Chapter 4

PRINCIPLE OF MATHEMATICAL Induction

INTRODUCTION

To prove certain results or statements in Algebra, that are formulated in terms of n, where n is a natural number, we use a specific technique called principle of mathematical induction (P.M.I)

Steps of P.M.I

Step I - Let p(n): result or statement formulated in terms of n (given question)

Step II – Prove that P(1) is true

Step III – Assume that P(k) is true

Step IV – Using step III prove that P(k+1) is true

Step V - Thus P(1) is true and P(k+1) is true whenever P(k) is true.

Hence by P.M.I, P(n) is true for all natural numbers n

Type I

Eg: Ex 4.1

1) Prove that $1+3+3^2+\dots+3^{n-1} = \frac{3^n-1}{3^n}$

Solution:-

Step I: Let P(n):
$$1+3+3^2+...+3^{n-1} = \frac{3^n-1}{2}$$

Step II: P(1):
LHS = 1
RHS = $=\frac{3-1}{2}=\frac{2}{2}=1$

LHS=RHS

Therefore p(1) is true.

Step III: Assume that P(k) is true

i.e
$$1+3+3^2+\dots+3^{k-1}=\frac{3^k-1}{2}$$
 ____(1)

Step IV: we have to prove that
$$P(k+1)$$
 is true.

ie to prove that
$$1+3+3^2+\dots+3^{k-1}+3=\frac{3^{k+1}-1}{2}$$

Proof
LHS =
$$(1+3+3^2+....+3^{k-1})+3$$

= $\frac{3^{k}-1}{2}+3^{k}$ from eq(1)
= $\frac{3^{k}-1+2.3^{k}}{2}$
= $\frac{3.3^{k}-1}{2}=\frac{3^{k+1}-1}{2}=\text{RHS}$

Therefore P(k+1) is true

Step V: Thus P(1) is true and P(k+1) is true whenever P(k) is true. Hence by P.M.I, P(n) is true for all natural number n.

Text book

Ex 4.1

Type 2

Divisible / Multiple Questions like Q. 20**,21,22**,23 of Ex 4.1 eg 4, eg 6**(HOT)

Q 22. Prove that 3^{2n+2} -8n-9 is divisible by 8 for all natural number n. Solution

Step I: Let p(n): 3^{2n+2} -8n-9 is divisible by 8

Step II: P(1): $3^4 - 8 - 9 = 81 - 17 = 64$ which is divisible by 8 Therefore p(1) is true

Step III: Assume that p(k) is true

i.e
$$3^{2k+2}$$
 -8k-9 = 8m; m is a natural number.

i.e
$$3^{2k}$$
.9 = 8m+8k+9

ie
$$3^{2k} = 8m + 8k + 9$$
 _____(1)

Step IV: To prove that p(k+1) is true.

ie to prove that
$$3^{2k+4}$$
 -8(k+1) -9 is divisible by 8.
Proof: 3^{2k+4} -8k-17 = 3^{2k} .3⁴-8k-17 = $(\frac{8m+8k+9}{9})$ x 3⁴ - 8k-17(from eqn (1))

= (8m+8k+9)9-8k-17 = 72m+72k+81-8k-17 = 72m-64k+64 = 8[9m-64k+64]8k+8] is divisible by 8.

Step V: Thus P(1) is true and P(k+1) is true whenever P(k) is true. hence by P.M.I, P(n) is true for all natural numbers n.

Type III: Problems based on Inequations

(Q 18) Prove that
$$1+2+3+....+n < \frac{(2n+1)^2}{8}$$

Step I: Let P(n):
$$1+2+3+....+n < \frac{(2n+1)^2}{8}$$

Step II: P(1): $1 < \frac{9}{8}$ which is true, therefore p(1) is true.

Step III: Assume that P(k) is true.

ie
$$1+2+3+....+k < \frac{(2k+1)^2}{8}$$
_____(1)

Step IV: We have to prove that P(k+1) is true. ie to

prove that
$$1+2+3+....+k+(k+1)<\frac{(2k+3)^2}{8}$$

Proof: Adding (k+1) on both sides of inequation (1)

$$1+2+3+....+k+(k+1) < \frac{(2k+1)^2}{8} + (k+1)$$

$$= (4k^2+4k+1)+8k+8$$

$$8$$

$$= 4k^2+12k+9$$

$$8$$

$$= (\underline{2k+3})^2 \\ 8$$

Therefore
$$1+2+3+....+k+(k+1) < (2k+3)^2 \\ 8$$

P(k+1) is true.

Step V: Thus P(1) is true and P(k+1) is true whenever P(k) is true. Hence by P.M.I, P(n) is true for all natural number n.

HOT/EXTRA QUESTIONS

Prove by mathematical induction that for all natural numbers n.

- 1) a^{2n-1} -1 is divisible by a-1 (type II)
- 2) $\frac{n^7 + n^5 + 2n^3 n}{5}$ is an integer(HOT)
- 3) $\sin x + \sin 3x + \dots + \sin (2n-1)x = \frac{\sin^2 nx}{\sin x}$ (HOT Type 1)
- 4) $3^{2n-1}+3^n+4$ is divisible by 2 (type II)
- 5) Let P(n): n²+n-19 is prime, state whether P(4) is true or false
- 6) $2^{2n+3} \le (n+3)!$ (type III)
- 7) What is the minimum value of natural number n for which 2ⁿ<n! holds true?
- 8) $7^{2n}+2^{3n-3}.3^{n-1}$ is divisible by 25 (type II)

Answers

- 5) false
- 7)4