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INTRODUCTION

Vector analysis is a mathematical tool with which electro-
magnetic concepts are most conveniently expressed and
best comprehended.

A quantity can either be scalar or vector.

Vector: It is a quantity that is characterized by both mag-
nitude and direction such as electric and magnetic field. For
example, force, velocity, electric field intensity, and electric
flux density.

Scalar: It is a quantity that is characterized only by mag-
nitude. For example, time, mass, temperature, entropy, elec-
tric potential, and population of a country.

Field: It is a function that specifies a particular quan-
tity everywhere in the region. If the quantity is scalar (or
vector), the field is said to be a scalar (or vector) field. For
example, scalar fields and vector fields.

Scalar fields:

1. Temperature distribution in a building.

2. Electric potential in a region.
Vector fields:
Gravitational force on a body in space.
Unit vector: A vector P has both magnitude and direc-
tion. Magnitude of P is a scalar written as |P|. Unit vector
a, along P is defined as a vector whose magnitude is unity
(i.e., 1) and its direction is along p

ie.,a_=

|ap|=—:1

Thus, p can be written as

P =P,
|P| = magnitude of vector p
a,- unit vector along p

A vector p in Cartesian coordinated system can be rep-
resented as (p,, Py p,)
(or)
anx.+ any +P,a sz{ Py, P, are components of p in the
X, ¥, z directions, respectively.
aa, and a,, are unit vectors along x, y, and z directions,

respectively.
lpl=\pi+p;+p:
L _ P _ Pt pyaytpea

Pl Pi+p+p?
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X

Figure 1 Unit vectors a,, a, and a, are shown.

ay
ax

Law Addition Multiplication
Commutative A+B=B+A KA=AK
Assocatve . (B+C)=(A+B)+C  K(FA)=(KnA
Distributive

k(Z+§):kZ+k§

where k and / are scalars.
The three basic laws of algebra obeyed by any given vec-

P.a; NN\~

tors 4, B, and C.

2. Vector multiplication:

Figure 2 Components of p along the co-ordinate axis.

Unit vectors a_, a, and a, are shown in Figure 1 and the com-
ponents of p along the coordinates axis are shown in Figure 2.

Vector Algebra
1. Addition and subtraction:
Two vectors 4 and B can be added or subtracted
together to give another vector c,
ie., C = A+B
The abovementioned two operations on vectors are
carried out component by components

C=(A,tB)a, +(4,+B))a, +(4. £ B )a.

Graphically, vector addition and subtraction are
obtained by either the parallelogram rule or head-to-
tail rule as follows:

When two vectors are multiplied, the resultant
is either a scalar or a vector depending on their
multiplication.

1. Scalar (or dot) product: 4.B
2. Vector (or cross) product: 4 X B

. Dot product:

The dot product of two vectors 4 and B is defined as
the product of magnitudes of two given vectors 4 and
B and the cosine of the angle between them.

AB= |Z||§| cos O,p

B

0AB _
> A

0,5 — angle between A4 and B
if A:Axax+Ayay+AZaZ
Bszax-S-Byay-i-BZaZ

Two vectors are said to be orthogonal with each other, if

their scalar (or dot) product is zero.

C=A-B _
A

|
v:]
@y

Scalar (or dot) product obeys the following:

1. Commutative:

2. Distribution:

A(B+C)=4B+4C

Ad=|4
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3.a,.a.=a,.a,=a,.a,=1 Vector Product or Cross Product
a.a,=a,.a,=a,.a,=0 The cross productoftwo vectors 4 and B iswrittenas AX B .
Depending on the angle between two vectors A and B It is a vector quantity whose magnitude is equal to the
_ _ product of magnitude of two vectors and sine of the angle
1. if 4 and B are parallel between them,
A.B =[] B cos Oy |4 B| =] 4]| Blsin 6,
=0,,=0
R The direction of 4 x B is perpendicular to the plane
Therefore, 4.B =| 4| B| containing A4 and B and is in the direction of advance of

_—
— 55
2. If 4 and B are perpendicular,
Opp = % s.coSpp =0

A.B=|4||B|cos 6,5

w@|

- a right-handed screw as 4 is turned into B .

B

648 _
> A

=0 Direction of AxB can be determined using right-hand
A4.B =0 thumb rule.

Right-hand Thumb Rule

Ax B =|4|B|sin0,g .a,

The direction of a, is taken as the direction of the right

A thumb when the fingers of right hand rotate from 4 to B.
. - - . . . . A >< B
3. if 4 and B are opposite in direction: A
0=, cos 6=-1
N B
A.B =|4||B|cosOxp = —|4||B|
—_—A an %70 “
70
7o
T £
——
B \eAB

Geometrical Interpretation of Dot

y z
A, A
B, B.

=(4,B,~4,B)a,+(4,B ~AB)a,
+(4,B,~A4,B)a,

Product If A
The dot product of two vectors _ 3
A and aj given the length of projection of A4 along the
direction of l_? . ) — %
where ay is the unit vector along B . AxB=|4,
/i 5,
B8 Properties
> [] > 5

as

Z.E =|Z| .c0os O,

1. It is anti-commutative
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2. Itis not associative
Ax(Bx C)# (ZxE)xE
3. Itis distributive:

Ax(B x C)=(4xB)xC

4. AxA=0
and
axXayZaZ
a,xXa,=a,
a,Xa,=a,

right-handed coordinate system is in which right-hand
thumb rule or right-hand screw rule is satisfied.

ax
f a
a
Uy
ax
Right-hand system: clockwise leads to positive results.
ax
f _aZ
a
uy
_aX

Anticlockwise leads to negative results.
a,xa, =-a,

a xXa =—a
z X

y

axxaz=fay

Geometrical Interpretation of Cross
Product

The magnitude of vector product of two vectors is the area
of the parallelepiped formed by 4 and B .

A

COORDINATE SYSTEM

The spatial variations of fields should be defined uniquely
in space in a suitable manner. This needs the appropriate
coordinate system.

Orthogonal system is one in which the coordinates are
mutually perpendicular. Non-orthogonal systems are hard
do work but of little practical use.

The best three orthogonal coordinate systems are

1. Cartesian coordinate system
2. Cylindrical coordinate system
3. Spherical coordinate system

These coordinate systems are orthogonal, orthonormal,
and right-handed systems.

1. Orthogonality means dot product of any two different
unit vectors of same system is zero and dot product of
any two same unit vectors is one.

2. Orthonormality means cross products of any two
different unit vectors is the third unit vector.

Right-handed system follows for orthonormality.

(A) X—>Y—>2Z
a,Xa,=a,
a,Xa,=a,
a,Xa, =a,

B _p>0—>2Z

O

apxa¢=az
a¢><aZ=ap
azxap=a¢
C r—>06 — ¢
=
arxae=a¢
aexa¢=ar
a¢><ar=ae

Cartesian Coordinate System

Range of coordinate variables:
— oo < x < oo
— oo < y < oo
—oco<z< oo
Vector A can be written as
A=A, a +A a +A4 a
X X yy z 'z

a_, a,and a are unit vectors along x, y, and z directions.
x> 7y’ z
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h and p=+x*+1y? ,0<p<oco
p=tan"! y/x,0 < ¢p<2m
z=2,0<z<oo

Dot products of a, a, and a, with a o> Qo and a, are given by

\ 4z

a,.a,=cos 0
> >y a,.a,=—sin ¢
ay o
a a,.a, = sin (0]
a,.a,=cos 0
a,.a,= 0
X a,a,= 0
Cylindrical Coordinate System f
1. A point P in cylindrical system is represented as (p, ¢, z) P
Range of values [~ 1:
0<p<eo :z
|
0<¢<2m z :
— oo < z< 00 i
|
where p is the radius of cylinder; ¢ is the Azimuthal !
angle measured with respect to x-axis in xy plane; and - Y : —> y
z is same as in Cartesian coordinate system. 4 N ! 7
Vector A in cylindrical coordinate system X R | /X=pcos¢
_ N
j— T = —ay
4= Apap+A¢a¢+AZaz Y = psing
|d|=\J43+ 42 + 42 X
where a_ is the unit vector along the direction of Unit Vector Transformation
increasing ‘p’; a 0 is the unit vector along the direction o ) .
of increasing ‘¢’; and a, is the unit vector along ax cos¢ —sing 0|]a,
positive z-direction. a, |=|sing cos¢ 0]|ay
AZ la, | | O 0 1] a |
—ap_ [ cos¢ sing 0][a, |
ay |=|-sing cos¢ Of|ay,
la, | [ O 0 1] a, |
Vector Transformation
> A, cos¢p —sing 0|f4,
Ay, |=|sing cosg 0|4,
14, ] [ O 0 1] 4, |
/ a [4,] [cosp sing 0][4,]
X Ay |=|—sing cosp O] 4,
Relationships between Cartesian and cylindrical 14| | O 0 1][4,]

systems The cylindrical coordinate system is convenient for problem

X=pcos ¢ having cylindrical symmetry. For example, line charges and
. current wires.
y=psin ¢

zZ=Z
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Infinite small strip of cylinder is shown in figure.
Differential length

ol

4

dt=(dp)a, + p (d)a, + (d2)a,
Differential normal area:

dl = (dp)ap+ pdpay +dza,
ds = (pdo)(d=)a, + (dp)(d=)a, + (dp)(pdd) a,

Differential volume:

dv = (dp) (pd9)(dz)
dv = p(dp) (d)(dz)

Spherical Coordinate System

It is the most appropriate with problems having a degree of
spherical symmetry. A point is obtained by the intersection
of these surfaces, namely
a spherical surface, r = k (constant), meter.
a cone, O = o (constant), radian, and
a plane, ¢ = B (constant), radian
All these three surfaces are mutually perpendicular to
each other.
These are said to be orthogonal

z

N
avl

Figure 3 Spherical co-ordinates.

A point P can be represented as (7, 6, ¢), where

ristheradiusofsphereorlength oflinejoiningoriginand P;
0 is the angle made by the position vector OP with respect
to positive z-axis;

and ¢ is same as in cylindrical coordinate system.
0<r<oo
0<0<m
0<¢<2n
A vector A can be written as

Aa +4 +Aa

o%e
» dg, and a, are unit vectors along r, 0, and ¢ directions,
respectwely, and mutually orthogonal to each other and

form R.H.S
v vy

arxaeza

¢
ae X a¢ = Clr
a¢ X a.=day
a
ag ’
Qo
a
¢ue

ar

a.a=1= g0y = ay.a,

a.ag= =0

ay.a,
Relationship between space variables (x, y, z), (r, 0, §) and
P 0,2)

The variables of Cartesian and spherical coordinates are
related by

ag.a,=

X=rsin B cos ¢, o <x < oo
y=rsin 0 sin ¢, —o <y <oo

z=7rc080,—c0<z<oo

and r=qx*+3y2+2% ,0<r< oo
O=cos | ——— 0<0<r
VX2 +y? + 22
¢=tan ! Z,Oﬁ(pSZn
x

The relationship between the variables of cylindrical and
spherical coordinates are given by

p=rsin0
o=9¢
z=rcos 0
= ﬂp2+22
0=tan 2

z
o=29¢
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V4 z a
p=rsinf a ar
4
0
Z=rcosf P(x, y, 2) = P(r, 6, ¢) a
p
=P(p, 9,2) N
r
(i} g
=
y
p
P
o
X= pCcos¢
y=(psing)
X
—¢p(negative ¢)
Relationship between unit victors and vectors of Cartesian ] o )
and spherical coordinate system: Differential displacement is
(a,] [sin@cos¢ cosBcosd —sing]|a, | dl = (dr)a, + (rdB)a, + (rsinfd@)a,
a, [=|sinf@sing cosOsing cos¢ ||ag ds = (* sin8dOdo)a + (r sin@drdd)ay+
a, cos@ —sin@ 0 a,
el b SLe (r drdG)%
a, sinfcos¢ sinfsing cosO ||ay 5
ag |=|cosfcos¢ cosOsing —sinb||ay dv =1° sin@drdbd¢
a, —sing cos@ 0 .
Lt N LINE, SURFACE AND VOLUME
A, sinfcos¢ sinfsing cosO || A, INTEGRALS
Ag |=|cosOcos¢ cosOsing —sinb || 4, .
. Line Integral
Ay —sin@ cos ¢ 0 A, — —_
- T f Ad{ is the integral of tangential component of A4 along
[A4,] [sin@cos¢ cosBcosdp —sing]|| 4, L
. . . curve L
Ay |=|sinOsing cosOsing cos¢ || 4y ,
(4] L cosb msing 0 ] 4 | [4dt={|4cos 6 ar
L

a

Cylindrical and spherical

[a,| [ sin@ cos® 0]]a,
ag |= 0 0 1| a
la, | |+cos® —sin6 0]|a,
—ar_ [sin@ 0 cos@ a,
ag [=|cos@ 0 —sinb || a,
[a,| | O 1 0 a,
[4,] [ sin6 cos6 0][4,
_ If the path of integration is closed, then it becomes a closed
4, (=] O 0 L[| 4 . e
4] [+coso —sing 0]| 4, integral EEA.dl
(4] [sind 0 cos6 |[4, Surface Integral or Flux
Ap |=|cos@ 0 —sinb || 4, l/lzggAds
4] [ 0 1 0 A, s

ds= |ds| a,



3.804 | Partlll e Unit 8 e Electromagnetics

Cartesian:
Vv = a—VaX +a—Vay +a—V.aZ
ox oy dy
s » Cylindrical:
l!
’ t14 1oV o144
VV=——a,+———ay+=-.q,
ap p 09 oz
Spherical:
Open surface
av 1oV 1 aV
VV=—a+-———a+————a,
ar r a6 rsin@ d¢

An unit vector normal to surface s.

For a closed surface, surface integral becomes Divergence of a Vector (V. A)

CJSZ.ds Tt is the net outward flux of A from s. Diyergence of a vector A i.s the net outward flow of flux per
g unit volume over a closed incremental surface.
NOTE vie|Za+2a+2a |4 Aa,+4
- A= axaX ay ay aZaz A, a, + yay T ,a,)
1. closed path defines an open surface. ~ o4 04 o4
2. closed surface integral is same as volume integral of Vod=">24L4 "=
p, over volume V. ox dy oz :
- 190 1 )
V.A=——(pdp)+— ﬁ+ﬁ
p dp p 0p oz

- 19 1 9 . 1 94
VA=— —(r?*4)+———(4ysin0) + —

r? ar( ) rsin@ 89(140 ) rsinf 0¢
Physically, the divergence of a vector field at a given point
is the measure of how much field emanates from that point.

Positive at source point
Del operator: N

Del operator written as V and also called as vector deferen-
tial operator or gradient operator. When it operates on sca-
lar, it gives a vector.

Cartesian:

. —>
V= iax +iay +iaZ
ox dy 0z
Cylindrical: L

=a,—+ay—.—+a,.— : : :
P op ¢ 096 oz Negative at sink point

0 19 1 9
V=a —+ag——+ay,———
ar ro0 rsinf 0¢ N
4
V is useful in defining X
1. Gradient of a scalar VI W \

Closed surface

Spherical:

2. Divergence of a vector V. A.
3. Curl of avector Vx 4.
4. Laplacian of a scalar V2V .

Gradient of a Scalar (VV) > >
The gradient of a scalar field V'is a vector that has its magni- S e N
tude and direction as those of the maximum rate of change

of ‘7. > N

If A=VV, Vis said to be the scalar potential of A. IfV.4 = 0, then A is said to be solenoidal.
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Curl of a Vector

Curl of a vector field is an axial vector, which provides the
maximum value of the circulation of the field per unit area and
indicates the direction along which the maximum value occurs.
(or)
The curl of a vector field A at a point P is the measure of
the circulation of how much field curl around ‘p’.

/0
)
\_"/
~—
Direction of VXP is out of page.
Properties:
1. Curl of a vector is another vector.
2. VX(A+B)=VxXA+VXB
3. VX(AxB)=A4(V.B)—B(V.A) +(B.V) A —(A.V)B
4. V.(VxA4)=0
5. VxVF=0

If the curl of a vector is zero, then the vector is said to be
irrotational or conservative field.

VxA4=0.

curl is zero

Cartesian:
Cylindrical:

Spherical:

1

ar
Vx 4= - 9
r2sin@|or
4,

90
r.Ag rsinf Ad
Laplacian Operator

The Laplacian of a scalar field V, written as V? V is the
divergence of gradient of V.

V21 =V.(V))

if V2V =0, Vis called harmonic function.

GAUSS—OSTROGRADSKY THEOREM

It states that the total outward flux of a vector field A
through the closed surface S is the same as the volume inte-
gral of the divergence of A4.

$ dds = §(V.A)dv

v

This is also called divergence theorem.

/,\\,/A\//‘\\/~\
- e
N 7
N~
Volume L~
Closed
surfaces S
T
v
Solved Examples
Example 1

Consider a closed surface ‘S’ surrounding volume V. If r
is the position vector of a point inside‘s’ with 7z is the unit
normal vector on ‘s’, the value of integral ﬁ)Zmﬁds =

V
o V4
Solution

According to the divergence theorem
p3rids=[[[3(V.rydv

=33)]JJav =or(v.7 =3)

(A)3V BV (C)9V

STOKES THEOREM

The line integral of tangential component of vector 4 taken
around a simple closed curve C is equal to the surface inte-
gral of the normal integral of the curl of A taken over any
surface S having C as its boundary.

$Ade=[(Vxa)ds

ds

Closed
curve C

Surface S
dl

ELECTROMAGNETIC FIELDS

In static electromagnetic fields, electric and magnetic fields
are independent of each other. While in dynamic electro-
magnetic fields, both are interdependent and the latter one
is of more practical use. Therefore, familiarity with the
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static fields provides good background for understanding
dynamic EM fields.

1. A stationary charge produces electrostatic field.

2. A moving charge or steady current produces magnetic
fields

3. Time-varying currents
fields.

produce electromagnetic

ELecTROSTATIC FIELDS

Coulomb’s Law

This law states that the force of attraction or repulsion
between two point charges (Q,) and (Q,) is

1. Along the line joining the charges.

2. Directly proportional to the product of the charges.

3. Inversely proportional to the square of the distance
between them.

Mathematically,
F - K00;

7

K = constant = ~9x10°m/F

g
Q, and Q, in Coulombs (C), where r is the distance in
meters.

107°
_8. 10012 = —F/m
€, 8.85x% 367

Q

origin
1. Force due to @, on Q,: F,

L 00,

C4me, R?
|r12| =R

12

T2

a is the unit vector along line joining Q, and Q,

q =n7h
12 R
1 00,
= ===(r —K
12 ame, B (r,—n)

2. Like charges repel each other and unlike charge
attract each other.

3. Force due to charges 9, O, ....., @, on charge ‘¢’
Fi> Ty, I'5.....T, are position vectors of Q,, Qz) Oseeess
0, respectively, 7- position vector of g and resultant
force on q is

q L Qi(r—ri)
Fg=
4r € [;{ |r—ri|3 ]
Electric Field Intensity

Force acting on a unit positive charge is called electric field
intensity.

F
E = —vector/coulomb (or) Volt/meter

where E is in the direction of force F.
Electric field due to a charge Q at a distance is R

E=————a
dme, B2
- Electric field due to n charges is
£ 1 2 o (R—Ri)
dmey | S (R-R)
Example 2

Two point charges 1 nC and —2 nC are placed along the
x-axis at (0, 0, 0) and (2, 0, 0), respectively.

The force exerted by 1 nc on —2 nC is

(A) 45 x10°N (B) 4.5x10°N

(C) 9x 10°N (D) 9x 10°N
Solution

Ay

1nC _onC
0,00 200
(1,0,0)
z
F|,— Force exerted by 1 on 2
99

F, =
" 4ne, R?
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a,, is the unit vector = a_ Fields due to continuous charge distributions:
2%x1079 %x107° Line charge Surface charge Volume charge
Fy=——————xa,
4mey x2
_ —2x107"¥ x9x107? S
= 4 Xay ’L) = 9Sdf + pg +

F,=-4.5x10° a_Newton

Force is along negative X-axis direction. This means that the = dg=p,df dg=pds dq=p,av
charge is pulling the other towards it, that is, unlike charges s Qe i ad B
attract each other. N -L[ P _J; . - -V[ el
Exampl pal psds p,dv
xa pe.3 . . 47760":"2 o '[4716 R? an E= "-4755092 i
In the previous problem, the electric field at Q,(—2 nc) is
(A) —4.5x10°a, N/m (B) —2.25% 10 a,N/m  Electric fields due to a line charge of finite length placed
(C) 2.25 a, N/m (D) 4.5 a, N/m along z-axis.
Solution
: : : : - E:p—[ —(sino, —sin@;)ap + (cos &, —cos @ )a, ]
Electric field is force acting on a unit positive charge dre, p 2 1ap 2 1
is E= F = —4.5x107 ax N/m =2.25 N/m ax Electric fields due to infinite line charge placed along
0, -2x107° z-axis
Electric field is along the positive x-direction, which is away E= _P a
from the 1 nc charge. 2me, p

It depends on permittivity of the medium

€=€OEI

where € is the electric relative permittivity that originates
at positive charge and terminates at negative charges.

A

Example 4

If the line x = 0 = y carries a charge 2w nc/m, the electric

/ field intensity at (0, 1, 0) is

107° 10°
(A) ay N/m (B) —ay N/m
> o <« €o €o

q
ﬂ‘ 108 8
(C) —ay N/m D) £ay N/m
EO GO
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Solution
The line x =0 =y is ‘z’-axis

4

Electric field due to infinite line change at a distance p is

__ P
2mey p ¥
— 2mwne/m
E=——a =1m
_ -9
E= 10 ap, N/m
EO
at (0,1,0) a,=a,
_ 1 -9
E= 0 a

Electric Fields due to Continuous Charge
Distribution for Infinite Sheet

Consider an infinite sheet of charge in the x—y plane with
uniform charge density p_.

Electric field £ at point p(0, 0, &) by differential charge
dQ on the element a is

z

P(0, 0, h)

® :

dQ

dE=———a
dme,R2 K

= differential charge dQ = p_ ds
ds is differential element area = pd dp

R=p(-a,)+ha,

_ ppdedpR _ ppdddp|—pay +ha, |

dE = =
4re R3? drey(p? +h?)¥?

= From symmetry of charge distribution, for every element
in region a, there is@corresponding element in region(®).
Therefore, field along a 0 cancels.

E,=0

Electric field has only z component and the point can vary
from 0 to co and ¢ € (0, 2m)

27 o0 ~
ps pdodpha,
E=\dE, =
j z 471'80 .(I)‘O[pZ +h2]3/2
_27fPJlT pdp .
_47”_: [2+h23/2 z
o olP ]
E=PG thisisforh>0
2¢,

E=_pséz forh<0
2¢,

In general, electric field for an infinite charge sheet is
Ps -

——a

2ey

Example 5

Electric field on the surface of a perfect conductor is 4
Volts/m . The conductor is immersed in water with € =
40¢€ . The surface charge density on the conductor is

(A) 80e (B) 40e
(C) 20e (D) 160e
Solution

The electric field due to the plane sheet with surface charge

density P iS% , whereas due to conducting plane sheet
Py 0

1S —

€
LE=B
(S
23 =4 v/m
€
p,=4x40€, =160 xe, =160¢,
Example 6

Two infinite plane sheets of equal charge densities l%nz
are placed at (0, 0, 0) and (0, 0, 2), respectively. Then, the
electric field intercity at (0, 0, 1) is
(A) 0 N/m
-1

—N/m
IS

1.
(B) —a. N/m
eD

©) (D) None

0
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Solution

The direction of field lines shown in the following figure:

it

0,0,2)

E E

©00.) = Eqo0n T E

q(0,0,0)
—b Py
E =—a,+ a
0,0,1 z 2
©on " 5 g, 2€,

p, is equal for both, that is, I C/m?

E(O,O,l) =0

@) E03=E 4002 " Eq0.00)
-5 a, + Ps a,
2€, 2¢,
= &az N/m
0
1
E 0,03) = E—(lz N/m
o
—b —b
®) oon=7T—a+ a
00D e, 7 2g, ©
__B,
o
-1
E(O,O,—l) = e—az N/m
o

Electric field between two infinite plane sheets of equal sur-
face densities is zero.

Electric Flux Density (D)

D is independent of the medium. Electric flux (1):‘[5.% is
measured in Coulombs.
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Hence, D is called electric flux density. D is measured in
Coulombs/m?, and D is also called electric displacement. The
direction of D ata point is given by the direction of field lines
at that point and magnitude is number of flux lines crossing a
surface normal to the lines divided by the surface area.

D= g, E (free space)

Gauss Law

Total electric flux through a closed surface is equal to charge
enclosed by that surface.
Mathematically,

y= Qencl‘
l// = q.)D'dS = Qencl‘

Total charge enclosed is

Qencl‘: Jp"(dv)

4)1_).ds = '[pvdv
Applying divergence theorem

[(v.D)av=pad,

V.B:pv

p, is the volume charge density. o

Gauss Law can be used to determine £ or D for sym-
metrical charge distributions such as a point charge and infi-
nite line charge.

Gauss Law always holds good whether the charge distri-
bution is symmetric or not.

Example 7

The flux through the surface s shown in the following figure

5mc

(A) 7 me B) 2mc  (C) 27mc (D) 3me
Solution

According to the Gauss law, the total dielectric flux enclosed
by the surface ‘s’ is equal to the charge enclosed by that
surface

¥Y=12 mc -10 mc =2 mc.
Applications of Gauss Law
Procedure for applying Gauss law:

1. Check for the symmetry.
2. Construct a Gaussian surface.
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Conditions for a Special Gaussian Surface

1. The surface is closed. N

2. At each point of the surface, D is either normal or
tangential to the surface.

3. D is sectionally constant over that part of the surface
where D is normal.

Point Charge

Spherical symmetry exists for the point charge, and there-
fore, the Gaussian surface is a sphere that encloses the
charge ‘Q’, as shown in the figure.

\Z

gl

X
D is everywhere normal to the surface.

Therefore, D= D, a,

SBB% = @D, a, ds = Qencl

ds in spherical coordinates

=72 sin® dO dda,+ rsin® drdda® + rdr d ad
$D.ds=§ D, r>.sin6d6do
= D_4mr?

$Dds=D,4m?> =0

__0

" 4m?

p=--2
4Ar r?

E=—2 o [D=c,E]
dre, r

Infinite Line Charge

D=F

D=
2np “p

p; is the linear charge density.

Uniformly Charged Sphere

[ or

4Q—3a,; O<r<a
— a
D= 0

py a.; rza

[ Ne

Q—3; a0<r<a
E— 47T€aa

Q >
|47 €, r? o =4

For example, charge sheet.

Energy Associated with Charge Distribution

If there are n point charges that are brought in infinity to
specific points, then work done.
No work is required to bring initial charge

1 S Zagg
W= 220"
e = i

Work done for volume charge is

W= %{ p Vv
= %{(V.D)VdV

= %JD.E dv
= %jeOE%IV

. . . dW
Electrostatic energy density W, is i

1
Therefore, We = ED.E
1 D?
=—gyE?=—
2 2¢,

Electric Potential

Electric potential at a point is defined as the work done in
bringing a unit positive charge from infinity to that point in
an electric field. Work done in moving a charge Q through
a distance d/ is

dw=—-Fdl
dw=-QE.dl [F=QE|

B_
w=-Q[Edl
A
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B
Lhzz_{ﬂw
Q
W=
Vyg="=-|Edl
o
Here, ry=o0
Example 8

The electric scalar potential to a charge of ‘g’ at origin at a
distance ‘7’ is

q q

A volts B It
(A) dre, r ®) 87teorzvos
q
C volts D It
© ste, r ()SHEDrzvos
Solution
The field due to ‘g’ is
E=—1
A e, r?
r g
vr=— a,.dr
;[47[ g, r?
I B B
e £4neo 2 Tamer

Potential Difference
Vap=Ve=Va

Vg 1s called as potential at B with respect to 4.

Potential at infinity is chosen as zero.

Example 9

A point charge of +1 nc is placed in free space, as shown
in the figure.

5mm

[ 4 . ] Q
1nc 10mm

The potential difference between two points P and O, Voq is

(A) 90 v (B) -90v
(C) +900 v (D) —900 v
Solution
q q
= V —_ = —
"=V Ty € r, 4me,r,

g |1 1
are,|r, 1,

__4 1
_47[60 Smm 10mm

=4 b
PO 4re,” 10mm
v 107 x10% x9x10°
PQ 10
L _oxi0o |2
4r e, F
Vb =900V
V g 1s independent of path taken, and hence,
Vas="Vga
Vig T Vga=0
is $Edl =0
Applying Stokes theorem
§(V<E)ds =0
=VXE=0

where E is irrotational vector or conservative field; thus,
electrostatic field is conservative field.

E=-VV

Example 10

The scalar potential V' = 10 sin® cos®, and electric flux
density at (1,77/2,0) r

(B) -10¢€, c/m?

(D) 20 €, c/m?

(A) 10, c/m?
(C) 20 €, c/m?

Solution
D=c,E
E =-Vv
v 1 ov 1 dv
=—|=—a+- —a0+——
[arar F 0" rsing 8¢a¢:|

- _[__23051119 cosda, +¥cosecos¢a9+_—l305in¢a¢]
r r r

= 20 . 10 10 .
E = —351n900s¢.ar ——3c050cos¢a9 +—sinda,
r r r
E =20q
1720

D=e0 E :ZOGOar
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Equipotential Surface

Any surface on which the potential is same throughout the
surface is known as equipotential surface. Work done in a
moving a charge from one point to another along an equipo-
tential surface is zero.

jEdzzo

Properties of Equipotential Surface

1. Lines of force or flux lines are always normal to the
surface.

—> Flux Line

Equipotential

\
\/y Surface

>
>

A

\
:
i
I

Energy Density in Electrostatic Fields
2
Wy = l g, E2 = D_
2 2¢,

Energy due to continuous volume charge distribution.

Wy = %JD.Edv = %Je |E|* dv
v

l n
Wg = EZQ"V"
P

Example 11

Two point charges of —5 nc and 5 nc are located in free
space at (-1, 0, 0) m and (1, 0, 0), respectively. The energy
stored in field is

(A) O (B) 225n]
(C) 112.5n] (D) —-112.5n]
Solution
y
-5nc 5nc
3 % > X
+1,0,0) (1,0, 0)

__ N D
47[607'

-18
W_5><5><10

- e, x2

_25><109 xX9x10718
2

=25 07
2

=-112.5x107]J

Current

Current through a point is defined as the rate of charge pass-
ing through that point in unit time.

._dq
= —(amps
i dt( ps)

Current density at a given point is the current through a unit
normal at that point denoted by J.

]:JJ.ds

Unit of J is ampere/meter 2.

Convection Current

1. It does not involve conductors

2. It does not satisfy ohms law

3. It occurs when current flows through in an insulating
medium such as liquid or vacuum

For example, a beam of electron in a vacuum tube.

Convection Current Density
J,=pV

where p is the charge density and V' is the velocity.

Conduction Current

1. It requires conductors
2. Large amount of free electrons in a conductor
provides conduction current.

Conduction Current Density
J,=oFE

The above relation is also called as Ohms law.

Conductors

1. The electric field inside a conductor placed in an
electric field is zero.
2. Conductor is an equipotential surface.



Chapter 1 e Elements of Vector Calculus and Static Fields | 3.813

Y

A
_1
A
o is the conductivity of material.
[ Eal

r=Y -1
1 JO'E.ds
N

Joule’s Law
Power (P)
P=[E.Jdv.= ’R=VI

. d
Power density, W_= P
Pdy

w,=EJ=o|E]

Dielectrics
The effect of dielectric on electric field E is to increase D
inside it by an amount P .

D=e,E+p
Dielectric > D freespace

where pis y, €, E and
X. 1s electric susceptibility.

D=ecyE+yx, €, E
D=¢,(1+2,)E

=¢g,€, E

ol

Ol
|

=€
€E=€) (1+Xe)zeaer
Er=1+}fe

Dielectric Strength

It is the maximum electric field that a dielectric can tolerate

or withstand without breakdown.
Continuity Equation
VJ= —aﬂ for steady currents aaL.tv =0,

Therefore, VJ=0

This means the charge entering the volume is same as the

charge leaving.

p=poe

where t_is the relaxation time, that is. the time it takes a
charge placed in the interior of a material to drop to ¢! =
36.8% of its initial value

o o
For a good conductor, the relaxation time is so short that
most of the charge will vanish from any interior point and
appear at the surface.

Boundary Conditions

Dielectric—Dielectric
1. Tangential electric fields are continuous
ie, E =E,
2. Normal components of electric flux density are
discontinuous by an amount of charge density is

Dln 7D2n = ps
For a source-free region,
p =0
D]n = D2n

€ lEln =€ 2 E2n
and tan 6, _&n

tan0, €,,

Example 12

Medium 1 has electrical permittivity €, = 3 €, F/m and
occupies the region in the left of x = 0 plane. Medium 2 has
electrical permittivity € ,= 5€ ; F/m and occupies the region
to the right of x = 0 plane. If £, in the medium 1 is

E—g — volt v/ ) ; ;
E=a,-2a,+3a, %n,then E> (%n) in medium 2 is
(B) ax—ay+3 a,

(A)12a -2 a,+ 3a,
(D) a, -2 a,+ l.5a,

(C) 0.6a, -2 a,+ 3a,

Solution
A
/
Medium 1 7
(/
! Medium 2
E |
| X>0
X<0 ,'
| 5
_—
rl E
I
|
/
X=0 =z

Plane

Y and Z components of E are tangential components and
x-component is normal component.

EZyZE E2Z:E1z

1y’
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(tangential electric field is continues)
Since the region is source free

D,,=D,,
D\, =D,,

€ En=¢, Exn
E2x = s_l X Elx
E, ==0.6

E> =0.6a,—2a +3a,

Conductor Dielectric

1. E,, =0 [electric field in a conductor = 0]

E,=0
2. E,,=0[E in a conductor = (]
D, =0
D2n: iSZGOGrEZn
For a source-free region
D, =0

Conductor-free Space
This is a special case of conductor— dielectric condition:

5 =0
2. Dln — D2n = ps
D, =0 (conductor)
D, =p,=€ E, (free space € = 1)

Poisson’s Equation for Electric Fields
vy =B
(S

A special case of this is when p = 0 (charge-free region).
V2V =0 called as Laplace equation.

Example 13

The potential (scalar) distribution is given as V= 10y + 2x2.
If €  is permittivity of free space, what is the charge density

at the point (3, 0) in %n 5

(A)4e, (B) ~4 e,
©) 8¢, (D) 8¢,
Solution
Poisson equation for electric fields is V2V =— i
€o
V=10y3+ 2x?
2 2
v2, o9V 9w
oy 0z2
Vv =4+60y
P _ 4460y

S

at (2, 0)
[1] —4460x0
€o J0)
Py =AE,
py=—4€,

Capacitance: It is the ratio of magnitude of charge on one
of the plates to the potential difference between them.

0 eJ-E.ds
v [Ea

Parallel-plate capacitor

where A is the area of the plate and
d is the distance between the plates.

C= €€, A

Example 14

A parallel-plate capacitor is shown in the figure. It is made
up of two square plates of 100 mm side. The 4 mm space
between the plate is filled with two layers of dielectric € .=
4,2 mm thick and € =2, 2 mm thick. Neglecting the fringe
fields at the edges, the capacitance is

(A) 2.94 pF (B) 29.4 pF
(C) 5.98 pF (D) 59.8 pF
2mm =4 Cq
2mm =2 Co
Solution

Capacitance is in series

GG
— eE = —
T C+C,
(or)
1 1 1
= —+4+—
Ce, G G

€€, 4 4e€, 4

== d
1 1



€€, A 2€,4

C, =

dy dy
1__ 4 , &
Coy 46,4 2¢,4
d,=d,=2mm

A=100x 100 x 1076 m?

1 B 2mm 3 _ 3x1073
C_eq— 2e, A(A) 2x €, x1072
L_ 0.15
Ceq €,
20
CquGOX ?
=8.82x 10712 x?

=2.94%x10712x20

Ceq =59.8 pF =59.8 pF

Energy stored in a capacitor

Q2

1 1
W,.=—QV=-CV?=
E 2Q 2 2C

(b) Co-axial capacitor
_2mel
tn(%,)

MAGNETOSTATIC FIELDS

A constant current flow produces magnetostatic or static ]

magnetic fields.
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Biot-Savart Law
It states that the magnetic field intensity dH produced at a
point P by the differential current element /d/ is:

1. Proportional to product of /d/ and sine of the angle
between the element and the line joining P to the

element.
2. Inversely proportional to the square of the distance

between P and element.

1d/si
dH o _I;na
Id/sino
W=
Idlxag
dH = 47 R?
R
an = 2
“IR
Id!x R
=k
P
R
d ¥ q

The direction of dH can be determined by the right-
hand thumb rule

H= jdH

X O

(i) (ii)
‘H’ is into the page ‘H’ is out of the page

Line Current Surface Current Volume Current

[dl
Jav
| kds
Iadl Kds Jadv
J-IdlxaR jEdsxaR devxaﬁ
47 R? 47 R? . Am R?
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H due to a Line Current
1. Finite length:

A

B AZ
€
[0]
£ | |%
Q@
[0
c
[0
= o
=]
(&)
A
O
p
p H

1
H =——(cosa, —cos oy )a,
p

2. Semi-infinite length:

o,=0,a,=90°

H=

ayz
47rp¢

3. Infinite length:
o, =180% a, =0

1

= a,
2 p ¢

If a conducting wire of infinite length carrying current
I is placed along the z-axis, the direction of H is along
the tangent of circle drawn at that point with the wire as

o ®
>,

Example 15

Two infinitely long wires carrying current areas shown in
the following figure one wire is in x— plane and parallel to
x-axis. The other wire is in the y—z plane and parallel to the
z-axis. Which components of resulting magnetic field are
non-zero at origin?
(A) x, y, z components
(C) y, z components

(B) x, y components
(D) x, z components

z
1 D
[
_ 7 [
// \\ // // ! !
[’1A -
\/ <\
\
\ | - -
4N /l /// (2)\\
. \\\/ g i | /// > y
——rT
[
[
[
Vo
X
Solution

The magnetic field intensity due to infinite wire is along the
direction of tangent drawn to a circle formed with the wire
as centre through that point.

H due to (1) is along negative y-direction. H due to (2) is
along positive x-direction

H contains only x and y components.

Ampere’s Law

It states that the line integral of tangential component of
magnetic field intensity around a closed path is same as the
net current enclosed by that path. Mathematically,

inl = Ienclosed'

By applying Stokes theorem
[Hdl=[(VxH)ds =l
I s

However,
Ly =[ 7 ds

~[(VxH)ds=[J.ds
S “VxH=J
Applications of Ampere’s Law

Infinite line current:

i
H= mp ay (already derived using Biot—Savarts’ law).

Example 16

The Z-axis carries filamentary current of 514 along a,.
Which of the following is incorrect?

(A) H=—a,Alm at(0,2.5,0)
(B) H=a,4lm at (2.5,%,0)
(C) H=—a,A/m at (2.5,7,0)

(D) H=—a,4/m at (2.5,3% ,0)
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Solution

H due to infinite wire carrying current [ at a distance ‘p’

is H= a

2 p
Sm
H=—"——+
@) 2 x2.5p %
H= a¢
At (0, 2.5, 0), =90°

a(p =—a

Therefore, (a) is correct

) ﬁat(Z,S,%,O):Z;p

H:a¢

X

ay

Therefore, (b) is correct
(c) H at(2.5, 7, 0)

H=ay ),
At (2.5, 7, 0), & = 180°

a —da

o= Y
Therefore, (c) is correct

() Eat(z.s,s%,o)
—
H:27rpa¢ %

H=a,4"

Therefore, option (d) is incorrect.
(i1) Infinite sheet of current:

‘4@

/7 Field lines

z

Current density (fc) = k.a,A/m applying Ampere’s rule to
loop ABCD

Ienclosed = kxb
~pHdl =k b
H= Hya, y>0
- {—Hoaz y<0
$H.dl =(T+T+f+f ]H.dl
4 D C B

D b
along J andJ.H and dl are perpendicular.
A c

Those two will disappear
$H.dl = [Hdi+|Hd
D B

=—-H_ (-b)+ H (b)

Kb=2Hp
ky
H, ==
—“a, y>0
H=
La, y<0
H= l(k><a)
2 n

Magnetic Flux Density (B)

The magnetic flux density is defined as the number of mag-
netic flux lines per unit area, and the direction of flux lines
or tangent to the magnetic flux lines gives the direction of
magnetic flux density.

B and H are related as

B =y H (Wb/m? or T)
— -TH
U, =4rx10 %n

Flux through a surface s is given by

s
Magnetic flux lines are closed lines; therefore, an isolated
magnetic charge does not exist:

9SE.ds =0

Total flux through a closed surface is zero.
Applying divergence theorem to the abovementioned

integral q‘)gds = J(V.B)dv =0

V.B=0

This equation is also referred to as solenoid at property of
magnetic field lines.
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Magnetic Scalar and Vector Potentials

Magnetic scalar potential V, related to H as H = =VV .
If J=0, V,, is only defined in a region where J = 0 (source-
free region) and V_ also satisfies the Laplace equation.

ViV =0
Magnetic vector potential 4 is defined in a such a way that
B=VxA
e JE.&S = I(V X A)d.s

= (]SZ.dl (Stokes theorem)
L
Y= jZ.ae
Example 17

If 4= xya + yzay, then Sf)Z.dl over the path shown in the
following figure.

X

WYy ®o ©Y o

Solution

B_ C_ D_ A_
gﬁA.dl:jAdeAdl jA.dl+jA.dz
A B C D

B_

[4dl= di=d.a,

A

o _ 1
y'”‘}"y"x‘y[’%]% VAR

3
Tz.dl:dlzdy.ay
B

c_ 3 3 P
lA.dl:!ydy{yg]l =26/

D
[ 4di = di =dxa,
C

D _ 13
J.A.dl = _[ xydx
C 2/3

A RIS

A
j Adl = dl =dy.ay
D

3
cﬁz.dl:%—%+23—6—2%
gSZ.dl:—%

Poisson’s equation for magnetostatic fields.

Vid=—p ]

fZ.dl:jﬁ dy = —26
D 3

Lorentz Equation

Force acting on a charged particle moving in an electromag-
netic field is

F=0(F+7xB).

where V is the velocity of charged particle.
Force on a current element:

F = deé x B
L

=jkhx§
N

=J.jdvx§

Magnetic dipole moment: ¢ is defined as the product of
current and area of the loop and its direction is normal to
the loop:

m=1ISa,

where a_ is the normal vector

Torque ()= mX B,
Magnetization (M): It is the magnetic dipole moment per
unit volume and units are Amp/meter

J=VM
In magnetic materials,
B=p, (H+M)
M=y H
X, is the magnetic susceptibility

B=u, (+x,) H
B=p yu H
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Boundary conditions

1. B,,=8B,,
lul Hln = luZ HZn
Normal components of magnetic flux density are
continuous.

2. (H-H)xa,,=K

a_,, is the normal vector divided from medium 1 to 2
for a source-free region K = 0.
H,\ = H,,

Example 18

A current sheet of K = 54, A/m lies on the dielectric
interface x = 0 between two dielectric media with [rl =5,
U, = 2 in region —1 (x < 0) and [rz =5, U, =4 in region
—2 (x > 0). If the magnetic field in region —1 at x = 0 is

Hi = 2a, +20a,A/m, then the magnetic field in region -2
is atx = 0%,

(A) a, +20 a,+5a, A/m
(B) a, +20 a,— 5a, A/m
(€) a,—20 a, + 5a, A/m
(D) a, —20 a, 5—a, A/m
Solution

The tangential field due to a sheet separating two medium
are discontinued by current density

Hy=H, = kxay,
Hy—Hy=5a,xa,
Hy—H, =5a,
Hy,—H, =5a,
H,— 20ay =3a,

Normal components of magnetic flux densities are continuous

Bnl = Bn2
is My Hyy =y,
2x2
Hyp=""=1
4
SHy=Hp+Hnm
Hi= a, +20a, —Sa,
Inductance:
N N Bds
=Y —J_
1 jJ ds
I 2w,
]2
where W_ is the magnetic energy stored in an inductor.

wo= L =lj§.ﬁdv
L 2

=%J.H2dv

Laplace and Poisson Equations in Electric

and Magnetic Fields

Electric field (E)

Magnetic field (M)

E=-VV
D=[[E
VD =p,

V([QE) =py
[VEVV) =p,

VeV = _&

€o
The abovementioned expres-
sion is called Poisson’s equa-
tion for electric field.

Laplace equation for electric
field is expressed as
V2V =0.

B=VxA
B =H
VxH=J

V x [E) =J

Ho
Vx(VxA) = LU
V2A =—llJ

The abovementioned expres-
sion is called Poisson’s equa-
tion for magnetic field.

Laplace equation for magnetic
field is expressed as
V2A = 0.

Summary of Boundary Conditions

Electric field

Magnetic field

1) D,, =D,, (charge free)
(D1 - Ds) o =,

(with surface charge)
2) Ey=E,

3 tan91 _2
tané, &4

(charge free)

1) Bn1 = Bn2

2) H, =H,, (current free)

(E —E).X;nW = E
(with current sheet)

tand, _ o
tand, 4

3

(current free)

Capacitors Inductors
oo c_[)D.ds _Q L:-[B'ds:h
[E-a "V $Hal 1
2
Parallel plate C = 0 A Solenoid L = N-HoA
d d
_€A _ NZ,UA
T d d
Concentric cylinder C Concentric cylinder
_27meyl _ Mol
In(b/a) =5z NE/A)
1 1,0
Wg=—-CV We=—LI
2 2
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Direction for questions 1 to 16: Seclect the correct alterna-
tive from the given choices.

Example 19

The small identical conducting spheres have charges of —1
nC and 2 nC, respectively. If they are brought in contact and
separated by 4 cm, what is the force between them?

(A) 251.1 X 10°N (B) 1.125x 10° N

(C) 1.125N (D) 1.125x 108N
Solution
9x10% x(~1)x2x107'8
F:
16x107*
F=1125x10"°N
Example 20

If Coulomb’s force F'=2a_+ a, +a, and N is acting on a

charge of 10 C, find the electric field intensity.
(A) 0.2a, +0.1a,+0.1a, (B) 2a,+a +a,

(C) 20a, + 10a,+ 10a, (D) 0.2449
Solution
g £ _2ata ta
0 10
E=02a + O.Iay +0.1a,
Example 21

Two wires are carrying in the same direction of 500 A and
800 A are placed with their axes 5 cm apart. Calculate the
force between them.

(A) 04N (B) 0.15N
(C) 0.6 N (D) 0.8N
Solution
I,=500A
I,=800 A
r=5%x102m
B ol 1, B 47 %1077 x 500 x 800
T Armr 4T x5x1072
F= 4 =08N
5
Example 22

A point charge O = 10 nC is at origin in free space. Find
the electric field at P (1, 0, 1). Further, find the electric flux
density at ‘P’.

(A) (0.281x1077) (a, +a,)

(B) (0.281x1079)

(C) 281 (a, +a)

(D) 281.62 (a, +a,)

Solution
D=¢fL= arr?
r2=(1509 1),”'1:(0,0,0)
r=r, r=(1,0,1)
r 10x107°
=~2,a=—=—"""—(a +a)
Tl dmx2xN2 Y
D =(0.281 x 10’9)(ax +a)
Example 23

A circular coil of radius 10 cm is made up of 100 turns.
It carries a current of 5 A. Compute the magnetic field
intensity at the centre of the coil
(A) 25 AT/m

(C) 2,500 AT/m

(B) 250 AT/m
(D) 25 x 103 AT/m

Solution
a=10x10"%m
N=100,I=5A
=M
2a
_100x5
2x%x0.1
H=2,500 AT/m
Example 24

Find T, of seawater whose €. =81 and6=5 U /m
(A) 143.37 ps (B) 14.337 ps
(C) 1.4337 ps (D) 1,433.7 ps

Solution
E=€g,
£=281x8.854x 10712
£=71523x 1071

715231012
5
T.=143.37x 10712

T.=

T.=143.37 ps

Example 25

A parallel-plate capacitor with d = 1 m and plate area 0.8
m? and a dielectric relative permittivity of 2.8. A DC volt of
500V is applied between the plates. Find the energy stored.
(A) 2479 WJ (B) 24.79 WJ

(C) 2479 W) (D) 24.791
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Solution
d=1m,4=08m?¢e=2.8,
and V=500V
C= g de, _ 8.854x10712x0.8%x2.8
d 1
C=19.83 pF

1 1
E= ECV2= > x (500)% x 19.83 x 10 ~12
E=2479 W

Example 26

Two thin parallel wires are carrying current in the same
direction. The force experienced between them is:

(A) Attractive

(B) Repulsive

(C) Perpendicular to their axis joining wires

(D) No force exists

Solution: (A)

Example 27

Laplacian of a scalar function V is:
(A) Divergence of V'

(B) Gradient of V/

(C) Gradient of divergence of V'
(D) Divergence of gradient of V'

Solution: (D)

Example 28

Units of vector magnetic potential are
(A) A/m? (B) A/m (C) Wb/m?

Solution: (A)

(D) Wb/m

Example 29

In a cylindrical conductor of radius 2 mm, the current
density varies with the distance from the axis according to

J=103¢40 A/m? Find the total current /.

(A) 8.894 A (B) 8.964 A
(C) I=8.649 A (D) I=8.268 A
Solution
I= gSJ.ds
r=2mm=0.002 m
27 0.002 27 0.002
/= j j J.drdo = j j 1037497 drdy
¢=0 r=0 $=0 r=0
2 [ _a00, 10002
=10° | {e } do
ool 400 |,

_ 3 2
= 1% [ 10.4493-11d¢

0

-1
= TO (- 0.55067) (21 - 0)
I=8.649 A

Example 30

Calculate the magnetic flux density due to circular coil of
100 AT and area of 70 cm? on the axis of the coil at distance
10 cm from the centre.

(A) 102.7 uT (B) 103.7 uT
(C) 10.27 uT (D) 10.37 uT
Solution
NI=100 AT,
na?=70x 107
d=0.10m

a*=2228x10"*
Magnetic flux density
B UoNla?
2(b* +d? )%
B 4 x1077 x100x22.28 x 10~

3
2(22.28x107* +0.01)2

B=103.7x 10T
B=103.7uT

Example 31

Determine the force per unit length between two long
parallel wires separated by 5 cm in air and carrying currents
of 40 A in the same direction.
(A) 6.4 N/m

(C) 6.4x 1073 N/m

(B) 6.4% 10 N/m
(D) 6.4% 10 N/m

Solution
Moli1,
Force/length = ———
orce/leng 2D
_40x40 A x 10°7
T 2axsxi02 X
=6.4%x 1073 N/m
Example 32
Units of magnetic dipole moment are
(A) A/m (B) Am (C) A/m? (D) Am?
Solution: (A)
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Example 33

Solutions of Laplace’s equation, which are continuous
through the second derivative, are called

(A) Bessel functions

(B) Odd functions

(C) Harmonic functions

(D) Fundamental functions

Solution
Harmonic functions

Example 34

Find volume charge density if the electric field, E = x*a_+
2y2ay +z%a, V/m in a medium whose € =2

(A) p, =35.416x +70.832y + 35.416z C/m?
(B) p, = 35.416x +70.832y C/m’

(C) p,=35.416x +35.416y + 70.832z C/m?
(D) none of these

Solution
E=x%a_+ 2y2ay +z%a, V/m
D=ecE=¢ggk
=8.854x 10 "2 x 2 X (x%a, + 2y2ay +7%a,)
D=17.708x%a_+ 35.416yzay +17.708z%a,, pC/m?

From Maxwell’s equation, we have

VD =Div (D) = %Dx +%Dy +%DZ =p,

p,=35.416x+70.832y + 35.416z C/m?

Practice Problems |
Direction for questions 1 to 20: Select the correct alterna-
tive from the given choices.
1. If a vector field ¥ is related to another vector field 4
through V =Vx A, which of the following is true. ¢

and s_ are any closed contour and any surface whose
boundary is ¢

(A) vdi=[[4ds

B) [Addi= j}i.ds

(€) qS(V ><I7)E= ”(V xZ)..dE
C Sc

©) §(vxa)di=[[vds

Sc

2. If n is the unit normal vector to any closed surface s,

then HJ V.ndv

(A) 0 (B) s (©) % (D) 3s

3. The electric field strength at a distance p due to a point
charge +¢ located on the origin is 10 pv/m. If the point
charge now enclosed by a perfectly conducting metal
sheet whose centre is at the origin, then the electric field
strength at the point p, outside the sphere, becomes

(A) 0 (B) 10 uV/m
(C) 100 uV/m (D) 50 pV/m

4. The infinite plane sheet at z = 6 m, there exists a uni-

800
nC/m? . Then,

form surface charge density of

associated electric field strength is

(A) 30V/m
(C) 324K V/m

(B) 32.4V/m
(D) 324 V/m

5. Electric field lines at the equipotential surface V are
shown in the following figure. Which of the following
is correct?

(A)

(B)

©

(D)

KHM

6. In an electrostatic field,
(A) V.E=0
(C) V.E=0

(B) VXE=0
(D) none of these



7.

10.
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The electric field £, in medium with ¢ = 3¢,
s E=a - S5a, +a, V/m, while medium 2 has
&, =5¢€, and x = 0 is boundary shown in the follow-
ing figure.

5¢,

Then, E> is equal to

(A) 12a, —5a,+a, V/m
B) 0.6a, ~5a, +a, V/m
©) 2a - Sa,+a, V/m
D) a, —a, +5a, V/m

Which of the following are true?
(A) B=V.4 (B) B=Vx4

(C) V.B=0 (D) VXB=p,J

— 2
Magnetic vector potential 4= -p /4 a, . Then, flux

through the surface shown in the following figure is

V4

p=2p=47

(A) 3T
(C) 15T

(B) 5T
(D) 0T

If D=(2y*+2)a, +4xya, +xa,C/m?*, then volume
charge density p_ at (-1, 0, 3) is

(A) zeroC/m? (B) 4C/m?

(C) —4 C/m? (D) 2C/m>

11.

12.

13.

15.

A finite length wire carrying current A is placed along
z-axis as shown in figure below.

V4

A

s

A p
y

45,
The H atP(1, 1, 1)is
(A) %ax A/m (B) _T;ax A/m
© %(%"’%)A/m (D) %(ax—ay)A/m

In the field of a charge Q at the origin, the potentials at
4 (4,0,0)and B (15,0,0) are ¥, =15 v, ¥, =60 v,

respectively. Then, potential at C (2, 0, 0) is

(A) 35V (B) 45V (C) 30V (D) 40V
Find the work done in moving a 5 pc charge from ori-
gin to P(2, —1, 4)m via the straight line path x = —2y,
z = 2x through the field

E = (va, +xa,
(A) 222

(©) 222m]

+xya, )V/m.
B) 1112w
D) 111.2mJ

A A

— A —_—
. Given 4 =yz a +Xya +Xxza, ‘VXA‘ at the point

P(0,1,2)is
(A) 0 B V2 (© B (D) 5

D = (4xy*2 % + 3x%z a, + 2ya, ) nC/m?. Find the
amount of flux passing through the plane defined by x=3;
0<y<2;0<z<1 ina direction away from the origin.
(A) 4nC (B) 3nC (C) 2nC (D) 8nC

Direction for questions 16 and 17:
Select the value of K so that each of the fields satisfy
Maxwell’s equations.

16.

17.

Let D =(5xa, —2ya, +Kza.)pC/m? is defined in
a region with charge-free and perfect dielectric

(A) =3 uC/m’ (B) 3 uC/m?

(C) -2 uC/m? (D) 2 uC/m?
E=(Kx—100f) a, V/mand H = (x +20f)a, A/mina
regionp =0,06=0,and u=0.25 H/m

(A) =5 V/m? (B) +5 V/M?

(©) —%V/mz (D) %V/mz
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18.

19.

20.

The electric flux and field intensity inside a conducting
sphere is
(A) zero
(C) maximum

(B) uniform

(D) minimum

A point charge of Q Coulombs is located at the origin.
Find expression for the electric field at any point in the
free space in spherical coordinates.

__ Q A __ Q A
(&) E_47rer2ar ®) E_47rer2a(p

= Q A = Q _/\
© E_47r-er2a(9 (D) E_47rer2( )

Two infinitely parallel conductors are separated by
a distance 2r and they carry equal and identical

Practice Problems 2

Direction for questions 1 to 15: Select the correct alterna-
tive from the given choices.

1.

Which of the following is not the property of static
magnetic fields?

(A) It is solenoid

(B) It is conservative

(C) It has no sinks or sources

(D) Magnetic flux lines are always closed

Interface of two regions of two magnetic materials
is current free. Region 1 for which relative perme-
ability u, = 2 is defined by z < 0 and region 2. z > 0
has p,=1

If Bi =6a, +0.4a,+0.2a, T, then H1(A/m) =

(A) %[361)( +0.2a, +0.2a, ]

(4]

(B) %[6(1)( +0.4a,+0.2a.]

(4]

© L[, + 0.2a, +0.2a.]

(4]

(D) %[6% +0.4a, +0.1a.]

(4]

. A conductor carrying a current / with a constant cur-

rent density across its cross section, the magnetic field
strength H at any distance (7 < R) from the centre of the
conductor (radius R) is given by (» <R)

r

27 R

r

27 R?

A) H= ®) H=

r r

H=—"— H=—_
(C) 27TR3 (D) 27TR4

currents, as shown in the figure. Find the magnitude
of magnetic field strength midway between these two
fields.

2r —»
(A) |ﬁ| =0 (B) |ﬁ| = oo
(©) \17\ = undefined (D) \ﬁ\ =1

. If V' = coshx cosky.e? is a solution of Laplace equa-

tion, then what is the value of K?

2
(A) 4+ p? (B) P%H
(C) 1+4p? (D) 0

. If the magnetic flux density due to an infinite long wire

. . wb
at 1 mdistanceis B = 21 —- a,, then current =
m

(A) 1A (B) 100A (C) 1,000A (D) 10A

. For any closed surface s, encloses a volume V. Then
[J(VxF).nds =
(A) O B) S © v D)3V

. There are three charges that are given by O, =1 Lc,

0,=4uc,and 0;=8 uc
The field due to each charge at point p in free space is
a,+2a,-3a,a +3a,and a 3ay + 3a,. Then, total

72 X

field at P is due to all charges is
(A) (ay+2a) N/C

B) (a, - 2ay) N/C
©) (a, + 2a+ 3a,) N/C

(D) (a,+ 2ay +3a,) N/C

. Two dielectric media with permittivity 2 and V2 are

separated by a charge-free boundary, as shown in the
figure. The Ei in medium 1 at point P, has magni-
tude £, and makes an angle o, = 30° with normal. The
direction of E> at point P, is 0=

(A) sin™! (\/gj (B) sin™! (\/g)
©) tan—l[\gj (D) 45°



9.

10.

11.

12.

13.
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V = 4x + 2 v, then the electric field is
(A) 4a,V/m (B) 2a,V/m
(C) —4a,V/m (D) —2a,V/m

Current element is represented by 4 x103 a,A/m and it

. . . — 1073
is placed in a magnetic field H = S—ax A/m . Then,
u

the force acting on the element is

(A) 2a,N (B) —2a,N
4
(C©) ON (D) — N
2u
Two infinite long wires carrying current are placed

along z-axis and along a line parallel to z-axis, as shown
in the figure.

N

Find the component in the magnetic field A at QO on
y-axis.

(A) x and y components

(B) Only y components

(C) Only x components

(D) x and z components

Two infinite plane sheets carry equal charge densities of
2x1072C/m? and placed at x=0 and x=2 planes shown
in the figure. The electric displacement at the point
P(3, 0, 0) is shown in the following figure.

(A) 24C/m? a,

(B) —24C/m? a,

© o

(D) 4nC/m? a,

Which of the following system does not form the right-
handed coordinate system?

(A)

X

(B) A
— e e y
X
© x
y
(D) px

14. The line integral of the vector potential A around the

boundary of a surface s represents
(A) scalar potential of the surface
(B) flux density in the surface
(C) flux through the surface

(D) current density

15. A metal sphere with 1 mradius and a surface charge den-

10
sity of P coulomb/m? is enclosed in a cube of 10 m

side. The total outward electric displacement normal to
the surface of the cube is

(A) 0.4 C/m> (B) 4 C/m?

(C) 40 C/m? (D) 400 C/m?
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PREVIiOUs YEARS’ QUESTIONS

2

1. For static electric and magnetic fields in an inhomo- (C) —42_ towards the plate

geneous source-free medium, which of the following l6red?

represents the correct form of two of Maxwell’s equa- q

tions? [2008] (D) P towards the plate

(A) V.E=0 (B) V.E=0 N
VxB=0 V.B=0 7. Given the vector 4 = (cosx)(siny) @ + (sinx) (cosx)

(C) VxE=0 (D) VxE=0 c;; , where c;;,c/z; denote unit vectors along x and y
VxB=0 V.B=0

directions, respectively. The magnitude of curl of 4 is
[2014]

. The electric field (assumed to be one-dimensional)
between two points 4 and B is shown. Let ¥, and ¥y
be the electrostatic potentials at 4 and B, respectively.
The value of W — ¥, in volts is [2014]

2. Consider a closed surface S surrounding a volume V.
If 7 is the position vector of a point inside S, with 7 8

the unit normal on S, the value of the integral SEJS 5.

12011]
(D) 15V

dsSis
(A) 3V B) 5V
Direction for questions 3 and 4:

An infinitely long uniform solid wire of radius a carries a
uniform DC current of density ;

(C) 10V

40 kV/em
3. The magnetic field at a distance » from the centre of

the wire is proportional to [2012] 20 kViem

(A) rforr<aand 1/r*forr>a
(B) 0forr<aandl/rforr>a
(C) rforr<aand l/rforr>a
(D) 0 forr<aand 1/r* forr>a

. A hole of radius b(b < a) is now drilled along the
length of the wire at a distance d from the centre of
the wire, as shown in the following figure.

The magnetic field inside the hole is

(A) uniform and depends only on d

(B) uniform and depends only on b

(C) uniform and depends on both b and d
(D) non-uniform

[2012]

. The divergence of the vector field
A= xa,+ya, +za, is [2013]
(A) 0 B) 1/3 ©) 1 D) 3

. The force on a point charge +g kept at a distance d
from the surface of an infinite grounded metal plate

in a medium of permittivity € is [2014]
A) 0

2
B) 4 away from the plate

l16me d?

10.

11.

0 kV/cm
A B
5um

Given F = zay +xay +ya, If S represents the por-
tion of the sphere x*> + > + z2 = 1 for z > 0, then

[VxFds is [2014]
s

e A A A
If  E=—(2y?-3yz?)x—(6xy* —3xz%) y+(6xyz) 2
is the electric field in a source-free region, a valid
expression for the electrostatic potential is [2014]
(A) x° —y2? (B) 2xy® —xyz?
(C) ¥ +xyz2 (D) 2xy® —3xyz?
Consider a straight, infinitely long, current carrying
conductor lying on the z-axis. Which one of the fol-
lowing plots (in linear scale) qualitatively represents
the dependence of Hy, on 7, where H is the magni-
tude of the azimuthal component of magnetic field
outside the conductor and r is the radial distance from
the conductor? [2015]

(A) Ho

(B) Ho




12.

13.

14.

15.

16.
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© Mo

(D) Ho

r

In a source-free region in vacuum, if the electrostatic
potential ¢ = 2x> + 32 + cz2, the value of constant ¢
must be [2015]

Concentric spherical shells of radii 2m, 3m and 8m
carry uniform surface charge densities of 20nC/m?,
—4nC/m? and p, respectively. The value of p (nC/m?)

required to ensure that the electric flux density 75 — ¢

at radius 10 m is [2016]
The current density in a medium is given
400si g
by j = ()O—Slne ar Am_z.
2m(r2 +4))

The total current and the average current density flow-
ing through the portion of a spherical surface » = 0.8

m, % <6< g, 0 < ¢ < 2m are given respectively, by

[2016]

(A) 15.09A, 12.86Am™
(B) 8.73A, 13.65Am™
(C) 12.86 A, 9.23Am™
(D) 10.28A, 7.56Am™

A uniform and constant magnetic field B = ZB exists
in the Z direction in vacuum. A particle of mass m
with a small charge ¢ is introduced in to this region
with an initial velocity V= XV, + ZV,.Given that
B, m, g, v, and v, are all non zero, which one of the
following describes the eventual trajectory of the
particle? [2016]
VAN
(A) Helical motion in the Z — direction

(B) Circular motion in the xy plane
A
(C) Linear motion in the %\ — direction

(D) Linear motion in the X — direction

The parallel plate capacitor shown in the figure has
movable plates. The capacitor is charged so that the
energy stored in it is £ when the plate separation is d.
the capacitor is then isolated electrically and the plates
are moved such that the plate separation becomes 2d.

17.

18.

At this new plate separation, what is the energy stored

in the capacitor, neglecting fringing effects?  [2016]
(A) 2E B) V2 E

E
©) E (D) >

A positive charge ¢ is placed at x = 0 between two
infinite metal plates placed at x = —d and at x = + d
respectively. The metal plates lie in the yz plane.

[2016]

-d

+q

at x=
[ ]
=+d

x=0

at x

The charge is at rest at # = 0, when a voltage +V is
applied to the plate at —d and voltage —V is applied
to the plate at x = +d. Assume that the quantity of
the charge ¢ is small enough that it does not perturb
the field set up by the metal plates. The time that the
charge ¢ takes to reach the right plate is proportional

to: [2016]
d Jd

(A) = (B) =
d [d

C D =

©) N (D) -

Consider the charge profile shown in the figure. The
resultant potential distribution is best described by

[2016]
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p() ) (B)

! V(X) V(x) 1

. (C) (D)
0 . V(x) 4 V(x)
a « ﬁ
b 0 < b 9 a ;
a X
P> /
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1. B 2. C 3.B 4. C 5. D 6. A 7. A 8. C 9. C 10. B
11. C 12. A 13. C 14. C 15. A

Previous Years’ Questions

1. D 2. D 3. C 4. C 5. D 6. C 7. 0 8. 14.5t0-15.5 9. 3.14
10. D 11. C 12. 3.1t0-2.9 13. —0.25nC/m? 14. A 15. A 16. A 17. C
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