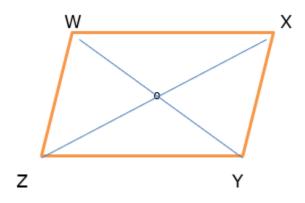
Quadrilaterals

Practice set 5.1

Q. 1. Diagonals of a parallelogram WXYZ intersect each other at point O. If \angle XYZ = 135° then what is the measure of \angle XWZ and \angle YZW? If I(OY)= 5 cm then I(WY)=?

Answer:



Given ZX and WY are the diagonals of the parallelogram

 \angle XYZ = 135° \Rightarrow \angle XWZ = 135° as the opposite angels of a parallelogram are congruent.

 \angle YZW + \angle XWZ = 180° as the adjacent angels of the parallelogram are supplementary.

$$\Rightarrow \angle YZW = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

Length of OY = 5 cm then length of WY = WO + OY = 5+5 = 10 cm

(diagonals of the parallelogram bisect each other. So, O is midpoint of WY)

Q. 2. In a parallelogram ABCD, If $\angle A = (3x + 12)^\circ$, $\angle B = (2x - 32)^\circ$ then find the value of x and then find the measures of $\angle C$ and $\angle D$.

Answer:

$$\angle A = (3x + 12)^{\circ}$$

$$\angle B = (2x - 32)^{\circ}$$

 $\angle A + \angle B = 180^{\circ}$ (supplementary angles of the ||gram)

$$(3x +12) + (2x -32) = 180$$

$$5x - 20 = 180^{\circ}$$

$$5x = 200^{\circ}$$

$$\therefore x = 40^{\circ}$$

$$\angle A = (3 \times 40) + 12 = 120 + 12$$

= 132 $\Rightarrow \angle C = 132^{\circ}$ (opposite \angle s are congruent)

Similarly, $\angle B = 2 \times 40 - 32$

$$= 80 - 32^{\circ}$$

$$=48^{\circ}$$

$$\Rightarrow$$
 \angle D = 48°(opposite \angle s are congruent)

Q. 3. Perimeter of a parallelogram is 150 cm. One of its sides is greater than the other side by 25 cm. Find the lengths of all sides.

Answer: perimeter of parallelogram = 150cm

Let the one side of parallelogram be x cm then

Acc. To the given condition

Other side is (x+25) cm

Perimeter of parallelogram = 2(a+b)

$$150 = 2(x+x+25)$$

$$150 = 2(2x+25)$$

$$\frac{75 - 25}{2} = x \Rightarrow 25$$

One side is 25cm and the other side is 50cm.

Q. 4. If the ratio of measures of two adjacent angles of a parallelogram is 1 : 2, find the measures of all angles of the parallelogram.

Answer : Given that the ratio of measures of two adjacent angles of a parallelogram= 1 : 2

If one \angle is x other would be 180 – x as the adjacent \angle s of a parallelogram are supplementary.

$$\frac{x}{180 - x} = \frac{1}{2} \Rightarrow 2x = 180 - x \Rightarrow x = 60^{\circ}$$

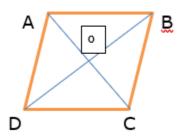
Other ∠ is 120°.

The measure of all the angles are 60 °, 120 °, 60 ° and 120 ° where 60 ° and 120 ° are adjacent \angle s and 60 ° and 60 ° are congruent opposite angles.

Q. 5. Diagonals of a parallelogram intersect each other at point O. If AO = 5, BO = 12 and AB = 13 then show that $\square ABCD$ is a rhombus.

Answer:

The figure is given below:



Given AO =5, BO = 12 and AB = 13

In \triangle AOB, AO² + BO² = AB²

$$: 5^2 + 12^2 = 13^2$$

$$25^2 + 144^2 = 169^2$$

so by the Pythagoras theorem

 \triangle AOB is right angled at \angle AOB.

But \angle AOB + \angle AOD forms a linear pair so the given parallelogram is rhombus whose diagonal bisects each other at 90°.

Q. 6. In the figure 5.12, \Box PQRS and \Box ABCR are two parallelograms. If \angle P = 110°then find the measures of all angles of \Box ABCR.

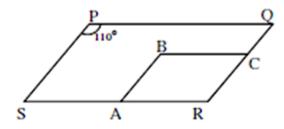


Fig. 5.12

Answer: given PQRS and ABCR are two ||gram.

$$\angle P = 110^{\circ} \Rightarrow \angle R = 110^{\circ}$$

(opposite ∠s of parallelogram are congruent)

Now if ,
$$\angle R = 110^{\circ} \Rightarrow \angle B = 110^{\circ}$$

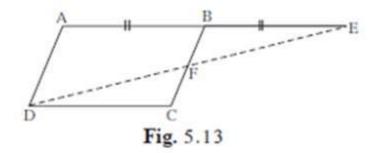
$$\angle B + \angle A = 180^{\circ}$$

(adjacent ∠s of a parallelogram are supplementary)

$$\Rightarrow \angle A = 70^{\circ} \Rightarrow \angle C = 70^{\circ}$$

(opposite ∠s of parallelogram are congruent)

Q. 7. In figure 5.13 □ABCD is a parallelogram. Point E is on the ray AB such that BE = AB then prove that line ED bisects seg BC at point F.



Answer : Given, □ABCD is a parallelogram

And BE = AB

But AB = DC (opposite sides of the parallelogram are equal and parallel)

 \Rightarrow DC = BE

In Δ BEF and ∠DCF

 $\angle DFC = \angle BFE$ (vertically opposite angles)

∠DFC = ∠ BFE (alternate ∠s on the transversal BC with AB and DC as ||)

And BE = AB (given)

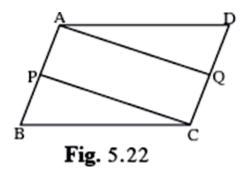
 \triangle BEF $\cong \angle$ DCF (by AAS criterion)

⇒ BF =FC (corresponding parts of the congruent triangles)

⇒ F is mid-point of the line BC. Hence proved.

Practice set 5.2

Q. 1. In figure 5.22, \square ABCD is a parallelogram, P and Q are midpoints of side AB and DC respectively, then prove \square APCQ is a parallelogram.



Answer : Given AB || to DC and AB = DC as ABCD is ||gram.

 \Rightarrow AP ||CQ (parts of || sides are ||) & 1/2 AB = 1/2 DC

 \Rightarrow AP = QC (P and Q are midpoint of AB and DC respectively)

 \Rightarrow AP = PB and DQ = QC

Hence APCQ is a parallelogram as the pair of opposite sides is = and \parallel .

Q. 2. Using opposite angles test for parallelogram, prove that every rectangle is a parallelogram.

Answer : Opposite angle property of parallelogram says that the opposite angles of a parallelogram are congruent.

Given a rectangle which had at least one angle as 90°.

If \angle A is 90° and AD = BC (opposite sides of rectangle are \parallel and =)

AB is transversal

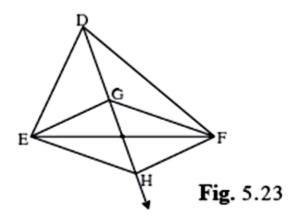
 \Rightarrow \angle A + \angle B = 180 (angles on the same side of transversal is 180°)

But $\angle B + \angle C$ is 180 (AD \parallel BC, opposite sides of rectangle)

$$\Rightarrow$$
 \angle A = \angle C = 90°

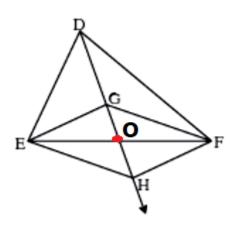
Since opposite ∠s are equal this rectangle is a parallelogram too.

Q. 3. In figure 5.23, G is the point of concurrence of medians of ΔDEF . Take point H on ray DG such that D-G-H and DG = GH, then prove that $\Box GEHF$ is a parallelogram.



Answer : Given G is the point of concurrence of medians of Δ DEF so the medians are divided in the ratio of 2:1 at the point of concurrence. Let O be the point of intersection of GH AND EF.

The figure is shown below:



$$\Rightarrow$$
 DG = 2 GO

But DG = GH

$$\Rightarrow$$
 2 GO = GH

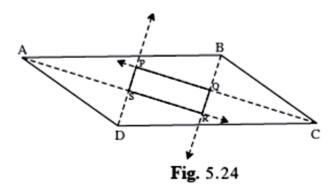
Also DO is the median for side EF.

$$\Rightarrow$$
 EO = OF

Since the two diagonals bisects each other

⇒ GEHF is a ∥gram.

Q. 4. Prove that quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle. (Figure 5.24)



Answer : Given ABCD is a parallelogram

AR bisects ∠BAD, DP bisects ∠ADC, CP bisects ∠BCD and BR bisects ∠CBA

 $\angle BAD + \angle ABC = 180^{\circ}$ (adjacent $\angle s$ of parallelogram are supplementary)

But $1/2 \angle BAD = \angle BAR$

 $1/2 \angle ABC = \angle RBA$

 $\angle BAR + \angle RBA = 1/2 \times 180^{\circ} = 90^{\circ}$

 \Rightarrow \triangle ARB is right angled at \angle R since its acute interior angles are complementary.

Similarly \triangle DPC is right angled at \angle P and

Also in \triangle COB, \angle BOC = 90° $\Rightarrow \angle$ POR = 90° (vertically opposite angles)

Similarly in $\triangle ADS$, $\angle ASD = 90^{\circ} = \angle PSR$ (vertically opposite angles)

Since vertically opposite angles are equal and measures 90° the quadrilateral is a rectangle.

Q. 5. In figure 5.25, if points P, Q, R, S are on the sides of parallelogram such that AP = BQ = CR = DS then prove that $\Box PQRS$ is a parallelogram.

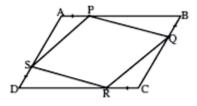


Fig. 5.25

Answer: Given ABCD is a parallelogram so

AD = BC and AD ||BC

and DC = AB and DC ∥ AB

also AP = BQ = CR = DS

 \Rightarrow AS = CQ and PB = DR

in $\triangle APS$ and $\triangle CRQ$

 $\angle A = \angle C$ (opposite $\angle s$ of a parallelogram are congruent)

AS = CQ

AP = CR

 $\triangle APS \cong \triangle CRQ(SAS congruence rule)$

 \Rightarrow PS = RQ (c.p.c.t.)

Similarly PQ= SR

Since both the pair of opposite sides are equal

PQRS is ||gram.

Practice set 5.3

Q. 1. Diagonals of a rectangle ABCD intersect at point O. If AC = 8 cm then find BO and if \angle CAD = 35° then find \angle ACB.

Answer : The diagonals of a rectangle are congruent to each other and bisects each other at the point of intersection so since AC = 8 cm

 \Rightarrow BD = 8 cm and

O is point of intersection so DO = OB = AO = OC = 4 cm

$$\Rightarrow$$
 \angle ACB = 35 °

(since AB \parallel DC and AC is transversal \therefore \angle CAD and \angle ACB are pair of alternate interior angle.)

Q. 2. In a rhombus PQRS if PQ = 7.5 then find QR. If \angle QPS = 75° then find the measure of \angle PQR and \angle SRQ.

Answer: Given quadrilateral is a rhombus.

⇒ all the sides are congruent /equal

$$\Rightarrow$$
 PQ = QR = 7.5

Also
$$\angle QPS = 75^{\circ}$$
 (given)

$$\Rightarrow \angle QPS = 75^{\circ}$$
 (opposite angles are congruent)

But $\angle QPS + \angle PQR = 180^{\circ}$ (adjacent angles are supplementary)

$$\Rightarrow \angle PQR = 105^{\circ}$$

$$\therefore \angle SRQ = 105^{\circ}$$
 (opposite angles)

Q. 3

Diagonals of a square IJKL intersects at point M, Find the measures of ∠IMJ,∠JIK and ∠LJK.

Answer: The given quadrilateral is a square

⇒ all the angles are 90°

Since the diagonals are \perp to each other $\angle IMJ = 90^{\circ}$

Since the diagonals os a square are bisectors of the angles also

$$\angle$$
LJK = \angle IJL = 1/2 × 90° = 45°

Q. 4. Diagonals of a rhombus are 20 cm and 21 cm respectively, then find the side of rhombus and its perimeter.

Answer: Let the diagonal AC = 20cm and BD = 21

$$AB^2 = BO^2 + AO^2$$

$$AB^2 = (10.5)^2 + (10)^2$$

(the diagonals of a rhombus bisect each other at 90°)

$$AB^2 = 110.25 + 100$$

AB =
$$\sqrt{210.25}$$
 = 14.5cm (side of the rhombus)

Perimeter =
$$4a = 14.5 \times 4 = 58$$
cm

Q. 5. State with reasons whether the following statements are 'true' or 'false'.

- (i) Every parallelogram is a rhombus.
- (ii) Every rhombus is a rectangle.
- (iii) Every rectangle is a parallelogram.
- (iv) Every square is a rectangle.
- (v) Every square is a rhombus.
- (vi)Every parallelogram is a rectangle.

Answer: (i) False.

Explanation: Every Parallelogram cannot be the rhombus as the diagonals of a rhombus bisects each other at 90° but this is not the same with every parallelogram. Hence the statement if false.

(ii) False.

Explanation: In a rhombus all the sides are congruent but in a rectangle opposite sides are equal and parallel. Hence the given statement is false.

(iii) True.

Explanation: The statement is true as in a rectangle opposite angles and adjacent angles all are 90°. And for any quadrilateral to be parallelogram the opposites angles should be congruent.

(iv) True.

Explanation: Every square is a rectangle as all the angles of the square at 90°, diagonal bisects each other and are congruent, pair of opposite sides are equal and parallel. Hence every square is a rectangle is true statement.

(v) True.

Explanation: The statement is true as all the test of properties of a rhombus are meet by square that is diagonals are perpendicular bisects each other, opposite sides are parallel to each other and the diagonals bisects the angles.

(vi) False.

Explanation:

Every parallelogram is a rectangle is not true as rectangle has each angle of 90° measure but same is not the case with every parallelogram.

Practice set 5.4

Q. 1. In \Box IJKL, side IJ || side KL \angle I = 108° \angle K = 53° then find the measures of \angle Jand \angle L.

Answer : IJ || KL and IL is transversal

 $\angle I + \angle L = 180^{\circ}$ (adjacent angles on the same side of the transversal)

$$\Rightarrow \angle L = 180^{\circ} - 108^{\circ} = 72^{\circ}$$

Now again IJ ∥ KL and JK is transversal

 $\angle J + \angle K = 180^{\circ}$ (adjacent angles on the same side of the transversal)

$$\Rightarrow \angle K = 180^{\circ} - 53^{\circ} = 127^{\circ}$$

Q. 2. In \Box ABCD, side BC || side AD, side AB \cong sided DC If \angle A = 72° then find the measures of \angle B, and \angle D.

Answer: Given that BC || AD and BC = AD (congruent)

⇒ the quadrilateral is a parallelogram (pair of opposite sides are equal and parallel)

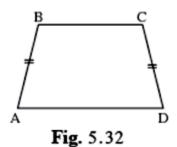
$$\angle A = 72^{\circ}$$

 \Rightarrow \angle C = 72° (opposite angles of parallelogram are congruent)

 $\angle B = 180^{\circ} - 72^{\circ} = 108^{\circ}$ (adjacent angles of a parallelogram are supplementary)

 $\angle D = 108^{\circ}$ (opposite angles of parallelogram are congruent)

Q. 3. In \square ABCD, side BC < side AD (Figure 5.32) side BC || side AD and if side BE \cong side CD then prove that \angle ABC \cong \angle DCB.



Answer: The figure of the question is given below:

Construction: we will draw a segment ∥ to BA meeting BC in E through point D.

Given BC ∥ AD

And AB || ED (construction)

⇒ AB = DE (distance between parallel lines is always same)

Hence ABDE is parallelogram

 \Rightarrow \angle ABE \cong \angle DEC (corresponding angles on the same side of transversal)

And segBA \cong seg DE (opposite sides of a ||gram)

But given $BA \cong CD$

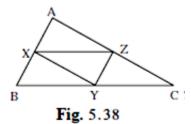
So seg DE \cong seg CD

 $\Rightarrow \angle CED \cong \angle DCE \ (\because \triangle CED \ is isosceles \ with \ CE = CD)$

(Angle opposite to opposite sides are equal)

Practice set 5.5

Q. 1. In figure 5.38, points X, Y, Z are the midpoints of side AB, side BC and side AC of \triangle ABC respectively. AB = 5 cm, AC = 9 cm and BC = 11 cm. Find the length of XY, YZ, XZ.



Answer: Given X, Y and Z is the mid-point of AB, BC and AC.

Length of AB = 5 cm

So length of ZY = $1/2 \times AB = 1/2 \times 5 = 2.5$ cm (line joining mid-point of two sides of a triangle is parallel of the third side and is half of it)

Similarly, $XZ = 1/2 \times BC = 1/2 \times 11 = 5.5$ cm

Similarly, XY = $1/2 \times AC = 1/2 \times 9 = 4.5$ cm

Q. 2. In figure 5.39, \Box PQRS and \Box MNRL are rectangles. If point M is the midpoint of side PR then prove that,

i. SL = LR. Ii. LN = 1/2SQ.

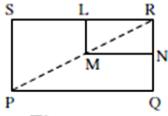


Fig. 5.39

Answer: The two rectangle PQRS and MNRL

In Δ PSR,

 \angle PSR = \angle MLR = 90°

∴ ML || SP when SL is the transversal

M is the midpoint of PR (given)

By mid-point theorem a parallel line drawn from a mid-point of a side of a Δ meets at the Mid-point of the opposite side.

Hence L is the mid-point of SR

$$\Rightarrow$$
 SL= LR

Similarly if we construct a line from L which is parallel to SR

This gives N is the midpoint of QR

Hence LN|| SQ and L and N are mis points of SR and QR respectively

And LN = 1/2 SQ (mid-point theorem)

Q. 3. In figure 5.40, \triangle ABC is an equilateral triangle. Points F,D and E are midpoints of side AB, side BC, side AC respectively. Show that \triangle EFD is an equilateral triangle.

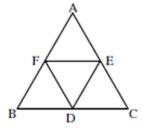


Fig. 5.40

Answer : Given F, D and E are mid-point of AB, BC and AC of the equilateral \triangle ABC \therefore AB =BC = AC

So by mid-point theorem

Line joining mid-points of two sides of a triangle is 1/2 of the parallel third side.

$$\therefore$$
 FE = 1/2 BC =

Similarly, DE = 1/2 AB

And FD = 1/2 AC

But AB = BC = AC

$$\Rightarrow$$
 1/2 AB = 1/2 BC = 1/2 AC

$$\Rightarrow$$
 DE = FD = FE

Since all the sides are equal ΔDEF is a equilateral triangle.

Q. 4. In figure 5.41, seg PD is a median of Δ PQR, Point T is the midpoint of seg PD. Produced QT intersects PR at M. Show that

$$\frac{PM}{PR} = \frac{1}{3}$$

[Hint: draw DN || QM.]



Fig. 5.41

Answer : PD is median so QD = DR (median divides the side opposite to vertex into equal halves)

T is mid-point of PD

$$\Rightarrow$$
 PT = TD

In ΔPDN

T is mid-point and is || to TM (by construction)

⇒TM is mid-point of PN

PM =MN.....1

Similarly in ΔQMR

QM | DN (construction)

D is mid –point of QR

⇒ MN = NR.....2

From 1 and 2

PM = MN = NR

Or PM = 1/3 PR

$$\Rightarrow \frac{PM}{PR} = \frac{1}{3}$$
. hence proved

Problem set 5

Q. 1 A. Choose the correct alternative answer and fill in the blanks.

If all pairs of adjacent sides of a quadrilateral are congruent then it is called

- A. rectangle
- B. parallelogram
- C. trapezium
- D. rhombus

Answer : As per the properties of a rhombus:- A rhombus is a parallelogram in which adjacent sides are equal(congruent).

Q. 1 B. Choose the correct alternative answer and fill in the blanks.

If the diagonal of a square is $12\sqrt{2}$ cm then the perimeter of square is

- A. 24 cm
- B. 24√2 cm
- C. 48 cm
- D. 48√2 cm

Answer : Here d= $12\sqrt{2} = \sqrt{2}$ s where s is side of square

Given diagonal = 20 cm

$$\Rightarrow S = \frac{12\sqrt{2}}{\sqrt{2}} = 12$$

Therefore, perimeter of the square is $4s = 4 \times 12$

$$= 48cm. (C)$$

Q. 1 C. Choose the correct alternative answer and fill in the blanks.

If opposite angles of a rhombus are $(2x)^{\circ}$ and $(3x - 40)^{\circ}$ then value of x is

- A. 100°
- B. 80°

C. 160°

D. 40°

Answer : As rhombus is a parallelogram with opposite angles equal

$$\Rightarrow$$
 2x = 3x -40

$$x = 40^{\circ}$$

Q. 2. Adjacent sides of a rectangle are 7 cm and 24 cm. Find the length of its diagonal.

Answer: Adjacents sides are 7cm and 24 cm

In a rectangle angle between the adjacent sides is 90°

 \Rightarrow the diagonal is hypotenuse of right Δ

By pythagorus theorem

Hypotenuse² = $side^2 + side^2$

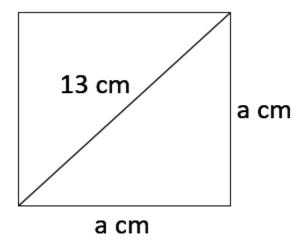
Hypotenuse² =
$$49 + 576 = \sqrt{625} = 25 \text{ cm}$$

length of the diagonal = 25cm

Q. 3. If diagonal of a square is 13 cm then find its side.

Answer : given Diagonal of the Square = 13cm

The angle between each side of the square is 90°



Using Pythagoras theorem

Hypotenuse² = $side^2 + side^2$

$$\Rightarrow$$
 13² = $a^2 + a^2$

$$\Rightarrow 13^2 = 2a^2$$

$$\Rightarrow \frac{13^2}{2} = a^2$$

$$\Rightarrow \frac{13}{\sqrt{2}} = a$$

Side = $13/\sqrt{2}$ cm

Q. 4. Ratio of two adjacent sides of a parallelogram is 3 : 4, and its perimeter is 112 cm. Find the length of its each side.

Answer : In a parallelogram opposite sides are equal

Let the sides of parallelogram be x and y

$$2x + 2y = 112$$
 and given $\frac{x}{y} = \frac{3}{4} \Rightarrow 4x = 3y$

$$\Rightarrow 2\left(\frac{3y}{4}\right) + 2y = 112$$

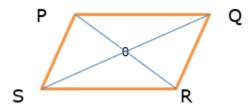
$$y = 32$$

$$x = 24$$

four sides of the parallelogram are 24cm, 32 cm, 24cm, 32cm.

Q. 5. Diagonals PR and QS of a rhombus PQRS are 20 cm and 48 cm respectively. Find the length of side PQ.

Answer : According to the properties of Rhombus diagonals of the rhombus bisects each other at 90°



In the rhombus PQRS

$$SO = OQ = 10 \text{ cm}$$

So in ΔPOQ

$$\angle$$
 POQ = 90°

⇒ PQ is hypotenuse

By Pythagoras theorem,

$$10^2 + 24^2 = PQ^2$$

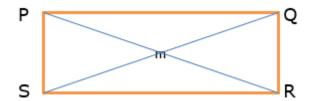
$$100 + 576 = PPQ^2$$

$$676 = PQ^2$$

26cm = PQ Ans

Q. 6. Diagonals of a rectangle PQRS are intersecting in point M. If \angle QMR = 50° then find the measure of \angle MPS.

Answer : The figure is given below:



Given PQRS is a rectangle

⇒ PS || QR (opposite sides are equal and parallel)

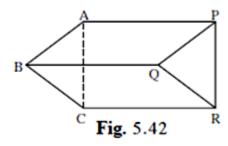
QS and PR are transversal

So \angle QMR = \angle MPS (vertically opposite angles)

Given ∠ QMR = 50°

$$\therefore \angle MPS = 50^{\circ}$$

Q. 7. In the adjacent Figure 5.42, if seg AB \parallel seg PQ, seg AB \cong seg PQ, seg AC \parallel seg PR, seg AC \cong seg PR then prove that, seg BC \parallel seg QR and seg BC \cong seg QR.



Answer: Given

AB || PQ

 $AB \cong PQ$ (or AB = PQ)

⇒ ABPQ is a parallelogram (pair of opposite sides is equal and parallel)

Similarly given,

 $AC \parallel PR$ and $AC \cong PR$

⇒ACPR is a parallelogram (pair of opposite sides is equal and parallel)

$$\Rightarrow$$
 AP \parallel CR and AP \cong CR2

From 1 and 2 we get

BQ \parallel CR and BQ \cong CR

Hence BCRQ is a parallelogram with a pair of opposite sides equal and parallel.

Hence proved.

Q. 8. In the Figure 5.43, ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively.

Then prove that, PQ || AB and PQ = $\frac{1}{2}$ (AB + DC).

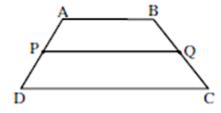


Fig. 5.43

Answer: Given AB ∥ DC

P and Q are mid points of AD and BC respectively.

Construction: - Join AC

The figure is given below:

P P O C

In \triangle ADC

P is mid point of AD and PQ is || DC the part of PQ which is PO is also || DC

By mid=point theorem

A line from the mid-point of a side of Δ parallel to third side, meets the other side in the mid-point

⇒ O is mid-point of AC

⇒ PO = 1/2 DC.....1

Similarly in ∆ ACB

Q id mid-point of BC and O is mid -point of AC

 \Rightarrow OQ|| AB and OQ = 1/2 AB......2

Adding 1 and 2

PO + OQ = 1/2 (DC + AB)

PQ = 1/2 (AB + DC)

And PQ ∥ AB

Hence proved.

Q. 9. In the adjacent figure 5.44, \square ABCD is a trapezium. AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.

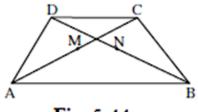


Fig. 5.44

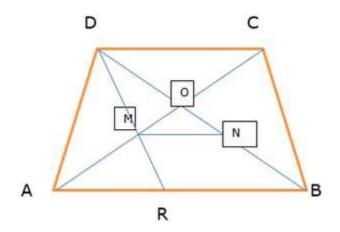
Answer : Given AB ∥ DC

M is mid-point of AC and N is mid-point of DB

Given ABCD is a trapezium with AB ∥ DC

P and Q are the mid-points of the diagonals AC and BD respectively

The figure is given below:



To Prove:- MN || AB or DC and

In ΔAB

AB || CD and AC cuts them at A and C, then

 $\angle 1 = \angle 2$ (alternate angles)

Again, from \triangle AMR and \triangle DMC,

 $\angle 1 = \angle 2$ (alternate angles)

AM = CM (since M is the mid=point of AC)

 $\angle 3 = \angle 4$ (vertically opposite angles)

From ASA congruent rule,

 $\Delta AMR \cong \Delta DMC$

Then from CPCT,

AR = CD and MR = DM

Again in ΔDRB , M and N are the mid points of the sides DR and DB,

then PQ || RB

 \Rightarrow PQ || AB

 \Rightarrow PQ || AB and CD (\because AB || DC)

Hence proved.