
Chapter 1

Finite Automata
and Regular Languages

FuNdAMeNtAls
Alphabet: An alphabet is a fi nite non-empty set of symbols.

Example: Portion of a calculator: {0, 1, 2, 3 … 9, ÷, =, –, +, ×, (,)}

Note: 1. At least one symbol is necessary.

 2. ‘Σ’ denote Alphabet.

String: A string over an alphabet ‘A’ is a fi nite ordered sequence
of symbols from ‘A’. The length of string is number of symbols in
string, with repetitions counted.

Example: If Σ = {0 – 9, ÷, =, –, +, × (,)} then Strings valid: 12 +
34, 90 × 10, (1 + 2) × (1 ÷ 3)

Strings Invalid: sin (45), log (10) etc. These strings are not valid
because sin (), log () are not defi ned over the alphabet set.

Note: Repetitions are allowed.
Length of |12 + 34| = 5(1, 2, +, 3, 4)

 • The Empty string denoted by ‘e’, is the (unique) string of length
zero.

Note: Empty string, e ≠ empty set, ∅.

 • If S and T are sets of strings, then ST = {xy|x ∈ S and y ∈ T}
 Given an alphabet A,

Ao = {e}
An+1 = A.An

…

A An

n

∗

=

∞

=
0
∪

Languages
 • A language ‘L’ over Σ is any fi nite or infi nite set of strings over Σ.
 • The elements in L are strings – fi nite sequences of symbols.
 • A language which does not contain any elements is called

‘empty language’.

Note: Empty language, { } ≠ {e}, empty string because { } = ∅ ≠
e i.e., Empty language resembles empty set i.e., ∅.

 • A language L over an alphabet A is subset of A* i.e., L ⊂ A*.

Example 1: Language (L) for strings that consists of only 0’s or
only 1’s and have an odd length over alphabet {0, 1} is
(A) {0, 1, 00, 11, 000, 111 …}
(B) {00, 11, 01, 10 …}
(C) {000, 101, 110, 111 …}
(D) {0, 1, 000, 111, 11111, 00000 …}

Solution: (D)
Only 0’s → should have only 0’s. It should not be combination of
0’s and 1’s.
Only 1’s → should have only 1’s. It should not be combination of
0’s and 1’s.
Odd length → only odd number of 0’s or odd number of 1’s i.e.,
length of string should be odd.

  Fundamentals

  Languages

  Operations

  Finite state machine

  NFA with �-moves

  Conversion of NFA to DFA

  Minimization of DFA

  Equivalence between NFA and DFA

  Mealy and Moore machines

  Equivalence of Moore and Mealy machine

  Regular languages

  Constructing FA for given RE

  Pumping lemma for regular sets

  Closure properties of regular sets

  Regular grammar

LEARNING OBJECTIVES

5.4  |  Unit 5  •  Theory of Computation

An Empty Languages  An empty language is a language
which does not accept any strings includinge. The Finite
automata for empty language can be represented as

(i.e., One state, non-accepting and no transitions).
A language which only accepts (e)
E: The language which only accepts ‘e’ can be represented as

This machine accepts E – only.
Σ*: The set of all strings over an alphabet Σ will be denoted
by Σ*.
Σ+: This will denote the set Σ* – {e}.
Ex: If Σ = {0, 1} then
Σ* = {e, 0, 1, 00, 01, 10, 11, 000, 001, …}
Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,}

Operations
Operations on strings

	 1.	 Concatenation: Combines two strings by putting one
after other.

Example 2:  Two strings are defined as x = java, y = script.
The concatenation (x.y) of two strings results in _______.
(A)	 scriptjava	 (B)	 javascript
(C)	 jascriptva	 (D)	 scrijavapt

Solution:  (B)
x.y = java.script = javascript
Note: Concatenation of empty string with any other string
gives string itself.
i.e., x.ε = ε.x = x
	 2.	 Substring: If ‘w’ is a string, then ‘v’ is a substring of

‘w’ if there exists string x and y such that w = xvy.
‘x’ is called ‘prefix’ and y is called suffix of w.

Example 3:  String, w = ‘gymnastics’ is defined with prefix,
x = ‘gym’ and suffix, y = ‘cs’. The substring of the given
string is _______
(A)	 nasti	 (B)	 mnas
(C)	 gymnastics	 (D)	 ics

Solution:  (A)
Because, w = xvy
⇒ gymnastics = gymvcs
∴ v = nasti
	 3.	 Kleen star operation: Let ‘w’ be a string, w* is set of

strings obtained by applying any number of concatena-
tions of w with itself, including empty string.

Example: a* = {ε, a, aa, aaa, …}

	 4.	 Reversal: If ‘w’ is a string, then wR is reversal of string
spelled backwards.

Rules:
•• x = (xR) R

•• (xz)R = zR . xR

Example 4:  A string, x is defined as, x = butter. Then (xR)R
is _______
(A)	 butter	 (B)	 rettub
(C)	 butret	 (D)	 retbut

Solution:  (A)
x → butter
xR → rettub
(xR)R → butter.

Operations on languages
	 1.	 Union: Given some alphabet Σ, for any two languages,

L
1
, L

2
 over Σ, the union L

1
 ∪ L

2
 of L

1
 and L

2
 is the

language, L
1
∪ L

2
 = {w ∈ Σ*|w ∈ L

1
 or w ∈L

2
}

	 2.	 Intersection: Given some alphabet Σ, for any two
languages L

1
, L

2
 over Σ, the intersection L

1
∩ L

2
 of L

1

and L
2
 is language, L

1
∩ L

1
 = {w ∈ Σ*|w ∈ L

1
 and w ∈

L
2
}

	 3.	 Difference: Given some alphabet Σ, for any two
languages L

1
, L

2
 over Σ, the difference L

1
 – L

2
 of L

1
 and

L
2
is language, L

1
 – L

2
 = {w ∈ Σ*|w ∈ L

1
 and w ∉ L

2
}

Note: Difference is also called ‘Relative Complement.’
A special case of difference is obtained when L

1
 = Σ*, in

which case. Complement L of language, L is defined as,
L w w L{ | }= ∈ ∉∗Σ
	 4.	 Concatenation: Given an alphabet Σ, for any two

languages L
1
, L

2
 over Σ, the concatenation L

1
 L

2
 of L

1

and L
2
 is language

L
1
L

2
 = {w ∈ Σ*|∃ u ∈ L

1
, ∃ v ∈L

2
, w = uv}

Properties:
L∅ = ∅ = ∅L
L {e} = L = {e} L
(L

1
∪ {e})L

2
 = L

1
L

2
∪ L

2

L
1
 (L

2
∪ {e}) = L

1
L

2
∪ L

1

Ln L = LLn = Ln+1

Note: L
1
L

2
 ≠ L

2
L

1

Example 5:  Let L
1
 = {00, 11}, L

2
 = {01, 10}. Then L

1
oL

2

= _______
(A)	{00, 11, 01, 10}
(B)	 {0001, 0010, 1101, 1110}
(C)	 {0001, 0010, 11, 01, 10}
(D)	{00, 1101, 1110, 11, 10}

Solution:  (B)
L

1
oL

2
 = {00, 11} o {01, 10} = {00.01, 00.10, 11.01, 11.10}

= {0001, 0010, 1101, 1110}

	 5.	 Kleen * closure (L*): Given an alphabet Σ, for any
language L over Σ, the * closure L* of L is language,

L U Ln
n∗

≥= 0

Chapter 1  •  Finite Automata and Regular Languages  |  5.5

	 6.	 Kleen + closure (L+): The kleen +closure, L+ of L is
the language, L U Ln

n+
≥= 1

L* = L0 ∪ L1 ∪ L2 ∪ … Ln ∪ …
L+ = L1 ∪ L2 ∪ L3 … ∪ Ln ∪ …

Properties:
∅* = {e}
L+ = L*L
(L*)* = L*

L* L* = L*

Finite State Machine (FSM)
•• FSM is simplest computational model of limited memory

computers.
•• FSM is designed to solve decision problems i.e., to decide

whether given input satisfies certain conditions.
•• The next state and output of a FSM is a function of input

and of current state.

Inputs
State
transition
conditions

State Output
conditions Outputs

Types of FSM:

	 1.	 Melay machine.
	 2.	 Moore machine

Finite Automata (FA):

•• FA is a state machine that comprehensively captures all
possible states and transitions that a machine can take
while responding to a stream (sequence) of input symbols.

•• FA is recognizer of ‘regular languages’.

State Machine

Finite state machine
(generates o/p)

Finite automata
(doesn’t generates o/p)

Mealy Moore DFA NFA ∈-NFA

Types of FA
1. Deterministic Finite Automata (DFA):

•• DFA machine can exists in only one state at any given time.
•• DFA is defined by 5-tuple: {Q, Σ, q

0
, F, d}, where

Q → Finite number of states (elements)
Σ → Finite set of symbols (alphabets)
q

o
→ Start/Initial state

F → Set of final states.
δ → �Transition function, which is a mapping between

δ: Q × Σ → Q.

How to use DFA:

Input: A word w in Σ*

Question: Is w acceptable by DFA?

Steps:

•• Start at ‘initial state’, q
o
.

•• For every input symbol in sequence w, do.
•• Compute the next state from current state, given the cur-

rent input symbol in w and transition function.
•• If after all symbols in ‘w’ are consumed, the current state

is one of the final states (f) then accept ‘w’;
•• Otherwise, reject w.

Transition diagram: State machines are represented by
directed graphs called transition (state) diagrams.

•• The vertices denoted by single circle represent the
state and arcs labeled with input symbol correspond to
transition.

•• The final states are represented with double circles.

Transition Table: Transition function can be represented
by tables.

Example 6:  The following finite state machine accepts all
those binary strings in which the numbers of 0’s and 1’s are
respectively.

0

0
1 1

1
1

1
1 1

11

11

1

0

0

1
1

0
0

1

0

00
0

0
0

0

0

q7

q1 q2 q11

q0

q6
q5 q4

q3

q14
q13

q12

q8 q9 q10

0

(A)	 Divisible by 3 and 2	 (B)	 Odd and even
(C)	 Divisible by 5 and 3	 (D)	 Divisible by 2 and 3

Solution:  (C)
Number of 0’s is divisible by 5.
Number of 1’s is divisible by 3.

Table  Transition Table

Current State 0 1

→ q0
q1 q5

q1 q2 q7

q2 q3 q9

q3 q4 q11

q4 q0 q13

q5 q7 q6

q6 q8 q0

q7 q9 q8

q8 q10 q1

5.6  |  Unit 5  •  Theory of Computation

q9 q11 q10

q10 q12 q2

q11 q13 q12

q12 q14 q3

q13 q0 q14

q14 q6 q4

Note: Minimum number of states for k-divisibility is
k-states.
In above example, q

0
 – q

14
 → 15 – states.

∴  5 × 3 = 15
The given binary strings have number of 0’s divisible by 5
and number of 1’s divisible by 3.

2.  Non-deterministic finite Automata (NFA):

•• The machine can exist in multiple states at the same time.
•• Each transition function maps to a set of states.
•• NFA is defined by 5-tuple: {Q, Σ, q

0
, F, d}, where

Q → Finite number of states (elements)
Σ → Finite set of symbols. (Alphabets)
q

o
 → Start/Initial state

F → Set of final states.
d → Transition function which is a mapping between
δ = Q × Σ → 2Q

How to use NFA:
Input: a word w in Σ*

Question: Is w accepted by NFA?
Steps:

•• Start at ‘start state’ q
0
.

•• For every input symbol in the sequence, w does.
•• Determine all possible next states from current state, given

the current input symbol in w and transition function.
•• If after all symbols in w are consumed, at least one of the

current states is a final state then accept w.
•• Otherwise, reject w.

Example 7:  What is the language, L generated by the
below NFA, given strings defined over alphabet, Σ = {0, 1}.

0,1 0

0q0
1q1 q2

	 (A)	 Strings that end with ‘0’
	 (B)	 Strings that start with ‘0’ and end with ‘0’
	 (C)	 Strings that contain ‘01’ as substring
	 (D)	 Strings that contain ‘01’ as substring and end with ‘0’

Solution:  (D)

State 0 1
 → q0

{q0, q1} {q0}

q1 ∅ q2

q2 {q2} ∅

String: 0100100

q q q0
0

0 1 → { , }

q q q q q0
0

0
1

0
0

0 1 →  →  → { , }

q q q q q q0
0

0
1

0
0

0
0

0 1 →  →  →  → { , }

q q q q q01
0

0
0 0 1

0 →  →  → { , } (Non-deterministic)

q q q q q q0
0

0
1

0
0

0
0

0 1 →  →  →  → { , }

q q q q1
1

2
0

2
0

2 →  →  →

Table 2  Difference between NFA and DFA

DFA NFA

1. �All transitions are deter-
ministic i.e., each transition
leads to exactly one state.

1. �Transitions could be non-
deterministic i.e., a transition
could lead to a subset of
states.

2. �For each state, the transition
on all possible symbols
should be defined.

2. �For each state, not all sym-
bols necessarily have to be
defined.

3. �Accepts input if last state is
in ‘F’.

3. �Accepts input if one of last
states is in ‘F’.

4. �Practical implementation is
feasible.

4. �Practical implementation
has to be deterministic (so
needs conversion to DFA).

Relation between DFA and NFA

•• A language ‘L’ is accepted by a DFA if and only if it is
accepted by a NFA.

•• Every DFA is special case of a NFA.

Example 8:  Let N
f
 and D

f
 denote the classes of languages

accepted by non-deterministic finite automata and deterministic
finite automata respectively. Which one of following is true?
	 (A)	 D

f
 ⊂ N

f	
(B)	 D

f
 ⊃ N

f

	 (C)	 D
f
 = N

f
	 (D)	 D

f
 ∈ N

f

Solution:  (C)
According to ‘subset construction’, every language accepted
by NFA is also accepted by some DFA.
∴  D

f
 = N

f

NFA with ∈-Moves
•• ∈-transitions in finite automata allows a state to jump to

another state without consuming any input symbol.

Conversion and Equivalence:

∈-NFA → NFA → DFA

NFA without ∈-moves:

•• Two FA, N∈ and N are said to be equivalent, if L(N∈) =
L(N) i.e., any language described by some N∈, there is an
N that accepts the same language.

•• For N∈ = (Q, Z, d, q
0
, F) and N = (Q, Σ′, d ′, q

0
, F′ ), Find

•• d ′(q, a) = ∈-closure (δ(∈-closure(q), a))

Chapter 1  •  Finite Automata and Regular Languages  |  5.7

•• F ′ = {F ∪ {q
0
}}, if ∈-closure (q

0
) contains a member of

F = F, otherwise.

Note: When transforming N∈ to N, only transitions are
required to be changed and states remains same.

Example 9:  Consider following NFA with ∈-moves.

q0 q1 q2 q3

a
a b∈

∈

If given NFA is converted to NFA without ∈-moves, which
of following denotes set of final states?
(A)	{q

0
, q

1
}	 (B)	 {q

1
, q

2
}

(C)	 {q
1
, q

2
, q

3
}	 (D)	 {q

1
}

Solution:  Let N = (Q, Σ1, δ1, q
0
, F1)

F1 = F ∪ {q
0
}

ε-closure (q
0
) = {q

0
, q

1
}

∴ F1 = {q
1
} ∪ {q

0
, q

1
} = {q

0
, q

1
}

Conversion N∈→N:
To compute, δ1

∈-closure (q
0
) = {q

0
, q

1
}, ∈-closure (q

3
) = {q

3
, q

1
}

δ1(q
0
, a) = {q

1
, q

2
}, δ1(q

0
, b) = ∅, d1(q

2
, a) = ∅.

δ1(q
1
, a) = {q

1
, q

2
}, δ1(q

1
, b) = ∅, d1(q

2
, b) = {q

1
, q

3
}

δ1(q
3
, a) = {q

1
, q

2
}, δ1(q

3
, b) = ∅

Table 3  Transition Table

Input
State a b

→ q0
{q1, q2} ∅

q1 {q1, q2} ∅

q2 ∅ {q1, q3}

q3 {q1, q2} ∅

q1

q0 q2 q3

a

a
a

a

a

a

b

b

Figure 1  Transition diagram

Conversion of NFA to DFA
Let a NFA be defined as, N = (Q

N
, Σ, δ

N
, q

0
, F

N
)

The equivalent DFA, D = (Q
D
, Σ, δ

D
, q

0
, F

D
) where:

Step I: QD
QN= 2 ;  i.e., Q

D
 is set of all subsets of Q

N
 i.e., it is

power set of Q
N
.

Step II: F
D
 is set of subsets S of Q

N
 such that S ∩ F

N
 ≠

∅. i.e., F
D
 is all sets of N’s states that include atleast one

accepting state of N.
Step III: For each set, S ≤ Q

N
 and for each input symbol a in

Σ : (,) (,) δ δD P S NS a P a= ∪ ∈

That is, to compute δ
D
(S, a), look at all states P in S, see

what states N goes to starting from P on input a, and take
the union of all those states.

Note: For any NFA, N with ‘n’ states, the corresponding
DFA, D can have 2n states.

Example 10:  What is the number of final states in DFA
constructed from the given NFA?

a

a b
b
b

b

b

a, b

1

20

4

3

a, b

a, b

a, b

(A)	 1	 (B)	 2
(C)	 3	 (D)	 4

Solution:
Table 4  Transition Table of NFA

Input
State a b

 → 0 {1, 2, 3} {2, 3}

 1 {1, 2} {2, 3}

 2 ∅ {2, 3, 4}

 3 {4} {3, 4}

 4 ∅ ∅

Table 5  Transition Table of DFA

Input
State a b

 →0 [1, 2, 3] [2, 3]

1 [1, 2] [2, 3]

2 ∅ [2, 3, 4]

3 4 [3, 4]

4 ∅ ∅
[1, 2] [1, 2] [2, 3, 4]

[2, 3] [4] [2, 3, 4]

[3, 4] [4] [3, 4]

[1, 2, 3] [1, 2, 4] [2, 3, 4]

[1, 2, 4] [1, 2] [2, 3, 4]

[2, 3, 4] [4] [2, 3, 4]

Hence final states in obtained DFA is ‘4’.

DFA is: Choice (D)

5.8  |  Unit 5  •  Theory of Computation

1
3

b

0

a

2

[1, 2, 4]

[2, 3, 4]

[1, 2]

[2, 3]

[3, 4]

4

[1, 2, 3]

b

b

b

bb

b b b
b

a a

a

a

a
a a

a

Minimization of DFA

Given a DFA, M Q q F= (, , , ,), Σ δ 0 we construct a reduced

DFA, ′ = ′ ′ ′ ′ ′()M Q q F, , , , Σ δ 0 as follows

	 1.	 Remove all inaccessible states. All states that are
unreachable from the initial state are removed.

	 2.	 Consider all pairs of states (p, q), If p ∈ F and q ∈ F
or vice versa mark the pair (p, q) as distinguishable.

	 3.	 Repeat until no previously unmarked pairs are

marked. For all pairs (p, q) and all a ∈ Σ, compute

δ δ(,) (,) .p a p p q qa a and = = If the pair (p
a
, q

a
) is

marked as distinguishable mark (p, q) as distinguishable.
	 4.	 Find the sets of all indistinguishable states, say

{ , , }, { , , },q q q q q qi j k m n � �� etc. For each set
{q

i
, q

j
, … q

k
} of such indistinguishable states, create

a state labelled ij … k for M.

	 5.	 For each transition rule of M of the from δ (,) ,q q qr p =
find the sets to which q

r
 and q

p
 belong. If q

r
 ∈ {q

i
,q

j
,

… q
k
} and q

p
e { , , },q q qm n� � add a rule to δ :

′ … = …δ (,) .ij k a m n �

Example 11:  A DFA with alphabet Σ = {a, b} is given below:

53

1

2 4

a

aa

a

b
b b

b

a, b

Which of the following is valid minimal DFA which accepts
same language as given DFA?

(A)

bb
a

b b
a, b

a
a1 3 5

4

(B)	

b
b
a1

3

2

a

(C)	 1 3 4

a
b

a, b

b

a

(D)	 1 2

5

aa
b

b

Solution:  (B)
Initially, {1, 5}, {2, 3, 4}
Depending on next states and inputs, the partitions of states
can be as: {{1, 5}, {2}, {3}, and {4}}
Since, 1 to 5 have same transition, unite {1, 5}
State 4 is dead state → It has transition only to itself.
Since, {2}, {3} are singletons, they exist.
∴ States in minimized DFA are {1, 2, and 3}
{1} → {1, 5}
For transitions, since 1 3 1a b →  →, 2 in given DFA,
in minimized DFA, transitions are added from
1 3 1 2a b →  →, . Also, since 2 1b a →  →1 3, in
given DFA, the minimized DFA, transitions are added from
2 1 3 1b a →  →, .

Equivalence Between NFA
and DFA
There is a DFA

D
 for any NFA

N
 i.e.,

L (D) = L (N).

Construction:

•• In DFA or NFA, whenever an arrow is followed, there is
a set of possible states. This set of states is a subset of Q.

•• Track the information about subsets of states that can be
reached from initial state after following arrows.

•• Consider each subset of states of NFA as a state of DFA
and every subset of states containing a final state as a final
state of DFA.

Example 12:  Which of following is equivalent DFA for the
NFA given below:

q1
d

d d

d

c

c

c c

q4

q2 q3

Chapter 1  •  Finite Automata and Regular Languages  |  5.9

(A)	
q1

c

d d

d

c

cq2

q3

(B)	

q1

c

d

d

dcc

q3

q2

(C)	
q1

c

c c

d
d

d

q4

q3

(D)	 q1
c

dc, d

q2

Solution:  (A)

Table 6  Transition Table of NFA

d c d

→ q1
q1 {q2, q4}

q2 q3 q1

q3 q4 q3

q4 q3 ∅

Table 7  Transition Table of DFA

d c d

→ q1
q1 q2

q2 q3 q1

q3 q2 q1

Table 8  Common Table

d c d

(q1, q1) (q1, q1) (q2, q4, q2)

(q2, q2) (q3, q3) (q1, q1)

(q3, q3) (q4, q2) (q3, q3)

(q4) q3 ∅

Equivalence of Finite Automatas:

•• Two automatas A and B are said to be equivalent if both
accept exactly the same set of input strings.

•• If two automatas M
1
 and M

2
 are equivalent then

	 (i)	 If there is a path from the start state of M
1

to a final
state of M

1
 labeled a

1
a

2
 … a

k
 then there is a path from

the start state of M
2
 to the final state of M

2
 labeled

a
1
a

2
… a

k
.

	(ii)	 If there is a path from the start state of M
2
 to a final state

M
2
 labeled b

1
b

2
… b

i
 then there is a path from the start

state of M
1
to the final state of M

1
labeled b

1
b

2
… b

i
 .

Example:

q0

M1

1

0
0

0

1

1 q1

q2

M
2
:

p0

0

1

1

1

1 0

0

0

p1

p3 p2

In M
2
, states p

1
 and p

3
 are equivalent (as both are reaching

either final or non-final states with same input). After mini-
mizing M

2
,

we will get

p0

p2

p1p3

0

1

1

0 0

1

\ M
1
 and M

2
 are equivalent.

Union: The union of two languages L and M is the set of
strings that are in both L and M.
Ex: L = {0, 1}, M = {111}
L U M = {0, 1,111}.

Concatenation: The concatenation of Languages L and M
is the set of strings that can be formed by taking any string
in L and concatenating it with any string in M.

Example: L = {0, 1}, M = {e, 010}
LM = {0, 1, 0010, 1010}.

5.10  |  Unit 5  •  Theory of Computation

Closure, Star or Kleen star of a language L:
Kleen star is denoted as L*. It represents the set of strings that
can be formed by taking any number of strings from L with
repetition and concatenating them. It is a Unary operator.
L0 is the set; we can make selecting zero strings from L.
L0 = {e}
L1 is the language consisting of selecting one string from L.
L2 is the language consisting of concatenations selecting
two strings from L.
…
L* is the union of L0, L1 , …L∞.
Ex: L = {0,10}
L* = {0,00,000,10,010, …}

Intersection:
Let two DFAs M

1
 and M

2
 accept the languages L

1
and L

2
.

M
1
 = (Q

1
, Σ, d

1
, q

0
1, .F

1
)

M
2
 = (Q

2
, Σ, d

2,
q

0
2, F

2
)

The intersection of M
1
 and M

2
 can be given as

M = (Q
1
, Σ, d, q

0
 F)

Q = Pairs of states, one from M
1
 and one from M

2
 i.e.,

Q = {(q
1
, q

2
) | q

1
 ∈ Q

1
 and q

2
 ∈ Q

2
}

Q = Q
1
 × Q

2
.

q
0

 = (q
0
1, q

0
2)

d (q
i
1 q

j
2), x) = (d

1
(q

1
1, x), d

2
(q

j
2, x))

F = {(q
1
, q

2
) | q

1
, ∈ F

1
 and q

2
∈ F

2
}

Example:
M

1
: Strings with even number of 1’s.

q0
1 q1

1

0 0
1

1

M
2
: Strings with odd number of 0’s.

q0
2 q1

2

1 1
0

0

M
1
 ∩ M

2
: Strings with even number of 1’s and odd number

of 0’s.

q0
2 q0

1 q0
2 q1

2

q0
2q1

2 q1
2 q1

2

0

0

0

111 1

0

Union of M
1
 and M

2
:

q0
2q0

1 q1
2

q0
2q1

1 q1
2

0

0

0

111 1

0

q0
1

q1
1

Difference: The difference of L
1
 and L

2
 can be given as

L
1
 - L

2
 with M = (Q, ∑, d, q

0
, F).

Q = Q
1
 × Q

2

q
0

 = (q
0

1, q
0

2)

d ((q
i
1, q

j
2), x) = (d

1
 (q

i
1, x), d

2
(q

j
2, x))

F = {(q
1
, q

2
) | q

1
, ∈ F

1
 and q

2
 ∉ F

2
}

q0
2q0

1 q1
2

q1
1

0

0

0

111 1

0

q0
1

q0
2 q1

1q1
2

Reversing a DFA:

•• M is a DFA which recognizes the language L.
•• MR will accept the language LR.

To construct MR:

•• Reverse all transitions
•• Turn the start state to final state
•• Turn the final states to start state.
•• Merge states and modify the FA,

such that the resultant contain a single start state.

Mealy and Moore Machines

Moore Machine
A moore machine is a finite state machine, where outputs
are determined by current state alone.

A Moore machine associates an output symbol with each
state and each time a state is entered, an output is obtained
simultaneously. So, first output always occurs as soon as
machine starts.

Chapter 1  •  Finite Automata and Regular Languages  |  5.11

Moore machine is defined by 6-tuples:
(Q, Σ, δ, q

0
, ∆, λ), where

Q → Finite set of states
 Σ → Finite set of input symbols
 ∆ → It is an output alphabet
  δ → Transition function, Q × Σ → Q (state function)
 λ → Output function, Q → ∆ (machine function)
q

0
 → Initial state of machine

Note: The output symbol at a given time depends only on
present state of moore machine.

Example 13:  The language generated by the following
moore machine is:

0

1

1

1 0
q0/0

0

q1/1

q2/0

(A)	2’s complement of binary number.
(B)	 1’s complement of binary number.
(C)	 Has a substring 101.
(D)	Has a substring 110.

Solution:  (B)
Binary number: 1011
1’s complement: 0100

q q q q q0
1 0

2
0 1

1
1 0

2
1 0

2
/ / / /, →  →  →  →

1 → 0, 0 → 1, 1 → 0, 1 → 0

Mealy Machine
•• A mealy machine is a FSM, where outputs are determined

by current state and input.
•• It associates an output symbol with each transition and

the output depends on current input.
•• Mealy machine is defined on 6-tuples: (Q, Σ, δ, q

0
, ∆, λ),

where

Q – Finite set of states.
Σ – Finite set of input symbols.
δ – (Q × Σ → Q) is transition function.
q

0
 → q

0
 ∈ Q is initial state.

∆ → Finite set of output symbols.
l → Output function, l(Q → ∆)

Note: In Moore machine, for input string of length n, the
output sequence consists of (n + 1) symbols.

In Mealy machine, for input string of length n, the output
sequence also consists of ‘n’ symbols.

Example 14:  Let (Me)2 mean that given a Mealy machine,
an input string is processed and then output string is
immediately fed into the machine (as input) and reprocessed.

Only this second resultant output is considered as the final
output of (Me)2. If final output string is same as original
input string then (Me)2 has an identity property. Consider
following machines.

	 (i)	
0/1, 1/0

	 (ii)	
0/0, 1/1

	 (iii)	 0/0, 1/1
0/1, 1/0

Which of above machines have identity property?
(A)	 (i) only
(B)	 (i) and (ii) but not (iii)
(C)	 (i) and (iii) but not (ii)
(D)	 All have identity property

Solution:  (D)

(i)	 Consider i/p string

↓

↓ ↓ ↓ ↓

↓ ↓ ↓

0 01 1

1

1 1

10

0 0

0o/p string

o/p string

(Input string
reprocessed)

(ii)

↓

↓ ↓ ↓ ↓

↓ ↓ ↓
i/p string:

o/p string:

o/p string:

(i/p string)

0 01

0 01 1

0 01 1

1

(iii)

↓

↓ ↓ ↓ ↓

↓ ↓ ↓
i/p string:

o/p string:

o/p string:

(i/p string)

1 10

1 01 1

1 10 0

0

Equivalence of Moore and Mealy machine

(a) Mealy machine equivalent to Moore machine:
If M

1
 = (Q, Σ, D, d, l, q

0
) is a Moore machine, then there is

a Mealy machine M
2
 equivalent to M

1
.

Proof: Let M
2
= (Q, Σ, D, d, l1, q

0
) and define l1 (q, a) to be

l(d (q, a)) for all states q and input symbol ‘a’.
Then M

1
 and M

2
 enter the same sequence of states on the

same input, and with each transition M
2
 emits the o/p that

M
1
 associates with the state entered.

Let us consider Mealy Machine

5.12  |  Unit 5  •  Theory of Computation

Present
State

Next State

Input
State

a = 0
Output

Input
State

a = 1
Output

→ q1
q3 0 q2 0

q2 q1 1 q4 0

q3 q2 1 q1 1

q4 q4 1 q3 0

To convert the Mealy machine to Moore machine,

•• We look into the next state column for any state, say q
i

and determine the number of different outputs associated
with q

i
 in next column.

•• Split q
i
 into several different states, the number of such

states being equal to the number of different outputs asso-
ciated with q

i
.

Present
State

Next State

Input
State

a = 0
Output

Input
State

a = 1
Output

→ q1
q3 0 q20 0

q20 q1 1 q40 0

q21 q1 1 q40 0

q3 q21 1 q1 1

q40 q41 1 q3 0

q41 q41 1 q3 0

•• The pair of states and outputs in the next state column can
be rearranged as:

Present
state

Next State

outputa = 0 a = 1

→ q1
q3 q20 1

q20 q1 q40 0

q21 q1 q40 1

q3 q21 q1 0

q40 q41 q3 0

q41 q41 q3 1

Moore machine equivalent to Mealy machine
Let M

1
 = (Q, Σ, D, d, l, q

0
) be a Mealy machine. Then there

is a machine M
2
 equivalent to M

1

Proof:	 Let M
2
 = (QXD, Σ, D, d1, l1, [q

0
, b

0
]), where b

0
 is an

arbitrary selected member of D.
That is, the states of M

2
 are pairs [q, b] consisting of a

state of M
1
 and output symbol, Define d1 ([q, b], a) = [d (q,

a), l, (q, a)] and l1 ([q, b]) = b.
The second component of a state [q, b] of M

2
 is the out-

put made by M
1
 on some transition into state q.

Only the first components of M
2
’s states determine the

moves made by M
2
.

Every induction on ‘n’ shows that if M
1
 enters states q

0
, q

1

… q
n
 on inputs a

1
, a

2
… a

n
 and emits output b

1
, b

2
,

… b

n
 then

M
2
 enters states [q

0
, b

0
], [q

1
, b

1
]

… [q

n
, b

n
] and emits outputs

b
0
, b

1
… b

n
.

Let us consider the Moore machine

Present
State

Next State

Outputa = 0 a = 1

→ q0
q3 q1 0

q1 q1 q2 1

q2 q2 q3 0

q3 q3 q0 0

•• To convert Moore into Mealy machine, we must follow
the reverse procedure of converting Mealy machine into
Moore machine.

•• For every input symbol we form, the pair consisting of the
next state and the corresponding output and reconstruct
the table for Mealy machine.

•• For example, the state q
3
 and q

1
 in the next state column

should be associated with outputs 0 and 1, respectively.

The Transition table for Mealy machine is:

Present
state

Next State

a = 0
state output

a = 1
state output

→ q0
q3 0 q1 1

q1 q1 1 q2 0

q2 q2 0 q3 0

q3 q3 0 q0 0

Regular Languages
The set of regular languages over an alphabet Σ is defined
recursively as below. Any language belonging to this set is a
regular language over Σ.

Definition of set of regular languages

•• Basis clause: ∅, {ε}, {a} for any symbol a ∈ Σ, are regu-
lar languages.

•• Inductive clause: If L
r
 and L

s
 are regular languages, then

L
r
∪ L

s
, L

r
 . L

s
, L

r
* are regular languages.

•• External clause: Nothing is a regular language, unless it is
obtained from above two clauses.

Regular language: Any language represented by regular
expression(s) is called a regular language.
Ex: The regular expression a* denotes a language which has
{e, a, aa, aaa, …}

Regular expression

•• Regular expressions are used to denote regular languages.
•• The set of regular expressions over an alphabet Σ is

defined recursively as below. Any element of that set is a
regular expression.

Chapter 1  •  Finite Automata and Regular Languages  |  5.13

•• Basis clause: ∅, ∈, a are regular expression correspond-
ing to languages ∅, {∈}, {a} respectively where a is an
element of Σ.

•• Inductive clause: If r and s are regular expression corre-
sponding to languages L

r
 and L

s
 then (r + s), (rs) and (r*)

are regular expressions corresponding to the languages
L

r
∪ L

s
, L

r
 . L

s
 and Lr*respectively.

•• External clause: Nothing is a regular expression, unless it
is obtained from above two clauses.

Closure property of regular expressions  The iteration or
closure of a regular expression R, written as R* is also a
regular expression.
Ex: ∑ = {a} then a* denotes the closure of ∑.
a* = {e, a, aa, aaa, …}

Conventions on regular expressions

	 1.	 The operation ‘*’ has highest precedence over concat-
enation, which has precedence over union (+).

		 i.e., RE (a + (b(c*))) = a + bc*

	 2.	 The concatenation of K r’s, where r is a regular expres-
sion is written as rk. The language corresponding to rk
is L

r
k. Where L

r
 is language corresponding to regular

expression r i.e., rr = r2

	 3.	 r+ is a regular expression to represent L
r
+

Note:  A regular expression is not unique for a language
i.e., regular language corresponds to more than one regular
expression.

Example 15:  Give regular expression for set of strings
which either have ‘a’ followed by some b’s or all b’s also
containing ‘ε’.
(A)	 b* + ab*	 (B)	 a* + ba*

(C)	 (ε) + (ε + a) b+	 (D)	 b* + ab* + ε
Solution:  (C)
The regular expression is, r = ab+ + b+ + ε = b+ (a + ε) + ε.
Identity rules for regular expressions:
  1.	 ∅ + R = R
  2.	 ∅ . R = R∅ = ∅
  3.	 εR = Rε = R
  4.	 ∅* = ε and ε* = ε
  5.	 R + R = R
  6.	 RR* = R* R = R+

  7.	 ε + RR* = R* and ε + R* R = R*

  8.	 (R*)* = R*

  9.	 R* R* = R*

10.	 ε + R* = R*

11.	 (R + ε)* = R*

12.	 R*(ε + R)* = (ε + R)* R* = R*

13.	 R* R + R = R* R
14.	 (P + Q)R = PQ + QR and R(P + Q) = RP + RQ
15.	 (P + Q)* = (P* Q*)* = (P* + Q*)*

16.	 (PQ)* P = P (QP)*

17.	� R is given as, R = Q + RP has unique solution, R = QP*.
This is Arden’s theorem.

18.	 (P + Q)* = (P* + Q) = (P + Q*)

Example 16:  If r
1
 and r

2
 are regular expressions denoting

languages L
1
 and L

2
 respectively then which of following is

false?
(A)	 (r

1
)| (r

2
) is regular expression denoting L

1
∪ L

2
.

(B)	 (r
1
) (r

2
) is regular expression denoting L

1
 . L

2
.

(C)	 ∅ is not a regular expression.
(D)	 {r

1
}* is regular expression denoting L

1
*.

Solution:  (C)

Constructing FA for Given RE
•• Relationship between FA and RE.

Regular
exp

NFA with
e-moves

NFA
without e

DFA
Minimal

DFA

Identities:
Basis:

; // Initial state = Final stateq1r = ε

; // Unreachable stateqfq0r = ∅⇒

qfq0r = a ⇒ a

Induction:

•• Union: L(r) = L (r
1
) + L (r

2
) i.e., L (M) = L (M

1
) ∪ L (M

2
)

Let M
1
 = (Q

1
, Σ

1
, δ

1
, q

1
, {f

1
}), M

2
 = (Q

2
, Σ

2
, δ

2
, q

2
, {f

2
}) with

L (M
1
) = L (r

1
) and L (M

2
) = L (r

2
), then M = (Q

1
∪ Q

2
∪ {q

0
,

f
0
}, Σ

1
∪ Σ

2
, δ, q

0
, {f

0
})

q0

M1

M2

ε

ε

q1 f1 ε

εq2 f2

f0

•• Concatenation:
L(r) = L (r

1
) . L (r

2
) i.e., L (M) = L (M

1
) . L (M

2
)

q1 f1M1 M2
ε q2 f2

•• Closure:

L(r) = L(r)* i.e., L (M) = L (M
1
)*

Let M
1
 = (Q

1
, Σ

1
, δ

1
, q

1
, {f

1
}) then L (M) = (Q

1
∪ {q

0
,

f
0
}, Σ

1
,

δ, q
0
, {f

0
})

q0 q1 f1M1
ε

ε

ε

ε

f0

5.14  |  Unit 5  •  Theory of Computation

Example 17:  The regular expression generated by the
given FA.

q0
a

a

b

a

b
b

b
q1

q2 q3

(A)	 (a + ba*) b*	 (B)	 (aa*b + bb*) b*

(C)	 (b + ab*) a*	 (D)	 (ab + ba)*

Solution:  (B)
q

2
 is final state which is obtained with input symbol only

‘b’. So, (C) or (D) is not true.
In (A) → ba* is not defined in given FA. Instead bb* is

defined.

Pumping Lemma for Regular Sets
Theorem  Let ‘L’ be an arbitrary regular language. Then
there exists a positive integer, P with following property:

Given an arbitrary member, w of L having length at least
P (i.e., |w|≥P), w can be divided into 3-parts, w = xyz ∃
•• |y| ≥ 1 (the middle part is non-empty)
•• |xy| ≤ P (the first two parts have length atmost P)
•• For each, i ≥ 0, xyiz ∈ L (removing or repeating the middle

part produces member of L)

Proof  Let L be an arbitrary regular language. Then there is
a FA, say M that decides L.
Let P be the number of states of M.
Let w be an arbitrary member of L, having length ‘n’ with
n ≥ P.
Let q

0
, q

1
, … q

n
 be states that M on input w. That is, for each

i, after reading the first i symbols of w, M is at q
i
.

q
0
 is initial state of M. Also, since w ∈ L, q

n
 is a final state

of M.
Let x = w

1
 … w

c
, y = w

c+4
 … w

d
, z = w

d+1
 … w

n
. Then:

•• |y| ≥ 1
•• |xy| ≤ P
•• M transitions from q

0
 to q

c
 on x.

•• M transitions from q
c
 to q

c
 on y.

•• M transitions from q
c
 to q

n
 on z.

Thus, for every i ≥ 0, M transitions from q
0
 to q

n
 on xyiz and

so, xyiz is a member of L.

Note:

•• Pumping lemma is used to verify that given language is
not regular.

•• Pumping lemma follows pigeon hole principle.

Example 18:  The language, L is defined as:
L = {w

1
w

2
 : w

1
, w

2
∈ {a, b}*, |w

1
| = |w

2
|}. Is the language

regular?

(A)	 Regular
(B)	 Not regular
(C)	 Cannot be determined
(D)	 None of these

Solution:  (A)
Fix pumping length, K = 2
For every proper strings in L, (2n ≥ 2)

n n

abbba . . . aaaabb/bbaba . . .

•• Split in x, y, z with desired properties.

n n

zy
abbba . . . aaaabb|bbaba . . .

•• Let x = ε, y = first two symbols, z = rest.

n + 1n + 1
Z

→ xy 2
 z ∈L

y y
ababbba . . . aaaab|bbbbaba . . .

•• xy3z:

n + 2n + 2 z

y y
abababbba . . . aaa∈La|bbbbbaba . . .

y

•• xyoz →

n − 1n − 1

z

bba . . . aaa∈Labb|aba . . .

∴ For every i ≥ 0, xyi z ∈ L. Hence given language is regular.

Closure Properties of
Regular Sets
	 1.	 Union: If L and M are regular languages, LUM is reg-

ular language closed under union.
	 2.	 Concatenation and Kleen closure: If L and M are

regular languages, L.M is regular language and L* is
also regular.

	 3.	 Intersection: L ∩ M is regular, if L and M are regular
languages.

	 4.	 Difference: L – M contains strings in ‘L’ but not M,
where L and M are regular languages.

	 5.	 Complementation: The complement of language L is
Σ*–L.

Note: Since Σ* is surely regular, the complement of a reg-
ular language is always regular. Where Σ* is a universal
language.

	 6.	 Homomorphism: If L is a regular language, h is
homomorphism on its alphabet then h (L) = {h (w) |w
is in L} is also a regular language.

Chapter 1  •  Finite Automata and Regular Languages  |  5.15

Regular grammar

•• Grammar: Generative description of a language.
•• Automaton: Analytical description.
•• A grammar is a 4-tuple, G = (V, Σ, R, S) where V: alpha-

bet (variable) (non-terminals)

Σ ⊆ V is set of terminal symbols.
R ⊆ (V+ × V*) is a finite set of production rules.
S ∈ V – Σ is start symbol.

Notation

•• Elements of V – Σ: A, B, …
•• Elements of Σ: a, b …
•• Rules (,) :α β α β α β or ∈ →  →R

G

•• Start symbol is written as S.
•• Empty word: ε

Example 19:  The regular expression that describe the
language generated by grammar, G = ({S, A, B}, {a, b}, S,
{S → Aab, A → Aab|B, B → a}
(A)	 (ab) * a	 (B)	 aab(ab)*

(C)	 ab * aa	 (D)	 (a + ba)*

Solution:  (B)
S → Aab → Aab ab → A ab abab → Bababab
→ aababab → aab(ab)*

Union of two Regular languages:
If L

1
 and L

2
are two languages then

L
1
 ∪ L

2
 = {w/w ∈ L

1
 or w ∈ L

2
}

The union of two regular languages is also a regular language.
Let M

1
 = (Q

1
, ∑, d

1
, q

1
, f

1
)

M
2
 = (Q

2
, ∑, d

2
, q

2
, f

2
)

M = M
1
UM

2
 can be given as

M = (Q, ∑, d,

q

0
, f).

Where Q = {(r
1
, r

2
) | r

1
 ∈ Q

1
 and r

2
 ∈ Q

2
}

i.e., Q is the Cartesian product of sets Q
1
 and Q

2
.

∑ is the alphabet, is the same in M
1
 and M

2
.

∑ = ∑
1
 U ∑

2
.

d is the transition function given as:
d (r

1
, r

2
), a = (d

1
(r

1
, a) d

2
 (r

2
, a)).

q
0
 is the pair (q

1
, q

2
).

F is the set of pairs in which either member is an accept
state of M

1
or M

2
.

F = {(r
1
, r

2
) | r

1
 ∈ F

1
 or r

2
 ∈ F

2
}

Types of Grammars
•• Type 0: Unrestricted, recursively enumerable languages.
•• Type 1: Context-sensitive grammar.
•• Type 2: Context free grammar.
•• Type 3: Regular grammar.

Type 0: Recursively enumerable grammar:  (Turing
Machine) (TM):

Every production rule is of form: α → β, where α and β
are in (V ∪ T)*, i.e., there can be any strings of terminals and
non-terminals (no-restriction).

Type 1: Context-sensitive Grammar: (Linear bounded
automaton) (LBA):

Every production rule is of form, α→ β are in (V ∪ T)*
and α ≠ ε and |β|≥|α| i.e., any strings of terminals and non-
terminals and length of string that can appear on RHS of
production must be greater than or equal to length of string
that can appear on LHS of production.

Type 2: Context-free grammar: (Push down automaton)
(PDA):

Every production rule is of form, A→α where α is in
(V ∪ T)* i.e., LHS of rule is single non-terminal and RHS
can be any string of terminals and non-terminals.

Type 3: Regular grammar: (Finite automaton) (FA):
Every production is of form, A→aB or A→a where A

and B ∈ V and a ∈ T. That is, LHS of rule is non-termi-
nal and RHS can be terminal (or) terminal followed by
non-terminal.

Relationship between types of grammar:

Type – 0

Type – 1

Type – 2

Type – 3

•• Regular sets are properly contained in CFL (Context Free
Languages).

•• The CFL’s not containing empty string ε, are properly
contained in CSL. (Context sensitive language).

•• The CSL’s are properly contained in Recursively enumer-
able languages.

•• RG ⊂ CFG ⊂ CSL ⊂ REG

Left-linear Grammar:
All productions have form: A → Bx or A → x

Right-linear Grammar:
All productions have the form: A → xB or A → x.

Note:
•• The regular grammars characterize the regular sets i.e., a

language is regular if and only if it has a left-linear gram-
mar or if and only if it has a right-linear grammar.

•• If L has a regular grammar, then L is a regular set.
•• If L is a regular set, then L is generated by some left-linear

grammar and by some right-linear grammar.

Arden’s theorem: Let P and Q be two regular expressions
over ∑. If P does not contain ‘e’ then the following equation
in R, namely R = Q + RP has a unique solution given by
R = QP*.

5.16  |  Unit 5  •  Theory of Computation

Arden’s Theorem to obtain regular expression from
given transition diagram: The following steps are used to
find the RE recognized by transition system.

The following assumptions are made regarding the tran-
sition system.

	 (i)	 The transition graph does not have e-moves
	(ii)	 It has only one initial state, q

o
.

	(iii)	 The states in the transition diagram are q
o
, q

1
, q

2
, … q

n
.

	(iv)	 Q
i
,

the regular expression represents the set of

strings accepted by a system even though q
i
is the

final state.
	(v)	 aij denotes the regular expression representing the set

of labels of edges from q
i
 to q

j
.

When there is no such

edge aij = f.

		 We will get the following set of equations.
Q

1
 = Q

1
α

11
 + Q

2
α

12
 + … Q

n
α

n1
 + e

Q
2
 = Q

1
α

12
 + Q

2
α

22
 + … Q

n
α

n2

 :
 :
 :

Q
n
 = Q

1
α1n + Q

2
α

2n
 + … Q

n
α

nn
.

By Repeatedly applying substitutions and Arden’s theorem,
we can express Q

i
in terms of α

ij
’s.

For getting the set of strings recognized by the transition
system, we have to take the union of all Q

i
’s corresponding

to final states.

Construction of Regular Grammar from FA

Step I: �Associate suitable variables like A, B, C … with
states of automata.

Step II: � Obtain the productions of the grammar as:
If δ(A, a) = B then add production A → aB to list of
productions of grammar, if B is a final state, then
add either A → a or B → ε, to list of productions
of grammar.

Step III: �The variable associated with initial state of autom-
ata is start symbol of grammar.

Example 20:  Regular grammar generating language accepted
by below automata is

A

0
1

1

0
B

C

(A)	 A→0B|1C|ε
	 B→1A
	 C→0A
(B)	 A→1B|0C|ε
	 B→1A
	 C→0A
(C)	 A→B|C|ε
	 B→1
	 C→0

(D)	 A→0A|1B|ε
	 B→1C
	 C→0A

Solution:  (A)
A→0B, A→1C, B→1A, C→0A

∴ A is final state, A → ε

∴ A → 0B|1C|ε
B →1A (or)

C → 0A

A → 0B|1C

B → 1A|1

C → 0A|0

Construction of FA from given regular grammar

Given a regular grammar, G; a regular expression specify-
ing L(G) can be obtained directly as follows:

•• Replace the ‘→’ symbol in productions of grammar by
‘=’ symbol, to get set of equations.

•• Solve the set of equations obtained above to get the value
of variable, S, where S is start symbol of grammar, result
is regular expression specifying L(G).

Example 21:  The Regular grammar and FA for given
regular expression f*1*U (0f)* is ___

(A)	 S→0S|1S|0
	 T→1T|ε

0, 1
0

1

S T

(B)	 S→1S|ε

1

S

(C)	 S→0T|1S|ε
	 T→0T|1U|ε
	 U→0T|1S

S

1

0
0

0

1

1

T U

(D)	 Cannot be determined

Solution:  (B)
∅* 1* ∪ (0∅)* = ∅* . 1* ∪ ∅* = ε . 1* ∪ ε = 1*.

1

S

Chapter 1  •  Finite Automata and Regular Languages  |  5.17

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 Find a regular expression for

		 L = {uvu: u, v ∈ {a, b}*, |u| = 2}
	 (A)	 (ab)*a(ab)*

	 (B)	 (aa)*ab(aa)*

	 (C)	 aa(a + b)*bb + bb(a + b)*aa
	 (D)	� aa(a + b)*aa + ab(a + b)* ab + ba (a + b)* ba + bb

(a + b)*bb

	 2.	 Consider the regular expression, R = 10 + (0 + 11)0* 1.
The minimum number of states in any DFA accepting
this regular expression is:

	 (A)	 5	 (B)	 4
	 (C)	 3	 (D)	 6

	 3.	 The following DFA accepts the set of all strings over
{a, b} that

a

aa

b

b b

b

a

q0 q1

q3 q2

	 (A)	 Contains number of b’s divisible by 3.
	 (B)	 Contain number of a’s and b’s divisible by 3
	 (C)	 Contain number of b’s congruent to 3 modulo 4.
	 (D)	 Contain any number of a’s and b’s

	 4.	 Consider the grammar, S → SS/a. To get string of n
terminals, the number of productions to be used is

	 (A)	 n2	 (B)	 n
	 (C)	 2n+1	 (D)	 2n–1

	 5.	 The language L is defined as, L = {ai bj c2j| i ≥ 0, j ≥ 0}.
Is this language L regular?

	 (A)	 Yes	 (B)	 No
	 (C)	 Cant be determined	 (D)	 None of these

	 6.	 The language, L is defined by set of strings over {a, b}*
in which number of a’s is a perfect cube. What is the
nature of language, L?

	 (A)	 Regular	 (B)	 Non-regular
	 (C)	 Cant be determined	 (D)	 None of these

	 7.	 The language, L is defined over Σ = {0 – 7}. The string
include 7, 16, 43, 61, 223, … The language generated
is:

	 (A)	 Alternate odd and even numbers
	 (B)	 Octal representation of a number
	 (C)	 Divisible by 7.
	 (D)	 Octal representation of a number divisible by 7.

	 8.	 The language L, is defined as set of strings that start and
end with equal number of a’s and contain any number

of b’s. The grammar L(G) for language L is defined
with productions as:

	 (A)	 S→aBa
		 B→ε|bB
	 (B)	 S→aB
		 B→a|bB
	 (C)	 S→aT|bS
		 T→aT|bT|a|b
	 (D)	 S→B|aSa
		 B→ε|bB

	 9.	 If the regular set A is represented by A = ((01)*1*)*. And
the regular set B is represented by B = (01 + 1)*, which
of the following is true?

	 (A)	 A B⊂
	 (B)	 B A⊂
	 (C)	 A = B
	 (D)	 A and B are incomparable

	10.	 The language, L that is generated over Σ = {0, 1} for
regular expression L(r) = (0 + 10)* 1 (1 + 10)*

	 (A)	� Any string whose number of 1’s length is greater
than or equal to 3.

	 (B)	 Any string that has no substring 110.
	 (C)	 Any string that has no substring 00 after first 11.
	 (D)	� Any string that has only one occurrence of sub-

string 010.

	11.	 The R.E L(r) = (a+b*) U ε. Is the grammar with produc-
tions generated over non-terminals {S, A} ambiguous?

	 (A)	 Yes	 (B)	 No
	 (C)	 Can’t be determined	 (D)	 None

	12.	 The number of states in the obtained Moore machine
while converting the given mealy to Moore are:

q0
a/0

a/0 a/0

a/0

b/0

b/1 b/1

a/1

b/0

b/0

q1

q2

q3

q4

	 (A)	 5	 (B)	 6
	 (C)	 4	 (D)	 7

	13.	 The language L is defined as L = {0i1j/i ≠ j} over {0,
1, 2}, A = {0i 1j/i≥0, j≥0} and B = {0i 1j/i = j}. For
language, L to be non-regular. What should be relation
between A, B, L?

	 (A)	 B = (A ∪ L) c	 (B)	 B = A ∪ L
	 (C)	 B A L= ∩ 	 (D)	 B = Ac

	14.	 Which of following grammars are unambiguous?
	 (A)	 S→(S) S|[S] S|ε	 (B)	 S→S(S)S|ε
	 (C)	 S→aS|Sa|a	 (D)	 S→a|Sa|bSS|Ssb|SbS

5.18  |  Unit 5  •  Theory of Computation

	15.	 What will be number of final states obtained in DFA for
language L = {w/w contains at least two 0’s and atmost
one 1} over Σ = {0, 1}.

	 (A)	 2	 (B)	 1
	 (C)	 3	 (D)	 4

Practice Problems 2
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 Which of the following Regular expression is equal to

given regular expression: (b + aa* b) + (b + aa*b) (a +
ba* b)* (a + ba* b)

	 (A)	 Ab (b + baa*)	 (B)	 a*b (a + ba* b)
	 (C)	 a* b (a + ba* b)*	 (D)	 ab (b + aa*b)*

	 2.	 The following DFA accepts set of all strings over {a, b}
that contain

q0

aaa a

b

b

b

b b

b q1 q2

q3 q4

a a

q5

	 (A)	 Number of a’s even and number of b’s odd.
	 (B)	 Consecutive a’s and b’s
	 (C)	 Contain bbb as substring
	 (D)	� Number of a’s even and number of b’s divisible by

three.

	 3.	 The regular language L(r) for the given FSM is:

q1

1

1

0

0

0

1

11

0 0

0, 1

q2

q0 q3

q4 q5

	 (A)	� It can start with zero followed by any number of
1’s but no two consecutive 0’s.

	 (B)	� It can start with 1, followed by any number of 0’s
but no two consecutive 1’s.

	 (C)	� It is a combination of 0’s and 1’s but no two con-
secutive 0’s or 1’s.

	 (D)	 Both (A) and (B).

	 4.	 The language, L is defined as a set of non-palindromes
over {a, b}. Is L regular?

	 (A)	 Yes	 (B)	 No
	 (C)	 Cannot be determined	 (D)	 None of above

	 5.	 The DFA, for language, L over Σ = {a, b} is given
below. What will be number of states in minimized
DFA.

2 3 4

5 6

1

a

a

a
a a

a

b b

b

b
b

	 (A)	 4	 (B)	 6
	 (C)	 2	 (D)	 3

	 6.	 The minimal DFA given below is defined for language,
L = {w ∈ {a, b}*} over Σ = {a, b}. The ‘L’ is:

a

a a

1 a, bb

bb

2

3

3

	 (A)	� Strings that contain equal number of a’s and b’s
that have adjacent characters same.

	 (B)	 Contains adjacent characters same
	 (C)	 No two adjacent characters are same
	 (D)	� Starts and ends with same character that have ad-

jacent character same.

	 7.	 The regular grammar L(G) contains productions, P
for language, L = {w ∈{a, b}*/ there is at least one a}
are:

	 (A)	 S→aS|bS|a|aT
		 T→aT|bT|a|b
	 (B)	 S→aS|bS|ε
	 (C)	 S→aBb|bB
		 B→a|b
	 (D)	 S→bB
		 B→b|ε

	 8.	 The regular expression for a language is defined as
((a* b)* (bc*)*). The total number of final states obtained
in both NFA and DFA are respectively:

	 (A)	 4, 2	 (B)	 1, 3
	 (C)	 1, 5	 (D)	 2,3

	 9.	 The language, L is defined as {w/w has n occurrences
of 0’s where n mod 5 is 3} over Σ = {0, 1}. The number
of final states obtained in the DFA for L is:

	 (A)	 4	 (B)	 5
	 (C)	 1	 (D)	 2

Chapter 1  •  Finite Automata and Regular Languages  |  5.19

	10.	 Which of the following is an equivalent DFA for the
following NFA?

A

0, 1
0, 11

B C

	 (A)	 A
1

1

1
1

0
0 0

0B C D

	 (B)	

0
0

0,11
1

A B C

 	 (C)	
A

0 0

0

1

1 B C

	 (D)	
0

0

0 01

11

1

A B C D

	11.	 A regular grammar over alphabet Σ = {a, b, c, d} whose
language, is set of strings that contain exactly two b’s is:

	 (A)	 S→aS|bS|cS|dA
		 A→aA|bA|cA|dA|ε
	 (B)	 S→aS|cS|dS|bB
		 B→aB|cB|dB|bC,
		 C → aC|cC|dC|ε
	 (C)	 S→aS|bS|cS|dA
		 A→aA|bB|cC
		 B→b
		 C→c
	 (D)	 None of above

	12.	 The following NFA contains ε-moves with 5, transi-
tions. If this NFA with ε-moves is converted to NFA
without ε-moves, what will be total number of transi-
tions in obtained NFA?

20 1
ε εq0 q1 q2

	 (A)	 5	 (B)	 4
	 (C)	 6	 (D)	 3

	13.	 The regular expression, r = (a + b)*. One more regular
expression which represents same regular expression
‘r’ is:

	 (A)	 a* + b*	 (B)	 a* . b*

	 (C)	 a*(ba*)*	 (D)	 (a + b)* (a + b)

	14.	 The Regular grammar, L(G) is defined for L with
productions as S→Aab, A→Aab|aB, B→a. What is
Language generated by L(G)?

	 (A)	 Containing alternative a’s and b’s
	 (B)	� Containing alternative a’s and b’s, begins with an

‘a’ and ends with a ‘b’.
	 (C)	 ‘aa’ followed by at least one set of alternating ab’s.
	 (D)	 Consecutive aa’s followed by ‘b’.

	15.	 The number of final states in DFA after converting the
NFA given below is:

1

a, bb

a

2

	 (A)	 4	 (B)	 2
	 (C)	 3	 (D)	 1

Previous Years’ Questions

	 1.	 Match the following NFAs with the regular expres-
sions they correspond to� [2008]

P.

0 0
0

1

1
Q.

0 1
0

1

0

R.  

0 1
1

1

0
S.  

0
1

1

1

0

	 1.  ∈ + 0(01*1 + 00)*01*
	 2.  ∈ + 0(10*1 + 00)*0
	 3.  ∈ + 0(10*1 + 10)*1
	 4.  ∈ + 0(10*1 + 10)*10*

	 (A)	 P-2, Q-1, R-3, S- 4
	 (B)	 P-1, Q-3, R-2, S- 4
	 (C)	 P-1, Q-2, R-3, S- 4
	 (D)	 P-3, Q-2, R-1, S- 4
	 2.	 Which of the following are regular sets?

	 I.	 {anb2m | n ≥ 0, m ≥ 0}

	II.	 {anbm | n = 2m}

	III.	 {anbm | n ≠ m}

	IV.	 {xcy | x, y ∈ {a, b}*}� [2008]
	 (A)	 I and IV only	 (B)	 I and III only
	 (C)	 I only	 (D)	 IV only
	 3.	 Which one of the following languages over the alpha-

bet {0, 1} is described by the regular expression:
(0 + 1)*0(0 + 1)*0(0 + 1)*?� [2009]

	 (A)	 The set of all strings containing the substring 00.
	 (B)	 The set of all strings containing atmost two 0’s.
	 (C)	 The set of all strings containing at least two 0’s.

5.20  |  Unit 5  •  Theory of Computation

	 (D)	� The set of all strings that begin and end with ei-
ther 0 or 1.

	 4.	 Which one of the following is FALSE?� [2009]
	 (A)	� There is a unique minimal DFA for every regular

language.
	 (B)	� Every NFA can be converted to an equivalent

PDA.
	 (C)	� Complement of every context-free language is

recursive.
	 (D)	� Every non-deterministic PDA can be converted

to an equivalent deterministic PDA.

	 5.	 Match all items in Group 1 with correct options from
those given in Group 2.� [2009]

Group 1 Group 2

P. Regular expression 1. Syntax analysis

Q. Pushdown automata 2. Code generation

R. Dataflow analysis 3. Lexical analysis

S. Register allocation 4. Code optimization

	 (A)	 P–4, Q–1, R–2, S–3	 (B)	 P–3, Q–1, R–4, S–2
	 (C)	 P–3, Q–4, R–1, S–2	 (D)	 P–2, Q–1, R–4, S–3

	 6.

0

1

0
0

1
1

		 The above DFA accepts the set of all strings over {0,
1} that� [2009]

	 (A)	 Begin either with 0 or 1
	 (B)	 End with 0
	 (C)	 End with 00
	 (D)	 Contain the substring 00.

	 7.	 Let L = {w ∈ (0 + 1)* | w has even number of 1’s},
i.e., L is the set of all bit strings with even number
of 1’s. Which one of the regular expressions below
represents L?� [2010]

	 (A)	 (0*10*1)*	 (B)	 0*(10*10*)*

	 (C)	 0*(10*1*)*0*	 (D)	 0*1(10*1)*10*

	 8.	 Consider the languages L
1
 = {0i1j | i ≠ j}. L

2
 = {0i1j |

i = j}, L
3
 = {0i1j | i = 2j + 1}. L

4
 = {0i1j | i ≠ 2j}. Which

one of the following statements is true?� [2010]
	 (A)	 Only L

2
 is context free

	 (B)	 Only L
2
 and L

3
 are context free

	 (C)	 Only L
1
 and L

2
 are context free

	 (D)	 All are context free

	 9.	 Let w be any string of length n in {0, 1}*. Let L be the
set of all substrings of w. What is the minimum num-
ber of states in a non-deterministic finite automaton that
accepts L?� [2010]

	 (A)	 n-1	 (B)	 n
	 (C)	 n+1	 (D)	 2n-1

	10.	 Let P be a regular language and Q be a context-free
language such that Q ⊆ P (For example let P be the
language represented by the regular expression p*q*
and Q be {pnqn} n ∈ N}, Then which of the following
is ALWAYS regular?� [2011]

	 (A)	 P ∩ Q	 (B)	 P - Q
	 (C)	 S* - P	 (D)	 S* - Q
	11.	 A deterministic finite automaton (DFA) D with alpha-

bet S = {a, b} is given below.

a aa, b a, b

a, b

p b b

s

q r

t

	 	 Which of the following finite state machines is a valid
minimal DFA which accepts the same language as D?
� [2011]

(A)	

b

a a

b
a, b

a, b

p q

s

r

(B)	

a

a, b

a, b
a, b

p

b

r

s

q

(C)	
p ba, b

a, ba, b

q r

(D)	

p
b

b

a a

a, b
s

q

	12.	 Given the language L = {ab, aa, baa}, which of the
following strings are in L*?� [2012]

		 (1)	 abaabaaabaa	    (2)  aaaabaaaa

		 (3)	 baaaaabaaaab	    (4)  baaaaabaa
	 (A)	 1, 2 and 3	 (B)	 2, 3 and 4
	 (C)	 1, 2 and 4	 (D)	 1, 3 and 4

Chapter 1  •  Finite Automata and Regular Languages  |  5.21

	13.	 What is the complement of the language accepted by
the NFA shown below?

a ε

ε

		 Assume S = {a} and e is the empty string.� [2012]
	 (A)	 ∅	 (B)	 {e}
	 (C)	 a*	 (D)	 {a, e}

	14.	 Consider the set of strings on {0, 1} in which, every
substring of 3 symbols has atmost two zeros. For
example, 001110 and 011001 are in the language, but
100010 are not. All strings of length less than 3 are
also in the language. A partially completed DFA that
accepts this language is shown below.

ε q

0

0

0

0

0

1

1

1

1

1

1

01

0, 1

00

10

11

		 The missing arcs in the DFA are � [2012]

	(A)	

00 01 10 11 q

00 1 0

01 1

10 0

11 0

	(B)	
00 01 10 11 q

00 0 1

01 1

10 0

11 0

	(C)
00 01 10 11 q

00 1 0

01 1

10 0

11 0

	(D)	

00 01 10 11 q

00 1 0

01 1

10 0

11 0

	15.	 Consider the languages L
1
 = Φ and L

2
 = {a}. Which

one of the following represents L
1
 L

2
*UL

1
*?� [2013]

	 (A)	 {∈}	 (B)	 Φ
	 (C)	 a*	 (D)	 {∈, a}

	16.	 Consider the DFA A given below

1
1

0 0

0, 1

		 Which of the following are FALSE?

		 1.	 Complement of L (A) is context-free.

		 2.	 L(A) = L ((11*0 + 0) (0 + 1)*0*1*)

		 3.	� For the language accepted by A, A is the minimal
DFA.

		 4.	� A accepts all strings over {0, 1} of length at
least 2. � [2013]

	 (A)	 1 and 3 only	 (B)	 2 and 4 only
	 (C)	 2 and 3 only	 (D)	 3 and 4 only

	17.	 Consider the finite automaton in the following figure.
� [2014]

q0 q1 q2 q3

0, 1
0, 11

1
0, 1

		 What is the set of reachable states for the input string
0011?

	 (A)	 {q
0
, q

1
, q

2
}	 (B)	 {q

0
, q

1
}

	 (C)	 {q
0
, q

1
, q

2
, q

3
}	 (D)	 {q

3
}

	18.	 If L
1
 = {an|n ≥ 0} and L

2
 = {bn|n ≥ 0}, consider the

statements� [2014]

		 (I)	 L
1
 . L

2
 is a regular language

		 (II)	 L
1
 . L

2
 = {an bn|n ≥ 0}

		 Which one of the following is CORRECT?
	 (A)	 Only (I)	 (B)	 Only (II)
	 (C)	 Both (I) and (II)	 (D)	 Neither (I) nor (II)

	19.	 Let L
1
 = {w ∈ {0, 1}*| w has at least as many occurrences

of (110)’s as (011)’s}. Let L
2
 = {w ∈{0, 1}*|w has at least

5.22  |  Unit 5  •  Theory of Computation

as many occurrences of (000)’s as (111)’s}. Which one
of the following is TRUE?� [2014]

	 (A)	 L
1
 is regular but not L

2

	 (B)	 L
2
 is regular but not L

1

	 (C)	 Both L
1
 and L

2
 are regular

	 (D)	 Neither L
1
 nor L

2
 are regular

	20.	 The length of the shortest string NOT in the language
(over S = {a, b}) of the following regular expression
is _____.� [2014]

		 a*b*(ba)*a*

	21.	 Let S be finite non-empty alphabet and let 2Σ* be
the power set of SΣ*. Which one of the following is
TRUE?� [2014]

		 (A)	 Both 2∑ ∗*

and Σ are countable

		 (B)	 2Σ* is countable and S* is uncountable

		 (C)	 2Σ* is uncountable and S* is countable

		 (D)	 Both 2∑ ∗*

 and Σ are uncountable

		 1.  e + 0 (01* 1 + 00)* 01*

		 2.  e + 0 (10* 1 + 00)* 0

		 3.  e + 0 (10* 1 + 10)* 1

		 4.  e + 0 (10* 1 + 10)* 10*

	 (A)	 P − 2, Q − 1, R − 3, S − 4
	 (B)	 P − 1, Q − 3, R − 2, S − 4
	 (C)	 P − 1, Q − 2, R − 3, S − 4
	 (D)	 P − 3, Q − 2, R − 1, S − 4

	22.	 Consider the DFAs M and N given above. The number
of states in a minimal DFA that accepts the language
L(M) ∩ L(N) is _______� [2015]

a
ab

b

M :

a

a

b
b

N :

	23.	 The number of states in the minimal deterministic finite
automaton corresponding to the regular expression
(0 + 1)*(10) is ______� [2015]

	24.	 Which of the following languages is/are regular?
� [2015]

		 L
1
: �{wxwR |w

1
 x ∈ {a, b}* and |w|, |x| > 0}, wR is the

reverse of string w

		 L
2
: {anbm|m ≠ n and m, n ≥ 0}

		 L
3
: {a pbqcr| p, q, r ≥ 0}

	 (A)	 L
1
 and L

3
 only	 (B)	 L

2
 only

	 (C)	 L
2
 and L

3
 only	 (D)	 L

3
 only

	25.	 Consider the alphabet Σ = {0, 1}, the null/empty
string λ and the sets of strings X

0
, X

1
 and X

2
 gener-

ated by the corresponding non-terminals of a regular
grammar. X

0
, X

1
 and X

2
 are related as follows

		 X
0
 = 1 X

1

		 X
1
 = 0 X

1
 + 1 X

2

		 X
2
 = 0 X

1
 + {λ}

		 Which one of the following choices precisely repre-
sents the strings in X

0
?� [2015]

	 (A)	 10(0* + (10)*)1
	 (B)	 10(0* + (10)*)*1
	 (C)	 1(0 + 10)*1
	 (D)	 10(0 + 10)*1 + 110(0 + 10)*1

	26.	 Let L be the language represented by the regular
expression Σ* 0011 Σ* where Σ = {0, 1}. What is the
minimum number of states in a DFA that recognizes
L (complement of L)?� [2015]

	 (A)	 4	 (B)	 5
	 (C)	 6	 (D)	 8

	27.	 Which of the following languages is generated by the
given grammar?� [2016]

		 S →aS | bS | ε]
	 (A)	 {an bm | n, m ≥ 0}
	 (B)	� {w ∈ {a, b} * | w has equal number of a’s and

b’s}
	 (C)	 {an | n ≥ 0 } U {bn |n ≥ 0 } U {anbn | n ≥ 0}
	 (D)	 {a, b}*

	28.	 Which of the following decision problems are unde-
cidable?� [2016]

		 I.	 Given NFAs N
1
 and N

2
, is

		 L (N
1
) ∩ L (N

2
)= Φ?

		 II.	� Given a CFG G = (N, ∑, P,S) and a string x ∈ ∑*,
does x ∈ L(G)?

		 III.	 Given CFGs G
1
 and G

2
, is

			 L(G
1
) = L(G

2
)?

		 IV	 Given a TM M, is L(M) = Φ?
	 (A)	 I and IV only
	 (B)	 II and III only
	 (C)	 III and IV only
	 (D)	 II and IV only

	29.	 Which one of the following regular expressions repre-
sents the language: the set of all binary strings having
two consecutive 0’s and two consecutive 1s?� [2016]

	 (A)	 (0+1)* 0011 (0+1)* + (0+1)* 1100 (0+1)*
	 (B)	 (0+1)* (00(0+1)*11 + 11 (0+1)*00) (0+1)*
	 (C)	 (0+1)* 00 (0+1)* + (0+1)* 11 (0+1)*
	 (D)	 00 (0+1)* 11 + 11 (0+1)* 00

	30.	 The number of states in the minimum sized DFA that
accepts the language defined by the regular expression

		 (0+1)* (0+1) (0+1)* is ______ .� [2016]

	31.	 Language L
1
 is defined by the grammar: S

1
→aS

1
b∈

		 Language L
2
 is defined by the grammar: S

2
→abS

2
∈

Chapter 1  •  Finite Automata and Regular Languages  |  5.23

		 Consider the following statements:
		 P:L

1
 is regular

		 Q:L
2
 is regular

		 Which one of the following is TRUE?� [2016]
	 (A)	 Both P and Q are true
	 (B)	 P is true and Q is false
	 (C)	 P is false and Q is true
	 (D)	 Both P and Q are false

	32.	 Consider the following two statements:

		 I.	� If all states of an NFA are accepting states then
the language accepted by the NFA is S*.

		 II.	� There exists a regular language A such that for all
languages B, A ∩ B is regular.

		 Which one of the following is CORRECT?� [2016]
	 (A)	 Only I is true	
	 (B)	 Only II is true
	 (C)	 Both I and II are true		
	 (D)	 Both I and II are false

	33.	 Consider the language L given by the regular expres-
sion (a + b)*b (a + b) over the alphabet {a, b}. The
smallest number of states needed in a deterministic
finite-state automaton (DFA) accepting L is ________.
� [2017]

	34.	 The minimum possible number of states of a deter-
ministic finite automaton that accepts the regular lan-
guage L = {w

1
aw

2
| w

1
, w

2
∈ {a, b}*, |w

1
| = 2, |w

2
| ≥ 3}

is __________.� [2017]

	35.	 Let δ denote the transition function and d̂ denote
the extended transition function of the ∈-NFA whose
transition table is given below:

δ ∈ a b

→q
0

{q
2
} (q

1
} {q

0
}

q
1

{q
2
} {q

2
} {q

3
}

q
2

{q
0
} Ø Ø

q
3

Ø Ø (q
2
}

		 Then d̂ (q
2
, aba) is� [2017]

	 (A) Ø	 (B) {q
0
, q

1
, q

3
}

	 (C) {q
0
, q

1
, q

2
}	 (D) {q

0
, q

2
, q

3
}

	36.	 Let N be an NFA with n states. Let k be the num-
ber of states of a minimal DFA which is equivalent
to N. Which one of the following is necessarily true?
� [2018]
(A)	 k ≥ 2n	 (B)	 k ≥ n
(C)	 k ≤ n2	 (D)	 k ≤ 2n

	37.	 Given a language L, define Li as follows:

		 L0	= {ε}

		 Li	= Li–1. L for all i > 0

		 The order of a language L is defined as the smallest
k such that Lk = Lk+1. Consider the language L

1
 (over

alphabet 0) accepted by the following automaton.	

0
0

0

	 The order of L
1
 is ______.� [2018]

Answer Keys

Exercises

Practice Problems 1
	 1.  D	 2.  B	 3.  C	 4.  D	 5.  B	 6.  B	 7.  D	 8.  D	 9.  C	 10.  C
	11.  A	 12.  D	 13.  C	 14.  A	 15.  A

Practice Problems 2
	 1.  C	 2.  D	 3.  D	 4.  B	 5.  B	 6.  C	 7.  A	 8.  C	 9.  C	 10.  A
	11.  B	 12.  C	 13.  C	 14.  C	 15.  B

Previous Years’ Questions
	 1.  C	 2.  A	 3.  C	 4.  D	 5.  B	 6.  C	 7.  B	 8.  D	 9.  C	 10.  C
	11.  A	 12.  C	 13.  B	 14.  D	 15.  A	 16.  D	 17.  A	 18.  A	 19.  A	 20.  C
	21.  C	 22.  1	 23.  3	 24.  A	 25.  C	 26.  B	 27.  D	 28.  C	 29.  B	 30.  2
	31.  C	 32.  B	 33.  4	 34.  8	 35.  C	 36.  D	 37.  2

	Unit 5: Theory of Computation
	Chapter 1: Finite Automata and Regular Languages
	Fundamentals
	NFA with ∈-Moves
	Mealy and Moore Machines
	Regular Languages
	Constructing FA for Given RE
	Closure Properties of Regular Sets
	Types of Gramars
	Exercises
	Previous Years’ Questions
	Answer Keys

