangle area of
$$\triangle BGC = \frac{1}{3}$$
 (area of $\triangle ABC$)

$$=\frac{1}{3} \times 72 = 24 \text{ cm}^2$$

$$= 3$$
∴ area of ΔBGD = $\frac{1}{2}$ × area of ΔBGC
$$= \frac{1}{2} \times 24 \text{ cm}^2 = 12 \text{ cm}^2$$

(b) $AG = \frac{2}{3} \times AD = \frac{2}{3} \times 12 = 8 \text{ cm}$

(b) In figure AD, BE and CF are altitudes In $\triangle BFC$, $\angle BCF = 90^{\circ} - B$ In $\triangle BEC$, $\angle CBE = 90^{\circ} - C$

or,
$$B + C = 120^{\circ}$$

$$\therefore \angle A = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

5. (d)
$$\angle ABC = 180^{\circ} - 80^{\circ} - 85^{\circ} = 15^{\circ}$$

$$\therefore \ \ \angle OCA = \theta \qquad \qquad (\because \ OA = OC = radius)$$

$$\therefore \quad \theta + \theta + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow \theta = 75^{\circ}$$

6. **(b)** ::
$$12^2 + 16^2 = 20^2$$

.. This is a right angled triangle. The diameter of the circumcircle of the triangle is hypotenus of the triangle (Recall that angle of semicircle is right angle)

$$\therefore \text{ Circumradius} = \frac{\text{hypotenuse}}{2} = \frac{20}{2} = 10 \text{ cm}$$

7. (c) Area of
$$\triangle ABC = 2 \times \text{Area of } \triangle ABD = 2 \times 16 = 32 \text{ cm}^2$$
(Recall that medians divides the second of the second of

DEF formed by mid points D, E, $F = \frac{1}{4} \times (Area of \Delta ABC)$

Centroid O is also the centroid of
$$\Delta DEF$$
.
 \therefore Area of $\Delta DOE = \frac{1}{3} \times (\text{Area of } \Delta DEF)$

$$= \frac{1}{3} \times \left(\frac{1}{4} \text{Area of } \Delta ABC\right)$$
$$= \frac{1}{12} \times \text{Area of } \Delta ABC$$

1

1

Thus triangle is right angled.

(a) Thus trians
$$(2+8^2=10)$$

Thus triangle 10 Thus

Thus triangle 10 Thus

Thus

Thus

$$AB = \sqrt{6^2 + 8^2} = 10$$

Area of the triangle $\frac{1}{2} \times AP \times BP = \frac{1}{2} \times PN \times AB$

1. PN × 10

Area of the trace 2
$$\frac{1}{2} \times 8 \times 6 = \frac{1}{2} \times PN \times 10$$
or $\frac{1}{2} \times 8 \times 6 = \frac{1}{2} \times PN \times 10$

or.
$$\frac{2}{10} = \frac{48}{10} = \frac{24}{5}$$

or,
$$PN = \sqrt{PB^2 - (PN)^2}$$

$$= \sqrt{6^2 - \left(\frac{24}{5}\right)^2} = \frac{\sqrt{30^2 - 24^2}}{5} = \frac{18}{5} = 3.6$$

then
$$\frac{AB}{AC} = \frac{BD}{DC}$$

(It is very important property, learn it)

$$\therefore \angle OBA = \angle OAB = 30^{\circ}$$

$$\therefore 20BA = 20^{\circ}$$
and $\angle AOB = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$

Similarly in AOBC,

$$\angle BOC = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$$

From figure,
$$\angle AOC = 360^{\circ} - \angle AOB - \angle BOC$$

$$=360^{\circ}-120^{\circ}-100^{\circ}=140^{\circ}$$

Concentrate on Quadrilateral AFOE,

Here,
$$\angle AFO = 90^{\circ}$$
, $\angle AEO = 90^{\circ}$

and
$$\angle EOF = \angle BOC = 54^{\circ}$$

$$\therefore$$
 $\angle FAE = 360^{\circ} - 90^{\circ} - 90^{\circ} - 54^{\circ} = 126^{\circ}$

From vertically opposite angle, $\angle BAC = \angle FAE = 126^{\circ}$

13. (d)
$$\triangle AOE \sim \triangle ADC$$
 (: FEIIBC $\Rightarrow \angle AEO = \angle ACD$)

$$\frac{AO}{AD} = \frac{AE}{AC} = \frac{1}{2}$$

 $(\cdot, \cdot E \text{ is mid point of } AC)$

But
$$\frac{AG}{AD} = \frac{2}{3}$$

7

t

$$\Rightarrow$$
 4AO = 3AG

$$\Rightarrow$$
 4AO = 3 (AO + OG)

$$\Rightarrow AO = 3OG$$

$$\therefore \quad \frac{AO}{OG} = \frac{3}{1}$$

 $\therefore \frac{AO}{OG} = \frac{3}{1}$ [Shortcut: O is mid point of AD. Take help of this fact to solve the question of AD.

14. (b)
$$\angle BSC = 2 \times 50^{\circ} = 100^{\circ}$$

$$\therefore$$
 $\angle SBC = \angle SCB$

$$\therefore \quad \text{In } \Delta BSE \\ 100^{\circ} + 2 \angle BCS = 180^{\circ}$$

$$\Rightarrow \angle BCS = \frac{80^{\circ}}{2} = 40^{\circ}$$

15. (b)
$$\angle BIC = 180^{\circ} - \frac{B}{2} - \frac{C}{2}$$

 $= 180^{\circ} - \left(\frac{B+C}{2}\right) = 180^{\circ} - \left(\frac{180^{\circ} - A}{2}\right)$
 $= 90^{\circ} + \frac{A}{2}$ (shortcut, learn it direct)
 $= 90^{\circ} + \frac{60^{\circ}}{2} = 120^{\circ}$

16. (c) See the figure

$$OD = \sqrt{OB^2 - BD^2} = \sqrt{169 - 144} = \sqrt{25} = 5$$

17. (b)
$$\therefore GD = \frac{1}{2}AG$$

 $\therefore GD = \frac{1}{2}BC$

or,
$$GD = CD$$
 and $GD = BD$

$$\angle DGC = \angle DCG = \theta \text{ (See the figure)}$$

$$\angle DBG = \angle BGD = \alpha \text{ (See the figure)}$$
In ABCC

In ΔBGC,

$$\alpha + \alpha + \theta + \theta = 180$$

or,
$$\alpha + \theta = 90^{\circ} = \angle BGC$$

= Area of (ΔBDG) + Area of (ΔBGF)

= $\frac{1}{2}$ Area of (ΔBGC) + Area of (ΔABG)

$$= \frac{1}{2} \left(\frac{1}{3} \times 60 + \frac{1}{3} \times 60 \right) = 20 \text{ cm}^2.$$

19. (c) AABC lies on the semicircle whose centre is D.

$$BD = CD = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$$

we we handspectory, - year"