
Chapter 1

Finite Automata 
and Regular Languages

FuNdAMeNtAls
Alphabet: An alphabet is a fi nite non-empty set of symbols.

Example: Portion of a calculator: {0, 1, 2, 3 … 9, ÷, =, –, +, ×, (,)}

Note: 1. At least one symbol is necessary.

  2. ‘Σ’ denote Alphabet.

String: A string over an alphabet ‘A’ is a fi nite ordered sequence 
of symbols from ‘A’. The length of string is number of symbols in 
string, with repetitions counted.

Example: If Σ = {0 – 9, ÷, =, –, +, × (,)} then Strings valid: 12 +
34, 90 × 10, (1 + 2) × (1 ÷ 3)

Strings Invalid: sin (45), log (10) etc. These strings are not valid 
because sin ( ), log ( ) are not defi ned over the alphabet set.

Note: Repetitions are allowed.
Length of |12 + 34| = 5(1, 2, +, 3, 4)

 • The Empty string denoted by ‘e’, is the (unique) string of length 
zero.

Note: Empty string, e ≠ empty set, ∅.

 • If S and T are sets of strings, then ST = {xy|x ∈ S and y ∈ T}
 Given an alphabet A, 

Ao = {e}
An+1 = A.An

…

A An

n

∗

=

∞

=
0
∪

Languages
 • A language ‘L’ over Σ is any fi nite or infi nite set of strings over Σ.
 • The elements in L are strings – fi nite sequences of symbols.
 • A language which does not contain any elements is called 

‘empty language’.

Note: Empty language, { } ≠ {e}, empty string because { } = ∅ ≠ 
e i.e., Empty language resembles empty set i.e., ∅.

 • A language L over an alphabet A is subset of A* i.e., L ⊂ A*.

Example 1: Language (L) for strings that consists of only 0’s or 
only 1’s and have an odd length over alphabet {0, 1} is
(A) {0, 1, 00, 11, 000, 111 …}
(B) {00, 11, 01, 10 …}
(C) {000, 101, 110, 111 …}
(D) {0, 1, 000, 111, 11111, 00000 …}

Solution: (D)
Only 0’s → should have only 0’s. It should not be combination of 
0’s and 1’s.
Only 1’s → should have only 1’s. It should not be combination of 
0’s and 1’s.
Odd length → only odd number of 0’s or odd number of 1’s i.e., 
length of string should be odd.
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An Empty Languages  An empty language is a language 
which does not accept any strings includinge. The Finite 
automata for empty language can be represented as 

(i.e., One state, non-accepting and no transitions).
A language which only accepts (e)
E: The language which only accepts ‘e’ can be represented as

This machine accepts E – only.
Σ*: The set of all strings over an alphabet Σ will be denoted 
by Σ*.
Σ+: This will denote the set Σ* – {e}.
Ex: If Σ = {0, 1} then
Σ* = {e, 0, 1, 00, 01, 10, 11, 000, 001, …}
Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,}

Operations
Operations on strings

	 1.	 Concatenation: Combines two strings by putting one 
after other.

Example 2:  Two strings are defined as x = java, y = script. 
The concatenation (x.y) of two strings results in _______.
(A)	 scriptjava	 (B)	 javascript
(C)	 jascriptva	 (D)	 scrijavapt

Solution:  (B) 
x.y = java.script = javascript
Note: Concatenation of empty string with any other string 
gives string itself.
i.e., x.ε = ε.x = x
	 2.	 Substring: If ‘w’ is a string, then ‘v’ is a substring of 

‘w’ if there exists string x and y such that w = xvy.
‘x’ is called ‘prefix’ and y is called suffix of w.

Example 3:  String, w = ‘gymnastics’ is defined with prefix, 
x = ‘gym’ and suffix, y = ‘cs’. The substring of the given 
string is _______
(A)	 nasti	 (B)	 mnas
(C)	 gymnastics	 (D)	 ics

Solution:  (A)
Because, w = xvy 
⇒ gymnastics = gymvcs
∴ v = nasti
	 3.	 Kleen star operation: Let ‘w’ be a string, w* is set of 

strings obtained by applying any number of concatena-
tions of w with itself, including empty string.

Example: a* = {ε, a, aa, aaa, …}

	 4.	 Reversal: If ‘w’ is a string, then wR is reversal of string 
spelled backwards.

Rules:
•• x = (xR) R

•• (xz)R = zR . xR

Example 4:  A string, x is defined as, x = butter. Then (xR)R 
is _______
(A)	 butter	 (B)	 rettub
(C)	 butret	 (D)	 retbut

Solution:  (A)
x → butter
xR → rettub
(xR)R → butter. 

Operations on languages
	 1.	 Union: Given some alphabet Σ, for any two languages, 

L
1
, L

2
 over Σ, the union L

1
 ∪ L

2
 of L

1
 and L

2
 is the 

language, L
1 
∪ L

2
 = {w ∈ Σ*|w ∈ L

1
 or w ∈L

2
}

	 2.	 Intersection: Given some alphabet Σ, for any two 
languages L

1
, L

2
 over Σ, the intersection L

1 
∩ L

2
 of L

1
 

and L
2
 is language, L

1 
∩ L

1
 = {w ∈ Σ*|w ∈ L

1
 and w ∈ 

L
2
}

	 3.	 Difference: Given some alphabet Σ, for any two 
languages L

1
, L

2
 over Σ, the difference L

1
 – L

2
 of L

1
 and 

L
2 
is language, L

1
 – L

2
 = {w ∈ Σ*|w ∈ L

1
 and w ∉ L

2
}

Note: Difference is also called ‘Relative Complement.’
A special case of difference is obtained when L

1
 = Σ*, in 

which case. Complement L of language, L is defined as, 
L w w L{ | }= ∈ ∉∗Σ
	 4.	 Concatenation: Given an alphabet Σ, for any two 

languages L
1
, L

2
 over Σ, the concatenation L

1
 L

2
 of L

1
 

and L
2
 is language

L
1
L

2
 = {w ∈ Σ*|∃ u ∈ L

1
, ∃ v ∈L

2
, w = uv}

Properties:
L∅ = ∅ = ∅L
L {e} = L = {e} L
(L

1 
∪ {e})L

2
 = L

1
L

2 
∪ L

2

L
1
 (L

2 
∪ {e}) = L

1
L

2 
∪ L

1

Ln L = LLn = Ln+1

Note: L
1
L

2
 ≠ L

2
L

1

Example 5:  Let L
1
 = {00, 11}, L

2
 = {01, 10}. Then L

1
oL

2
 

= _______
(A)	{00, 11, 01, 10}
(B)	 {0001, 0010, 1101, 1110}
(C)	 {0001, 0010, 11, 01, 10}
(D)	{00, 1101, 1110, 11, 10}

Solution:  (B) 
L

1
oL

2
 = {00, 11} o {01, 10} = {00.01, 00.10, 11.01, 11.10} 

= {0001, 0010, 1101, 1110}

	 5.	 Kleen * closure (L*): Given an alphabet Σ, for any 
language L over Σ, the * closure L* of L is language, 

L U Ln
n∗

≥= 0
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	 6.	 Kleen + closure (L+): The kleen +closure, L+ of L is 
the language, L U Ln

n+
≥= 1

L* = L0 ∪ L1 ∪ L2 ∪ … Ln ∪ …
L+ = L1 ∪ L2 ∪ L3 … ∪ Ln ∪ …

Properties:
∅* = {e}
L+ = L*L
(L*)* = L*

L* L* = L*

Finite State Machine (FSM)
•• FSM is simplest computational model of limited memory 

computers.
•• FSM is designed to solve decision problems i.e., to decide 

whether given input satisfies certain conditions.
•• The next state and output of a FSM is a function of input 

and of current state.

Inputs
State
transition
conditions

State Output
conditions Outputs

Types of FSM:

	 1.	 Melay machine.
	 2.	 Moore machine

Finite Automata (FA):

•• FA is a state machine that comprehensively captures all 
possible states and transitions that a machine can take 
while responding to a stream (sequence) of input symbols.

•• FA is recognizer of ‘regular languages’.

State Machine

Finite state machine
(generates o/p)

Finite automata
(doesn’t generates o/p)

Mealy Moore DFA NFA ∈-NFA

Types of FA
1. Deterministic Finite Automata (DFA):

•• DFA machine can exists in only one state at any given time.
•• DFA is defined by 5-tuple: {Q, Σ, q

0
, F, d}, where

Q → Finite number of states (elements)
Σ → Finite set of symbols (alphabets)
q

o 
→ Start/Initial state

F → Set of final states.
δ → �Transition function, which is a mapping between

δ: Q × Σ → Q.

How to use DFA:

Input: A word w in Σ*

Question: Is w acceptable by DFA?

Steps:

•• Start at ‘initial state’, q
o
.

•• For every input symbol in sequence w, do.
•• Compute the next state from current state, given the cur-

rent input symbol in w and transition function.
•• If after all symbols in ‘w’ are consumed, the current state 

is one of the final states (f) then accept ‘w’;
•• Otherwise, reject w.

Transition diagram: State machines are represented by 
directed graphs called transition (state) diagrams.

•• The vertices denoted by single circle represent the 
state and arcs labeled with input symbol correspond to 
transition.

•• The final states are represented with double circles.

Transition Table: Transition function can be represented 
by tables.

Example 6:  The following finite state machine accepts all 
those binary strings in which the numbers of 0’s and 1’s are 
respectively.

0

0
1 1

1
1

1
1 1

11

11

1

0

0

1
1

0
0

1

0

00
0

0
0

0

0

q7

q1 q2 q11

q0

q6
q5 q4

q3

q14
q13

q12

q8 q9 q10

0

(A)	 Divisible by 3 and 2	 (B)	 Odd and even
(C)	 Divisible by 5 and 3	 (D)	 Divisible by 2 and 3

Solution:  (C)
Number of 0’s is divisible by 5.
Number of 1’s is divisible by 3.

Table  Transition Table

Current State 0 1

→ q0
q1 q5

q1 q2 q7

q2 q3 q9

q3 q4 q11

q4 q0 q13

q5 q7 q6

q6 q8 q0

q7 q9 q8

q8 q10 q1
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q9 q11 q10

q10 q12 q2

q11 q13 q12

q12 q14 q3

q13 q0 q14

q14 q6 q4

Note: Minimum number of states for k-divisibility is 
k-states.
In above example, q

0
 – q

14
 → 15 – states.

∴  5 × 3 = 15
The given binary strings have number of 0’s divisible by 5 
and number of 1’s divisible by 3.

2.  Non-deterministic finite Automata (NFA):

•• The machine can exist in multiple states at the same time.
•• Each transition function maps to a set of states.
•• NFA is defined by 5-tuple: {Q, Σ, q

0
, F, d}, where

Q → Finite number of states (elements)
Σ → Finite set of symbols. (Alphabets)
q

o
 → Start/Initial state

F → Set of final states.
d → Transition function which is a mapping between 
δ = Q × Σ → 2Q

How to use NFA:
Input: a word w in Σ*

Question: Is w accepted by NFA?
Steps:

•• Start at ‘start state’ q
0
.

•• For every input symbol in the sequence, w does.
•• Determine all possible next states from current state, given 

the current input symbol in w and transition function.
•• If after all symbols in w are consumed, at least one of the 

current states is a final state then accept w.
•• Otherwise, reject w.

Example 7:  What is the language, L generated by the 
below NFA, given strings defined over alphabet, Σ = {0, 1}.

0,1 0

0q0
1q1 q2

	 (A)	 Strings that end with ‘0’
	 (B)	 Strings that start with ‘0’ and end with ‘0’
	 (C)	 Strings that contain ‘01’ as substring
	 (D)	 Strings that contain ‘01’ as substring and end with ‘0’

Solution:  (D)

State 0 1
  → q0

{q0, q1} {q0}

q1 ∅ q2

q2 {q2} ∅

String: 0100100

q q q0
0

0 1 → { , } 

q q q q q0
0

0
1

0
0

0 1 →  →  → { , } 

q q q q q q0
0

0
1

0
0

0
0

0 1 →  →  →  → { , } 

q q q q q01
0

0
0 0 1

0 →  →  → { , }  (Non-deterministic)

q q q q q q0
0

0
1

0
0

0
0

0 1 →  →  →  → { , } 

q q q q1
1

2
0

2
0

2 →  →  →

Table 2  Difference between NFA and DFA

DFA NFA

1. �All transitions are deter-
ministic i.e., each transition 
leads to exactly one state.

1. �Transitions could be non-
deterministic i.e., a transition 
could lead to a subset of 
states.

2. �For each state, the transition 
on all possible symbols 
should be defined.

2. �For each state, not all sym-
bols necessarily have to be 
defined.

3. �Accepts input if last state is 
in ‘F’.

3. �Accepts input if one of last 
states is in ‘F’.

4. �Practical implementation is 
feasible.

4. �Practical implementation 
has to be deterministic (so 
needs conversion to DFA).

Relation between DFA and NFA

•• A language ‘L’ is accepted by a DFA if and only if it is 
accepted by a NFA.

•• Every DFA is special case of a NFA.

Example 8:  Let N
f
 and D

f
 denote the classes of languages 

accepted by non-deterministic finite automata and deterministic 
finite automata respectively. Which one of following is true?
	 (A)	 D

f
 ⊂ N

f	
(B)	 D

f
 ⊃ N

f

	 (C)	 D
f
 = N

f
	 (D)	 D

f
 ∈ N

f

Solution:  (C)
According to ‘subset construction’, every language accepted 
by NFA is also accepted by some DFA.
∴  D

f
 = N

f

NFA with ∈-Moves
•• ∈-transitions in finite automata allows a state to jump to 

another state without consuming any input symbol.

Conversion and Equivalence:

∈-NFA → NFA → DFA

NFA without ∈-moves:

•• Two FA, N∈ and N are said to be equivalent, if L(N∈) = 
L(N) i.e., any language described by some N∈, there is an 
N that accepts the same language.

•• For N∈ = (Q, Z, d, q
0
, F) and N = (Q, Σ′, d ′, q

0
, F′ ), Find 

•• d ′(q, a) = ∈-closure (δ(∈-closure(q), a))
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•• F ′ = {F ∪ {q
0
}}, if ∈-closure (q

0
) contains a member of 

F = F, otherwise.

Note: When transforming N∈ to N, only transitions are 
required to be changed and states remains same.

Example 9:  Consider following NFA with ∈-moves.

q0 q1 q2 q3

a
a b∈

∈

If given NFA is converted to NFA without ∈-moves, which 
of following denotes set of final states?
(A)	{q

0
, q

1
}	 (B)	 {q

1
, q

2
}

(C)	 {q
1
, q

2
, q

3
}	 (D)	 {q

1
}

Solution:  Let N = (Q, Σ1, δ1, q
0
, F1)

F1 = F ∪ {q
0
}

ε-closure (q
0
) = {q

0
, q

1
}

∴ F1 = {q
1
} ∪ {q

0
, q

1
} = {q

0
, q

1
}

Conversion N∈→N: 
To compute, δ1

∈-closure (q
0
) = {q

0
, q

1
}, ∈-closure (q

3
) = {q

3
, q

1
}

δ1(q
0
, a) = {q

1
, q

2
}, δ1(q

0
, b) = ∅, d1(q

2
, a) = ∅.

δ1(q
1
, a) = {q

1
, q

2
}, δ1(q

1
, b) = ∅, d1(q

2
, b) = {q

1
, q

3
}

δ1(q
3
, a) = {q

1
, q

2
}, δ1(q

3
, b) = ∅

Table 3  Transition Table

Input 
State a b

→ q0
{q1, q2} ∅

q1 {q1, q2} ∅

q2 ∅ {q1, q3}

q3 {q1, q2} ∅

q1

q0 q2 q3

a

a
a

a

a

a

b

b

Figure 1  Transition diagram

Conversion of NFA to DFA
Let a NFA be defined as, N = (Q

N
, Σ, δ

N
, q

0
, F

N
)

The equivalent DFA, D = (Q
D
, Σ, δ

D
, q

0
, F

D
) where:

Step I: QD
QN= 2 ;  i.e., Q

D
 is set of all subsets of Q

N
 i.e., it is 

power set of Q
N
.

Step II: F
D
 is set of subsets S of Q

N
 such that S ∩ F

N
 ≠ 

∅. i.e., F
D
 is all sets of N’s states that include atleast one 

accepting state of N.
Step III: For each set, S ≤ Q

N
 and for each input symbol a in 

Σ : ( , ) ( , )   δ δD P S NS a P a= ∪ ∈

That is, to compute δ
D
(S, a), look at all states P in S, see 

what states N goes to starting from P on input a, and take 
the union of all those states.

Note: For any NFA, N with ‘n’ states, the corresponding 
DFA, D can have 2n states.

Example 10:  What is the number of final states in DFA 
constructed from the given NFA?

a

a b
b
b

b

b

a, b

1

20

4

3

a, b

a, b

a, b

(A)	 1	 (B)	 2
(C)	 3	 (D)	 4

Solution:
Table 4  Transition Table of NFA

Input
State a b

  → 0 {1, 2, 3} {2, 3}

       1 {1, 2} {2, 3}

      2 ∅ {2, 3, 4}

      3 {4} {3, 4}

      4 ∅ ∅

Table 5  Transition Table of DFA

Input
State a b

   →0 [1, 2, 3] [2, 3]

1 [1, 2] [2, 3]

2 ∅ [2, 3, 4]

3 4 [3, 4]

4 ∅ ∅
[1, 2] [1, 2] [2, 3, 4]

[2, 3] [4] [2, 3, 4]

[3, 4] [4] [3, 4]

[1, 2, 3] [1, 2, 4] [2, 3, 4]

[1, 2, 4] [1, 2] [2, 3, 4]

[2, 3, 4] [4] [2, 3, 4]

Hence final states in obtained DFA is ‘4’.

DFA is: Choice (D)
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1
3

b

0

a

2

[1, 2, 4]

[2, 3, 4]

[1, 2]

[2, 3]

[3, 4]

4

[1, 2, 3]

b

b

b

bb

b b b
b

a a

a

a

a
a a

a

Minimization of DFA

Given a DFA, M Q q F= ( , , , , ),    Σ δ 0  we construct a reduced 

DFA, ′ = ′ ′ ′ ′ ′( )M Q q F, , , ,    Σ δ 0  as follows

	 1.	 Remove all inaccessible states. All states that are 
unreachable from the initial state are removed.

	 2.	 Consider all pairs of states (p, q), If p ∈ F and q ∈ F 
or vice versa mark the pair (p, q) as distinguishable.

	 3.	 Repeat until no previously unmarked pairs are 

marked. For all pairs (p, q) and all a ∈ Σ,  compute 

δ δ( , ) ( , ) .p a p p q qa a  and  = =  If the pair (p
a
, q

a
) is 

marked as distinguishable mark (p, q) as distinguishable.
	 4.	 Find the sets of all indistinguishable states, say 

{ , , }, { , , },q q q q q qi j k m n     � ��  etc. For each set 
{q

i
, q

j
, … q

k
} of such indistinguishable states, create 

a state labelled ij … k for M.

	 5.	 For each transition rule of M of the from δ ( , ) ,q q qr p =  
find the sets to which q

r
 and q

p
 belong. If q

r
 ∈ {q

i
,q

j
, 

… q
k
} and q

p
e { , , },q q qm n� �  add a rule to δ :

′ … = …δ ( , ) .ij k a m n �

Example 11:  A DFA with alphabet Σ = {a, b} is given below:

53

1

2 4

a

aa

a

b
b b

b

a, b

Which of the following is valid minimal DFA which accepts 
same language as given DFA?

(A)

bb
a

b b
a, b

a
a1 3 5

4

(B)	

b
b
a1

3

2

a

(C)	 1 3 4

a
b

a, b

b

a

(D)	 1 2

5

aa
b

b

Solution:  (B)
Initially, {1, 5}, {2, 3, 4}
Depending on next states and inputs, the partitions of states 
can be as: {{1, 5}, {2}, {3}, and {4}}
Since, 1 to 5 have same transition, unite {1, 5}
State 4 is dead state → It has transition only to itself. 
Since, {2}, {3} are singletons, they exist.
∴ States in minimized DFA are {1, 2, and 3}
{1} → {1, 5}
For transitions, since 1 3 1a b →  →,   2 in given DFA, 
in minimized DFA, transitions are added from 
1 3 1 2a b →  →, .  Also, since 2 1b a →  →1  3,  in 
given DFA, the minimized DFA, transitions are added from 
2 1 3 1b a →  →, . 

Equivalence Between NFA 
and DFA
There is a DFA

D
 for any NFA

N
 i.e.,

L (D) = L (N).

Construction:

•• In DFA or NFA, whenever an arrow is followed, there is 
a set of possible states. This set of states is a subset of Q.

•• Track the information about subsets of states that can be 
reached from initial state after following arrows.

•• Consider each subset of states of NFA as a state of DFA 
and every subset of states containing a final state as a final 
state of DFA.

Example 12:  Which of following is equivalent DFA for the 
NFA given below:

q1
d

d d

d

c

c

c c

q4

q2 q3



Chapter 1  •  Finite Automata  and Regular Languages  |  5.9

(A)	
q1

c

d d

d

c

cq2

q3

(B)	

q1

c

d

d

dcc

q3

q2

(C)	
q1

c

c c

d
d

d

q4

q3

(D)	 q1
c

dc, d

q2

Solution:  (A)

Table 6  Transition Table of NFA

d c d

→ q1
q1 {q2, q4}

q2 q3 q1

q3 q4 q3

q4 q3 ∅

Table 7  Transition Table of DFA

d c d

→ q1
q1 q2

q2 q3 q1

q3 q2 q1

Table 8  Common Table

d c d

(q1, q1) (q1, q1) (q2, q4, q2)

(q2, q2) (q3, q3) (q1, q1)

(q3, q3) (q4, q2) (q3, q3)

(q4) q3 ∅

Equivalence of Finite Automatas:

•• Two automatas A and B are said to be equivalent if both 
accept exactly the same set of input strings. 

•• If two automatas M
1
 and M

2
 are equivalent then 

	 (i)	 If there is a path from the start state of M
1 

to a final 
state of M

1
 labeled a

1
a

2
 … a

k
 then there is a path from 

the start state of M
2
 to the final state of M

2
 labeled 

a
1
a

2
… a

k
.

	(ii)	 If there is a path from the start state of M
2
 to a final state 

M
2
 labeled b

1
b

2 
… b

i
 then there is a path from the start 

state of M
1 
to the final state of M

1 
labeled b

1
b

2 
… b

i
 .

Example:

q0

M1

1

0
0

0

1

1 q1

q2

M
2
:

p0

0

1

1

1

1 0

0

0

p1

p3 p2

In M
2
, states p

1
 and p

3
 are equivalent (as both are reaching 

either final or non-final states with same input). After mini-
mizing M

2
,
 
we will get

p0

p2

p1p3

0

1

1

0 0

1

\ M
1
 and M

2
 are equivalent. 

Union: The union of two languages L and M is the set of 
strings that are in both L and M. 
Ex: L = {0, 1}, M = {111}
L U M = {0, 1,111}. 

Concatenation: The concatenation of Languages L and M 
is the set of strings that can be formed by taking any string 
in L and concatenating it with any string in M. 

Example: L = {0, 1}, M = {e, 010}
LM = {0, 1, 0010, 1010}. 
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Closure, Star or Kleen star of a language L:
Kleen star is denoted as L*. It represents the set of strings that 
can be formed by taking any number of strings from L with 
repetition and concatenating them. It is a Unary operator. 
L0 is the set; we can make selecting zero strings from L.
L0 = {e}
L1 is the language consisting of selecting one string from L. 
L2 is the language consisting of concatenations selecting 
two strings from L. 
…
L* is the union of L0, L1 , …L∞.
Ex: L = {0,10}
L* = {0,00,000,10,010, …}

Intersection:
Let two DFAs M

1
 and M

2
 accept the languages L

1 
and L

2
.

M
1
 = (Q

1
, Σ, d

1
, q

0
1, .F

1
)

M
2
 = (Q

2
, Σ, d

2, 
q

0
2, F

2
)

The intersection of M
1
 and M

2
 can be given as 

M = (Q
1
, Σ, d, q

0
 F)

Q = Pairs of states, one from M
1
 and one from M

2
 i.e.,

Q = {(q
1
, q

2
) | q

1
 ∈ Q

1
 and q

2
 ∈ Q

2
}

Q = Q
1
 × Q

2
.

q
0

 = (q
0
1, q

0
2)

d (q
i
1 q

j
2), x) = (d

1
(q

1
1, x), d

2
(q

j
2, x))

F = {(q
1
, q

2
) | q

1
, ∈ F

1
 and q

2 
∈ F

2
}

Example:
M

1
: Strings with even number of 1’s.

q0
1 q1

1

0 0
1

1

M
2
: Strings with odd number of 0’s.

q0
2 q1

2

1 1
0

0

M
1
 ∩ M

2
: Strings with even number of 1’s and odd number 

of 0’s.

q0
2 q0

1 q0
2 q1

2

q0
2q1

2 q1
2 q1

2

0

0

0

111 1

0

Union of M
1
 and M

2
:

q0
2q0

1 q1
2

q0
2q1

1 q1
2

0

0

0

111 1

0

q0
1

q1
1

Difference: The difference of L
1
 and L

2
 can be given as 

L
1
 - L

2
 with M = (Q, ∑, d, q

0
, F).

Q = Q
1
 × Q

2

q
0

 = (q
0

1, q
0

2)

d ((q
i
1, q

j
2), x) = (d

1
 (q

i
1, x), d

2
(q

j
2, x))

F = {(q
1
, q

2
) | q

1
, ∈ F

1
 and q

2
 ∉ F

2
}

q0
2q0

1 q1
2

q1
1

0

0

0

111 1

0

q0
1

q0
2 q1

1q1
2

Reversing a DFA:

•• M is a DFA which recognizes the language L. 
•• MR will accept the language LR.

To construct MR:

•• Reverse all transitions
•• Turn the start state to final state
•• Turn the final states to start state. 
•• Merge states and modify the FA,

such that the resultant contain a single start state. 

Mealy and Moore Machines

Moore Machine
A moore machine is a finite state machine, where outputs 
are determined by current state alone.

A Moore machine associates an output symbol with each 
state and each time a state is entered, an output is obtained 
simultaneously. So, first output always occurs as soon as 
machine starts.
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Moore machine is defined by 6-tuples:  
(Q, Σ, δ, q

0
, ∆, λ), where

Q → Finite set of states
 Σ → Finite set of input symbols
 ∆ → It is an output alphabet
  δ → Transition function, Q × Σ → Q (state function)
 λ → Output function, Q → ∆ (machine function)
q

0
 → Initial state of machine

Note: The output symbol at a given time depends only on 
present state of moore machine.

Example 13:  The language generated by the following 
moore machine is:

0

1

1

1 0
q0/0

0

q1/1

q2/0

(A)	2’s complement of binary number.
(B)	 1’s complement of binary number.
(C)	 Has a substring 101.
(D)	Has a substring 110.

Solution:  (B) 
Binary number: 1011
1’s complement: 0100

q q q q q0
1 0

2
0 1

1
1 0

2
1 0

2
/ / / /, →  →  →  → 

1 → 0, 0 → 1, 1 → 0, 1 → 0

Mealy Machine
•• A mealy machine is a FSM, where outputs are determined 

by current state and input.
•• It associates an output symbol with each transition and 

the output depends on current input.
•• Mealy machine is defined on 6-tuples: (Q, Σ, δ, q

0
, ∆, λ), 

where

Q – Finite set of states.
Σ – Finite set of input symbols.
δ – (Q × Σ → Q) is transition function.
q

0
 → q

0
 ∈ Q is initial state.

∆ → Finite set of output symbols.
l → Output function, l(Q → ∆)

Note: In Moore machine, for input string of length n, the 
output sequence consists of (n + 1) symbols.

In Mealy machine, for input string of length n, the output 
sequence also consists of ‘n’ symbols.

Example 14:  Let (Me)2 mean that given a Mealy machine, 
an input string is processed and then output string is 
immediately fed into the machine (as input) and reprocessed. 

Only this second resultant output is considered as the final 
output of (Me)2. If final output string is same as original 
input string then (Me)2 has an identity property. Consider 
following machines.

	 (i)	
0/1, 1/0

	 (ii)	
0/0, 1/1

	 (iii)	  0/0, 1/1
0/1, 1/0

Which of above machines have identity property? 
(A)	 (i) only
(B)	 (i) and (ii) but not (iii)
(C)	 (i) and (iii) but not (ii)
(D)	 All have identity property

Solution:  (D)

(i)	 Consider i/p string

↓

↓ ↓ ↓ ↓

↓ ↓ ↓

0 01 1

1

1 1

10

0 0

0o/p string

o/p string

(Input string
reprocessed)

(ii)

↓

↓ ↓ ↓ ↓

↓ ↓ ↓
i/p string:

o/p string:

o/p string:

(i/p string)

0 01

0 01 1

0 01 1

1

(iii)

↓

↓ ↓ ↓ ↓

↓ ↓ ↓
i/p string:

o/p string:

o/p string:

(i/p string)

1 10

1 01 1

1 10 0

0

Equivalence of Moore and Mealy machine

(a) Mealy machine equivalent to Moore machine:
If M

1
 = (Q, Σ, D, d, l, q

0
) is a Moore machine, then there is 

a Mealy machine M
2
 equivalent to M

1
.

Proof: Let M
2 
= (Q, Σ, D, d, l1, q

0
) and define l1 (q, a) to be 

l(d (q, a)) for all states q and input symbol ‘a’.
Then M

1
 and M

2
 enter the same sequence of states on the 

same input, and with each transition M
2
 emits the o/p that 

M
1
 associates with the state entered.

Let us consider Mealy Machine
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Present
State

Next State

Input
State

a = 0
Output

Input
State

a = 1
Output

→ q1
q3 0 q2 0

q2 q1 1 q4 0

q3 q2 1 q1 1

q4 q4 1 q3 0

To convert the Mealy machine to Moore machine,

•• We look into the next state column for any state, say q
i
 

and determine the number of different outputs associated 
with q

i
 in next column.

•• Split q
i
 into several different states, the number of such 

states being equal to the number of different outputs asso-
ciated with q

i
.

Present 
State

Next State

Input 
State

a = 0 
Output

Input 
State

a = 1 
Output

→ q1
q3 0 q20 0

q20 q1 1 q40 0

q21 q1 1 q40 0

q3 q21 1 q1 1

q40 q41 1 q3 0

q41 q41 1 q3 0

•• The pair of states and outputs in the next state column can 
be rearranged as:

Present 
state

Next State

outputa = 0 a = 1

→ q1
q3 q20 1

q20 q1 q40 0

q21 q1 q40 1

q3 q21 q1 0

q40 q41 q3 0

q41 q41 q3 1

Moore machine equivalent to Mealy machine
Let M

1
 = (Q, Σ, D, d, l, q

0
) be a Mealy machine. Then there 

is a machine M
2
 equivalent to M

1

Proof:	 Let M
2
 = (QXD, Σ, D, d1, l1, [q

0
, b

0
]), where b

0
 is an 

arbitrary selected member of D.
That is, the states of M

2
 are pairs [q, b] consisting of a 

state of M
1
 and output symbol, Define d1 ([q, b], a) = [d (q, 

a), l, (q, a)] and l1 ([q, b]) = b.
The second component of a state [q, b] of M

2
 is the out-

put made by M
1
 on some transition into state q.

Only the first components of M
2
’s states determine the 

moves made by M
2
.

Every induction on ‘n’ shows that if M
1
 enters states q

0
, q

1 

… q
n
 on inputs a

1
, a

2 
… a

n
 and emits output b

1
, b

2
, 

 
… b

n
 then 

M
2
 enters states [q

0
, b

0
], [q

1
, b

1
]

 
… [q

n
, b

n
] and emits outputs 

b
0
, b

1 
… b

n
.

Let us consider the Moore machine

Present 
State

Next State

Outputa = 0 a = 1

→ q0
q3 q1 0

q1 q1 q2 1

q2 q2 q3 0

q3 q3 q0 0

•• To convert Moore into Mealy machine, we must follow 
the reverse procedure of converting Mealy machine into 
Moore machine.

•• For every input symbol we form, the pair consisting of the 
next state and the corresponding output and reconstruct 
the table for Mealy machine.

•• For example, the state q
3
 and q

1
 in the next state column 

should be associated with outputs 0 and 1, respectively.

The Transition table for Mealy machine is:

Present 
state

Next State

a = 0
state output

a = 1
state output

→ q0
q3 0 q1 1

q1 q1 1 q2 0

q2 q2 0 q3 0

q3 q3 0 q0 0

Regular Languages
The set of regular languages over an alphabet Σ is defined 
recursively as below. Any language belonging to this set is a 
regular language over Σ.

Definition of set of regular languages

•• Basis clause: ∅, {ε}, {a} for any symbol a ∈ Σ, are regu-
lar languages.

•• Inductive clause: If L
r
 and L

s
 are regular languages, then 

L
r 
∪ L

s
, L

r
 . L

s
, L

r
* are regular languages.

•• External clause: Nothing is a regular language, unless it is 
obtained from above two clauses.

Regular language: Any language represented by regular 
expression(s) is called a regular language. 
Ex: The regular expression a* denotes a language which has 
{e, a, aa, aaa, …}

Regular expression

•• Regular expressions are used to denote regular languages.
•• The set of regular expressions over an alphabet Σ is 

defined recursively as below. Any element of that set is a 
regular expression.
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•• Basis clause: ∅, ∈, a are regular expression correspond-
ing to languages ∅, {∈}, {a} respectively where a is an 
element of Σ.

•• Inductive clause: If r and s are regular expression corre-
sponding to languages L

r
 and L

s
 then (r + s), (rs) and (r*) 

are regular expressions corresponding to the languages 
L

r 
∪ L

s
, L

r
 . L

s
 and Lr*respectively.

•• External clause: Nothing is a regular expression, unless it 
is obtained from above two clauses.

Closure property of regular expressions  The iteration or 
closure of a regular expression R, written as R* is also a 
regular expression. 
Ex: ∑ = {a} then a* denotes the closure of ∑.
a* = {e, a, aa, aaa, …}

Conventions on regular expressions

	 1.	 The operation ‘*’ has highest precedence over concat-
enation, which has precedence over union (+).

		  i.e., RE (a + (b(c*))) = a + bc*

	 2.	 The concatenation of K r’s, where r is a regular expres-
sion is written as rk. The language corresponding to rk 
is L

r
k. Where L

r
 is language corresponding to regular 

expression r i.e., rr = r2

	 3.	 r+ is a regular expression to represent L
r
+

Note:  A regular expression is not unique for a language 
i.e., regular language corresponds to more than one regular 
expression.

Example 15:  Give regular expression for set of strings 
which either have ‘a’ followed by some b’s or all b’s also 
containing ‘ε’.
(A)	 b* + ab*	 (B)	 a* + ba*

(C)	 (ε) + (ε + a) b+	 (D)	 b* + ab* + ε
Solution:  (C)
The regular expression is, r = ab+ + b+ + ε = b+ (a + ε) + ε.
Identity rules for regular expressions:
  1.	 ∅ + R = R
  2.	 ∅ . R = R∅ = ∅
  3.	 εR = Rε = R
  4.	 ∅* = ε and ε* = ε
  5.	 R + R = R
  6.	 RR* = R* R = R+

  7.	 ε + RR* = R* and ε + R* R = R*

  8.	 (R*)* = R*

  9.	 R* R* = R*

10.	 ε + R* = R*

11.	 (R + ε)* = R*

12.	 R*(ε + R)* = (ε + R)* R* = R*

13.	 R* R + R = R* R
14.	 (P + Q)R = PQ + QR and R(P + Q) = RP + RQ
15.	 (P + Q)* = (P* Q*)* = (P* + Q*)*

16.	 (PQ)* P = P (QP)*

17.	� R is given as, R = Q + RP has unique solution, R = QP*. 
This is Arden’s theorem.

18.	 (P + Q)* = (P* + Q) = (P + Q*)

Example 16:  If r
1
 and r

2
 are regular expressions denoting 

languages L
1
 and L

2
 respectively then which of following is 

false?
(A)	 (r

1
)| (r

2
) is regular expression denoting L

1 
∪ L

2
.

(B)	 (r
1
) (r

2
) is regular expression denoting L

1
 . L

2
.

(C)	 ∅ is not a regular expression.
(D)	 {r

1
}* is regular expression denoting L

1
*.

Solution:  (C)

Constructing FA for Given RE
•• Relationship between FA and RE.

Regular
exp

NFA with
e-moves

NFA
without e

DFA
Minimal

DFA

Identities:
Basis:

; // Initial state = Final stateq1r = ε

; // Unreachable stateqfq0r = ∅⇒

qfq0r = a ⇒ a

Induction:

•• Union: L(r) = L (r
1
) + L (r

2
) i.e., L (M) = L (M

1
) ∪ L (M

2
)

Let M
1
 = (Q

1
, Σ

1
, δ

1
, q

1
, {f

1
}), M

2
 = (Q

2
, Σ

2
, δ

2
, q

2
, {f

2
}) with 

L (M
1
) = L (r

1
) and L (M

2
) = L (r

2
), then M = (Q

1 
∪ Q

2 
∪ {q

0
, 

f
0
}, Σ

1 
∪ Σ

2
, δ, q

0
, {f

0
})

q0

M1

M2

ε

ε

q1 f1 ε

εq2 f2

f0

•• Concatenation:
L(r) = L (r

1
) . L (r

2
) i.e., L (M) = L (M

1
) . L (M

2
)

q1 f1M1 M2
ε q2 f2

•• Closure:

L(r) = L(r)* i.e., L (M) = L (M
1
)*

Let M
1
 = (Q

1
, Σ

1
, δ

1
, q

1
, {f

1
}) then L (M) = (Q

1 
∪ {q

0
,
 
f
0
}, Σ

1
, 

δ, q
0
, {f

0
})

q0 q1 f1M1
ε

ε

ε

ε

f0
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Example 17:  The regular expression generated by the 
given FA.

q0
a

a

b

a

b
b

b
q1

q2 q3

(A)	 (a + ba*) b*	 (B)	 (aa*b + bb*) b*

(C)	 (b + ab*) a*	 (D)	 (ab + ba)*

Solution:  (B)
q

2
 is final state which is obtained with input symbol only 

‘b’. So, (C) or (D) is not true.
In (A) → ba* is not defined in given FA. Instead bb* is 

defined.

Pumping Lemma for Regular Sets
Theorem  Let ‘L’ be an arbitrary regular language. Then 
there exists a positive integer, P with following property:

Given an arbitrary member, w of L having length at least 
P (i.e., |w|≥P), w can be divided into 3-parts, w = xyz ∃
•• |y| ≥ 1 (the middle part is non-empty)
•• |xy| ≤ P (the first two parts have length atmost P)
•• For each, i ≥ 0, xyiz ∈ L (removing or repeating the middle 

part produces member of L)

Proof  Let L be an arbitrary regular language. Then there is 
a FA, say M that decides L.
Let P be the number of states of M.
Let w be an arbitrary member of L, having length ‘n’ with 
n ≥ P.
Let q

0
, q

1
, … q

n
 be states that M on input w. That is, for each 

i, after reading the first i symbols of w, M is at q
i
.

q
0
 is initial state of M. Also, since w ∈ L, q

n
 is a final state 

of M.
Let x = w

1
 … w

c
, y = w

c+4
 … w

d
, z = w

d+1
 … w

n
. Then: 

•• |y| ≥ 1
•• |xy| ≤ P
•• M transitions from q

0
 to q

c
 on x.

•• M transitions from q
c
 to q

c
 on y.

•• M transitions from q
c
 to q

n
 on z.

Thus, for every i ≥ 0, M transitions from q
0
 to q

n
 on xyiz and 

so, xyiz is a member of L.

Note:

•• Pumping lemma is used to verify that given language is 
not regular.

•• Pumping lemma follows pigeon hole principle.

Example 18:  The language, L is defined as:
L = {w

1
w

2
 : w

1
, w

2 
∈ {a, b}*, |w

1
| = |w

2
|}. Is the language 

regular?

(A)	 Regular
(B)	 Not regular
(C)	 Cannot be determined
(D)	 None of these

Solution:  (A) 
Fix pumping length, K = 2
For every proper strings in L, (2n ≥ 2)

n n

abbba . . . aaaabb/bbaba . . .

•• Split in x, y, z with desired properties.

n n

zy
abbba . . . aaaabb|bbaba . . .

•• Let x = ε, y = first two symbols, z = rest.

n + 1n + 1
Z

→ xy 2
 z ∈L

y y
ababbba . . . aaaab|bbbbaba . . .

•• xy3z: 

n + 2n + 2 z

y y
abababbba . . . aaa∈La|bbbbbaba . . .

y

•• xyoz →

n − 1n − 1

z

bba . . . aaa∈Labb|aba . . .

∴ For every i ≥ 0, xyi z ∈ L. Hence given language is regular.

Closure Properties of 
Regular Sets
	 1.	 Union: If L and M are regular languages, LUM is reg-

ular language closed under union.
	 2.	 Concatenation and Kleen closure: If L and M are 

regular languages, L.M is regular language and L* is 
also regular.

	 3.	 Intersection: L ∩ M is regular, if L and M are regular 
languages.

	 4.	 Difference: L – M contains strings in ‘L’ but not M, 
where L and M are regular languages.

	 5.	 Complementation: The complement of language L is 
Σ*–L.

Note: Since Σ* is surely regular, the complement of a reg-
ular language is always regular. Where Σ* is a universal 
language.

	 6.	 Homomorphism: If L is a regular language, h is 
homomorphism on its alphabet then h (L) = {h (w) |w 
is in L} is also a regular language.
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Regular grammar

•• Grammar: Generative description of a language.
•• Automaton: Analytical description.
•• A grammar is a 4-tuple, G = (V, Σ, R, S) where V: alpha-

bet (variable) (non-terminals)

Σ ⊆ V is set of terminal symbols.
R ⊆ (V+ × V*) is a finite set of production rules.
S ∈ V – Σ is start symbol.

Notation

•• Elements of V – Σ: A, B, …
•• Elements of Σ: a, b …
•• Rules ( , ) :α β α β α β   or ∈ →  →R

G

•• Start symbol is written as S.
•• Empty word: ε

Example 19:  The regular expression that describe the 
language generated by grammar, G = ({S, A, B}, {a, b}, S, 
{S → Aab, A → Aab|B, B → a}
(A)	 (ab) * a	 (B)	 aab(ab)*

(C)	 ab * aa	 (D)	 (a + ba)*

Solution:  (B)
S → Aab → Aab ab → A ab abab → Bababab
→ aababab → aab(ab)*

Union of two Regular languages:
If L

1
 and L

2 
are two languages then 

L
1
 ∪ L

2
 = {w/w ∈ L

1
 or w ∈ L

2
}

The union of two regular languages is also a regular language. 
Let M

1
 = (Q

1
, ∑, d

1
, q

1
, f

1
)

M
2
 = (Q

2
, ∑, d

2
, q

2
, f

2
)

M = M
1
UM

2
 can be given as 

M = (Q, ∑, d, 
 
q

0
, f).

Where Q = {(r
1
, r

2
) | r

1
 ∈ Q

1
 and r

2
 ∈ Q

2
}

i.e., Q is the Cartesian product of sets Q
1
 and Q

2
.

∑ is the alphabet, is the same in M
1
 and M

2
.

∑ = ∑
1
 U ∑

2
.

d is the transition function given as: 
d (r

1
, r

2
), a = (d

1
(r

1
, a) d

2
 (r

2
, a)).

q
0
 is the pair (q

1
, q

2
). 

F is the set of pairs in which either member is an accept 
state of M

1 
or M

2
.

F = {(r
1
, r

2
) | r

1
 ∈ F

1
 or r

2
 ∈ F

2
}

Types of Grammars
•• Type 0: Unrestricted, recursively enumerable languages.
•• Type 1: Context-sensitive grammar.
•• Type 2: Context free grammar.
•• Type 3: Regular grammar.

Type 0: Recursively enumerable grammar:  (Turing 
Machine) (TM):

Every production rule is of form: α → β, where α and β 
are in (V ∪ T)*, i.e., there can be any strings of terminals and 
non-terminals (no-restriction).

Type 1: Context-sensitive Grammar: (Linear bounded 
automaton) (LBA):

Every production rule is of form, α→ β are in (V ∪ T)* 
and α ≠ ε and |β|≥|α| i.e., any strings of terminals and non-
terminals and length of string that can appear on RHS of 
production must be greater than or equal to length of string 
that can appear on LHS of production.

Type 2: Context-free grammar: (Push down automaton) 
(PDA):

Every production rule is of form, A→α where α is in 
(V ∪ T)* i.e., LHS of rule is single non-terminal and RHS 
can be any string of terminals and non-terminals.

Type 3: Regular grammar: (Finite automaton) (FA):
Every production is of form, A→aB or A→a where A 

and B ∈ V and a ∈ T. That is, LHS of rule is non-termi-
nal and RHS can be terminal (or) terminal followed by 
non-terminal.

Relationship between types of grammar:

Type – 0 

Type – 1 

Type – 2 

Type – 3 

•• Regular sets are properly contained in CFL (Context Free 
Languages).

•• The CFL’s not containing empty string ε, are properly 
contained in CSL. (Context sensitive language).

•• The CSL’s are properly contained in Recursively enumer-
able languages.

•• RG ⊂ CFG ⊂ CSL ⊂ REG

Left-linear Grammar:
All productions have form: A → Bx or A → x

Right-linear Grammar:
All productions have the form: A → xB or A → x.

Note:
•• The regular grammars characterize the regular sets i.e., a 

language is regular if and only if it has a left-linear gram-
mar or if and only if it has a right-linear grammar.

•• If L has a regular grammar, then L is a regular set.
•• If L is a regular set, then L is generated by some left-linear 

grammar and by some right-linear grammar.

Arden’s theorem: Let P and Q be two regular expressions 
over ∑. If P does not contain ‘e’ then the following equation 
in R, namely R = Q + RP has a unique solution given by 
R = QP*. 
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Arden’s Theorem to obtain regular expression from 
given transition diagram: The following steps are used to 
find the RE recognized by transition system. 

The following assumptions are made regarding the tran-
sition system. 

	 (i)	 The transition graph does not have e-moves
	(ii)	 It has only one initial state, q

o
.

	(iii)	 The states in the transition diagram are q
o
, q

1
, q

2
, … q

n
.

	(iv)	 Q
i
,
 
the regular expression represents the set of 

strings accepted by a system even though q
i 
is the 

final state. 
	(v)	 aij denotes the regular expression representing the set 

of labels of edges from q
i
 to q

j
.
 
When there is no such 

edge aij = f.

		  We will get the following set of equations. 
Q

1
 = Q

1 
α

11
 + Q

2 
α

12
 + … Q

n 
α

n1
 + e

Q
2
 = Q

1 
α

12
 + Q

2 
α

22
 + … Q

n 
α

n2

 :
 :
 :

Q
n
 = Q

1 
α1n + Q

2 
α

2n
 + … Q

n 
α

nn
.

By Repeatedly applying substitutions and Arden’s theorem, 
we can express Q

i 
in terms of α

ij
’s.

For getting the set of strings recognized by the transition 
system, we have to take the union of all Q

i
’s corresponding 

to final states. 

Construction of Regular Grammar from FA

Step I:    �Associate suitable variables like A, B, C … with 
states of automata.

Step II: � Obtain the productions of the grammar as:
If δ(A, a) = B then add production A → aB to list of 
productions of grammar, if B is a final state, then 
add either A → a or B → ε, to list of productions 
of grammar.

Step III: �The variable associated with initial state of autom-
ata is start symbol of grammar.

Example 20:  Regular grammar generating language accepted 
by below automata is

A

0
1

1

0
B

C

(A)	 A→0B|1C|ε
	 B→1A
	 C→0A
(B)	 A→1B|0C|ε
	 B→1A
	 C→0A
(C)	 A→B|C|ε
	 B→1
	 C→0

(D)	 A→0A|1B|ε
	 B→1C
	 C→0A

Solution:  (A)
A→0B, A→1C, B→1A, C→0A

∴ A is final state, A → ε

∴ A → 0B|1C|ε
B →1A                      (or)

C → 0A

A → 0B|1C

B → 1A|1

C → 0A|0

Construction of FA from given regular grammar

Given a regular grammar, G; a regular expression specify-
ing L(G) can be obtained directly as follows:

•• Replace the ‘→’ symbol in productions of grammar by 
‘=’ symbol, to get set of equations.

•• Solve the set of equations obtained above to get the value 
of variable, S, where S is start symbol of grammar, result 
is regular expression specifying L(G).

Example 21:  The Regular grammar and FA for given 
regular expression f*1*U (0f)* is ___

(A)	 S→0S|1S|0
	 T→1T|ε

0, 1
0

1

S T

(B)	 S→1S|ε

1

S

(C)	 S→0T|1S|ε
	 T→0T|1U|ε
	 U→0T|1S

S

1

0
0

0

1

1

T U

(D)	 Cannot be determined

Solution:  (B)
∅* 1* ∪ (0∅)* = ∅* . 1* ∪ ∅* = ε . 1* ∪ ε = 1*.

1

S
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Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 Find a regular expression for

		  L = {uvu: u, v ∈ {a, b}*, |u| = 2}
	 (A)	 (ab)*a(ab)*

	 (B)	 (aa)*ab(aa)*

	 (C)	 aa(a + b)*bb + bb(a + b)*aa
	 (D)	� aa(a + b)*aa + ab(a + b)* ab + ba (a + b)* ba + bb 

(a + b)*bb

	 2.	 Consider the regular expression, R = 10 + (0 + 11)0* 1. 
The minimum number of states in any DFA accepting 
this regular expression is:

	 (A)	 5	 (B)	 4
	 (C)	 3	 (D)	 6

	 3.	 The following DFA accepts the set of all strings over 
{a, b} that

a

aa

b

b b

b

a

q0 q1

q3 q2

	 (A)	 Contains number of b’s divisible by 3.
	 (B)	 Contain number of a’s and b’s divisible by 3
	 (C)	 Contain number of b’s congruent to 3 modulo 4.
	 (D)	 Contain any number of a’s and b’s

	 4.	 Consider the grammar, S → SS/a. To get string of n 
terminals, the number of productions to be used is

	 (A)	 n2	 (B)	 n
	 (C)	 2n+1	 (D)	 2n–1

	 5.	 The language L is defined as, L = {ai bj c2j| i ≥ 0, j ≥ 0}. 
Is this language L regular?

	 (A)	 Yes	 (B)	 No
	 (C)	 Cant be determined	 (D)	 None of these

	 6.	 The language, L is defined by set of strings over {a, b}* 
in which number of a’s is a perfect cube. What is the 
nature of language, L?

	 (A)	 Regular	 (B)	 Non-regular
	 (C)	 Cant be determined	 (D)	 None of these

	 7.	 The language, L is defined over Σ = {0 – 7}. The string 
include 7, 16, 43, 61, 223, … The language generated 
is:

	 (A)	 Alternate odd and even numbers
	 (B)	 Octal representation of a number
	 (C)	 Divisible by 7.
	 (D)	 Octal representation of a number divisible by 7.

	 8.	 The language L, is defined as set of strings that start and 
end with equal number of a’s and contain any number 

of b’s. The grammar L(G) for language L is defined 
with productions as:

	 (A)	 S→aBa
		  B→ε|bB
	 (B)	 S→aB
		  B→a|bB
	 (C)	 S→aT|bS
		  T→aT|bT|a|b
	 (D)	 S→B|aSa
		  B→ε|bB

	 9.	 If the regular set A is represented by A = ((01)*1*)*. And 
the regular set B is represented by B = (01 + 1)*, which 
of the following is true?

	 (A)	 A B⊂
	 (B)	 B A⊂
	 (C)	 A = B
	 (D)	 A and B are incomparable

	10.	 The language, L that is generated over Σ = {0, 1} for 
regular expression L(r) = (0 + 10)* 1 (1 + 10)*

	 (A)	� Any string whose number of 1’s length is greater 
than or equal to 3.

	 (B)	 Any string that has no substring 110.
	 (C)	 Any string that has no substring 00 after first 11.
	 (D)	� Any string that has only one occurrence of sub-

string 010.

	11.	 The R.E L(r) = (a+b*) U ε. Is the grammar with produc-
tions generated over non-terminals {S, A} ambiguous?

	 (A)	 Yes	 (B)	 No
	 (C)	 Can’t be determined	 (D)	 None

	12.	 The number of states in the obtained Moore machine 
while converting the given mealy to Moore are:

q0
a/0

a/0 a/0

a/0

b/0

b/1 b/1

a/1

b/0

b/0

q1

q2

q3

q4

	 (A)	 5	 (B)	 6
	 (C)	 4	 (D)	 7

	13.	 The language L is defined as L = {0i1j/i ≠ j} over {0, 
1, 2}, A = {0i 1j/i≥0, j≥0} and B = {0i 1j/i = j}. For 
language, L to be non-regular. What should be relation 
between A, B, L?

	 (A)	 B = (A ∪ L) c	 (B)	 B = A ∪ L
	 (C)	 B A L= ∩ 	 (D)	 B = Ac

	14.	 Which of following grammars are unambiguous?
	 (A)	 S→(S) S|[S] S|ε	 (B)	 S→S(S)S|ε
	 (C)	 S→aS|Sa|a	 (D)	 S→a|Sa|bSS|Ssb|SbS
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	15.	 What will be number of final states obtained in DFA for 
language L = {w/w contains at least two 0’s and atmost 
one 1} over Σ = {0, 1}.

	 (A)	 2	 (B)	 1
	 (C)	 3	 (D)	 4

Practice Problems 2
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 Which of the following Regular expression is equal to 

given regular expression: (b + aa* b) + (b + aa*b) (a + 
ba* b)* (a + ba* b)

	 (A)	 Ab (b + baa*)	 (B)	 a*b (a + ba* b)
	 (C)	 a* b (a + ba* b)*	 (D)	 ab (b + aa*b)*

	 2.	 The following DFA accepts set of all strings over {a, b} 
that contain

q0

aaa a

b

b

b

b b

b q1 q2

q3 q4

a a

q5

	 (A)	 Number of a’s even and number of b’s odd.
	 (B)	 Consecutive a’s and b’s
	 (C)	 Contain bbb as substring
	 (D)	� Number of a’s even and number of b’s divisible by 

three.

	 3.	 The regular language L(r) for the given FSM is:

q1

1

1

0

0

0

1

11

0 0

0, 1

q2

q0 q3

q4 q5

	 (A)	� It can start with zero followed by any number of 
1’s but no two consecutive 0’s.

	 (B)	� It can start with 1, followed by any number of 0’s 
but no two consecutive 1’s.

	 (C)	� It is a combination of 0’s and 1’s but no two con-
secutive 0’s or 1’s.

	 (D)	 Both (A) and (B).

	 4.	 The language, L is defined as a set of non-palindromes 
over {a, b}. Is L regular?

	 (A)	 Yes	 (B)	 No
	 (C)	 Cannot be determined	 (D)	 None of above

	 5.	 The DFA, for language, L over Σ = {a, b} is given 
below. What will be number of states in minimized 
DFA.

2 3 4

5 6

1

a

a

a
a a

a

b b

b

b
b

	 (A)	 4	 (B)	 6
	 (C)	 2	 (D)	 3

	 6.	 The minimal DFA given below is defined for language, 
L = {w ∈ {a, b}*} over Σ = {a, b}. The ‘L’ is:

a

a a

1 a, bb

bb

2

3

3

	 (A)	� Strings that contain equal number of a’s and b’s 
that have adjacent characters same.

	 (B)	 Contains adjacent characters same
	 (C)	 No two adjacent characters are same
	 (D)	� Starts and ends with same character that have ad-

jacent character same.

	 7.	 The regular grammar L(G) contains productions, P 
for language, L = {w ∈{a, b}*/ there is at least one a} 
are:

	 (A)	 S→aS|bS|a|aT
		  T→aT|bT|a|b
	 (B)	 S→aS|bS|ε
	 (C)	 S→aBb|bB
		  B→a|b
	 (D)	 S→bB
		  B→b|ε

	 8.	 The regular expression for a language is defined as 
((a* b)* (bc*)*). The total number of final states obtained 
in both NFA and DFA are respectively:

	 (A)	 4, 2	 (B)	 1, 3
	 (C)	 1, 5	 (D)	 2,3

	 9.	 The language, L is defined as {w/w has n occurrences 
of 0’s where n mod 5 is 3} over Σ = {0, 1}. The number 
of final states obtained in the DFA for L is:

	 (A)	 4	 (B)	 5
	 (C)	 1	 (D)	 2
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	10.	 Which of the following is an equivalent DFA for the 
following NFA?

A

0, 1
0, 11

B C

	 (A)	 A
1

1

1
1

0
0 0

0B C D

	 (B)	

0
0

0,11
1

A B C

 	 (C)	
A

0 0

0

1

1 B C

	 (D)	
0

0

0 01

11

1

A B C D

	11.	 A regular grammar over alphabet Σ = {a, b, c, d} whose 
language, is set of strings that contain exactly two b’s is:

	 (A)	 S→aS|bS|cS|dA
		  A→aA|bA|cA|dA|ε
	 (B)	 S→aS|cS|dS|bB
		  B→aB|cB|dB|bC,
		  C → aC|cC|dC|ε
	 (C)	 S→aS|bS|cS|dA
		  A→aA|bB|cC
		  B→b
		  C→c
	 (D)	 None of above

	12.	 The following NFA contains ε-moves with 5, transi-
tions. If this NFA with ε-moves is converted to NFA 
without ε-moves, what will be total number of transi-
tions in obtained NFA?

20 1
ε εq0 q1 q2

	 (A)	 5	 (B)	 4
	 (C)	 6	 (D)	 3

	13.	 The regular expression, r = (a + b)*. One more regular 
expression which represents same regular expression 
‘r’ is:

	 (A)	 a* + b*	 (B)	 a* . b*

	 (C)	 a*(ba*)*	 (D)	 (a + b)* (a + b)

	14.	 The Regular grammar, L(G) is defined for L with 
productions as S→Aab, A→Aab|aB, B→a. What is 
Language generated by L(G)?

	 (A)	 Containing alternative a’s and b’s
	 (B)	� Containing alternative a’s and b’s, begins with an 

‘a’ and ends with a ‘b’.
	 (C)	 ‘aa’ followed by at least one set of alternating ab’s.
	 (D)	 Consecutive aa’s followed by ‘b’.

	15.	 The number of final states in DFA after converting the 
NFA given below is:

1

a, bb

a

2

	 (A)	 4	 (B)	 2
	 (C)	 3	 (D)	 1

Previous Years’ Questions

	 1.	 Match the following NFAs with the regular expres-
sions they correspond to� [2008]

P.  

0 0
0

1

1
Q.  

0 1
0

1

0

R.  

0 1
1

1

0
S.  

0
1

1

1

0

	 1.  ∈ + 0(01*1 + 00)*01*
	 2.  ∈ + 0(10*1 + 00)*0
	 3.  ∈ + 0(10*1 + 10)*1
	 4.  ∈ + 0(10*1 + 10)*10*

	 (A)	 P-2, Q-1, R-3, S- 4
	 (B)	 P-1, Q-3, R-2, S- 4
	 (C)	 P-1, Q-2, R-3, S- 4
	 (D)	 P-3, Q-2, R-1, S- 4
	 2.	 Which of the following are regular sets?

	 I.	 {anb2m | n ≥ 0, m ≥ 0}

	II.	 {anbm | n = 2m}

	III.	 {anbm | n ≠ m}

	IV.	 {xcy | x, y ∈ {a, b}*}� [2008]
	 (A)	 I and IV only	 (B)	 I and III only
	 (C)	 I only	 (D)	 IV only
	 3.	 Which one of the following languages over the alpha-

bet {0, 1} is described by the regular expression: 
(0 + 1)*0(0 + 1)*0(0 + 1)*?� [2009]

	 (A)	 The set of all strings containing the substring 00.
	 (B)	 The set of all strings containing atmost two 0’s.
	 (C)	 The set of all strings containing at least two 0’s.
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	 (D)	� The set of all strings that begin and end with ei-
ther 0 or 1.

	 4.	 Which one of the following is FALSE?� [2009]
	 (A)	� There is a unique minimal DFA for every regular 

language.
	 (B)	� Every NFA can be converted to an equivalent 

PDA.
	 (C)	� Complement of every context-free language is 

recursive.
	 (D)	� Every non-deterministic PDA can be converted 

to an equivalent deterministic PDA.

	 5.	 Match all items in Group 1 with correct options from 
those given in Group 2.� [2009]

Group 1 Group 2

P. Regular expression 1. Syntax analysis

Q. Pushdown automata 2. Code generation

R. Dataflow analysis 3. Lexical analysis

S. Register allocation 4. Code optimization

	 (A)	 P–4, Q–1, R–2, S–3	 (B)	 P–3, Q–1, R–4, S–2
	 (C)	 P–3, Q–4, R–1, S–2	 (D)	 P–2, Q–1, R–4, S–3

	 6.

0

1

0
0

1
1

		  The above DFA accepts the set of all strings over {0, 
1} that� [2009]

	 (A)	 Begin either with 0 or 1
	 (B)	 End with 0
	 (C)	 End with 00
	 (D)	 Contain the substring 00.

	 7.	 Let L = {w ∈ (0 + 1)* | w has even number of 1’s}, 
i.e., L is the set of all bit strings with even number 
of 1’s. Which one of the regular expressions below 
represents L?� [2010]

	 (A)	 (0*10*1)*	 (B)	 0*(10*10*)*

	 (C)	 0*(10*1*)*0*	 (D)	 0*1(10*1)*10*

	 8.	 Consider the languages L
1
 = {0i1j | i ≠ j}. L

2
 = {0i1j |  

i = j}, L
3
 = {0i1j | i = 2j + 1}. L

4
 = {0i1j | i ≠ 2j}. Which 

one of the following statements is true?� [2010]
	 (A)	 Only L

2
 is context free

	 (B)	 Only L
2
 and L

3
 are context free

	 (C)	 Only L
1
 and L

2
 are context free

	 (D)	 All are context free

	 9.	 Let w be any string of length n in {0, 1}*. Let L be the 
set of all substrings of w. What is the minimum num-
ber of states in a non-deterministic finite automaton that 
accepts L?� [2010]

	 (A)	 n-1	 (B)	 n
	 (C)	 n+1	 (D)	 2n-1

	10.	 Let P be a regular language and Q be a context-free 
language such that Q ⊆ P (For example let P be the 
language represented by the regular expression p*q* 
and Q be {pnqn} n ∈ N}, Then which of the following 
is ALWAYS regular?� [2011]

	 (A)	 P ∩ Q	 (B)	 P - Q
	 (C)	 S* - P	 (D)	 S* - Q
	11.	 A deterministic finite automaton (DFA) D with alpha-

bet S = {a, b} is given below.

a aa, b a, b

a, b

p b b

s

q r

t

	 	 Which of the following finite state machines is a valid 
minimal DFA which accepts the same language as D?
� [2011]

(A)	

b

a a

b
a, b

a, b

p q

s

r

(B)	

a

a, b

a, b
a, b

p

b

r

s

q

(C)	
p ba, b

a, ba, b

q r

(D)	

p
b

b

a a

a, b
s

q

	12.	 Given the language L = {ab, aa, baa}, which of the 
following strings are in L*?� [2012]

		  (1)	 abaabaaabaa	       (2)  aaaabaaaa

		  (3)	 baaaaabaaaab	       (4)  baaaaabaa
	 (A)	 1, 2 and 3	 (B)	 2, 3 and 4
	 (C)	 1, 2 and 4	 (D)	 1, 3 and 4
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	13.	 What is the complement of the language accepted by 
the NFA shown below?

a ε

ε

		  Assume S = {a} and e is the empty string.� [2012]
	 (A)	 ∅	 (B)	 {e}
	 (C)	 a*	 (D)	 {a, e}

	14.	 Consider the set of strings on {0, 1} in which, every 
substring of 3 symbols has atmost two zeros. For 
example, 001110 and 011001 are in the language, but 
100010 are not. All strings of length less than 3 are 
also in the language. A partially completed DFA that 
accepts this language is shown below.

ε q

0

0

0

0

0

1

1

1

1

1

1

01

0, 1

00

10

11

		  The missing arcs in the DFA are � [2012]

	(A)	

00 01 10 11 q

00 1 0

01 1

10 0

11 0

	(B)	
00 01 10 11 q

00 0 1

01 1

10 0

11 0

	(C)
00 01 10 11 q

00 1 0

01 1

10 0

11 0

	(D)	

00 01 10 11 q

00 1 0

01 1

10 0

11 0

	15.	 Consider the languages L
1
 = Φ and L

2
 = {a}. Which 

one of the following represents L
1
 L

2
*UL

1
*?� [2013]

	 (A)	 {∈}	 (B)	 Φ
	 (C)	 a*	 (D)	 {∈, a}

	16.	 Consider the DFA A given below

1
1

0 0

0, 1

		  Which of the following are FALSE?

		  1.	 Complement of L (A) is context-free.

		  2.	 L(A) = L ((11*0 + 0) (0 + 1)*0*1*)

		  3.	� For the language accepted by A, A is the minimal 
DFA.

		  4.	� A accepts all strings over {0, 1} of length at  
least 2. � [2013]

	 (A)	 1 and 3 only	 (B)	 2 and 4 only
	 (C)	 2 and 3 only	 (D)	 3 and 4 only

	17.	 Consider the finite automaton in the following figure.
� [2014]

q0 q1 q2 q3

0, 1
0, 11

1
0, 1

		  What is the set of reachable states for the input string 
0011?

	 (A)	 {q
0
, q

1
, q

2
}	 (B)	 {q

0
, q

1
}

	 (C)	 {q
0
, q

1
, q

2
, q

3
}	 (D)	 {q

3
}

	18.	 If L
1
 = {an|n ≥ 0} and L

2
 = {bn|n ≥ 0}, consider the 

statements� [2014]

		  (I)	 L
1
 . L

2
 is a regular language 

		  (II)	 L
1
 . L

2
 = {an bn|n ≥ 0}

		  Which one of the following is CORRECT?
	 (A)	 Only (I)	 (B)	 Only (II)
	 (C)	 Both (I) and (II)	 (D)	 Neither (I) nor (II)

	19.	 Let L
1
 = {w ∈ {0, 1}*| w has at least as many occurrences 

of (110)’s as (011)’s}. Let L
2
 = {w ∈{0, 1}*|w has at least 
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as many occurrences of (000)’s as (111)’s}. Which one 
of the following is TRUE?� [2014]

	 (A)	 L
1
 is regular but not L

2

	 (B)	 L
2
 is regular but not L

1

	 (C)	 Both L
1
 and L

2
 are regular 

	 (D)	 Neither L
1
 nor L

2
 are regular 

	20.	 The length of the shortest string NOT in the language 
(over S = {a, b}) of the following regular expression 
is _____.� [2014]

		  a*b*(ba)*a*

	21.	 Let S be finite non-empty alphabet and let 2Σ* be 
the power set of SΣ*. Which one of the following is 
TRUE?� [2014]

		  (A)	 Both 2∑ ∗*

and Σ  are countable 

		  (B)	 2Σ* is countable and S* is uncountable 

		  (C)	 2Σ* is uncountable and S* is countable

		  (D)	 Both 2∑ ∗*

 and Σ  are uncountable 

		  1.  e + 0 (01* 1 + 00)* 01*

		  2.  e + 0 (10* 1 + 00)* 0

		  3.  e + 0 (10* 1 + 10)* 1

		  4.  e + 0 (10* 1 + 10)* 10*

	 (A)	 P − 2, Q − 1, R − 3, S − 4
	 (B)	 P − 1, Q − 3, R − 2, S − 4
	 (C)	 P − 1, Q − 2, R − 3, S − 4
	 (D)	 P − 3, Q − 2, R − 1, S − 4

	22.	 Consider the DFAs M and N given above. The number 
of states in a minimal DFA that accepts the language 
L(M) ∩ L(N) is _______� [2015]

a
ab

b

M :

a

a

b
b

N :

	23.	 The number of states in the minimal deterministic finite 
automaton corresponding to the regular expression  
(0 + 1)*(10) is ______� [2015]

	24.	 Which of the following languages is/are regular?
� [2015]

		  L
1
: �{wxwR |w

1
 x ∈ {a, b}* and |w|, |x| > 0}, wR is the 

reverse of string w

		  L
2
: {anbm|m ≠ n and m, n ≥ 0}

		  L
3
: {a pbqcr| p, q, r ≥ 0}

	 (A)	 L
1
 and L

3
 only	 (B)	 L

2
 only

	 (C)	 L
2
 and L

3
 only	 (D)	 L

3
 only

	25.	 Consider the alphabet Σ = {0, 1}, the null/empty 
string λ and the sets of strings X

0
, X

1
 and X

2
 gener-

ated by the corresponding non-terminals of a regular 
grammar. X

0
, X

1
 and X

2
 are related as follows

		  X
0
 = 1 X

1

		  X
1
 = 0 X

1
 + 1 X

2

		  X
2
 = 0 X

1
 + {λ}

		  Which one of the following choices precisely repre-
sents the strings in X

0
?� [2015]

	 (A)	 10(0* + (10)*)1
	 (B)	 10(0* + (10)*)*1
	 (C)	 1(0 + 10)*1
	 (D)	 10(0 + 10)*1 + 110(0 + 10)*1

	26.	 Let L be the language represented by the regular 
expression Σ* 0011 Σ* where Σ = {0, 1}. What is the 
minimum number of states in a DFA that recognizes 
L (complement of L)?� [2015]

	 (A)	 4	 (B)	 5
	 (C)	 6	 (D)	 8

	27.	 Which of the following languages is generated by the 
given grammar?� [2016]

		  S →aS | bS | ε]
	 (A)	 {an bm | n, m ≥ 0}
	 (B)	� {w ∈ {a, b} * | w has equal number of a’s and 

b’s}
	 (C)	 {an | n ≥ 0 } U {bn |n ≥ 0 } U {anbn | n ≥ 0}
	 (D)	 {a, b}*

	28.	 Which of the following decision problems are unde-
cidable?� [2016]

		  I.	 Given NFAs N
1
 and N

2
, is 

		  L (N
1
) ∩ L (N

2
)= Φ?

		  II.	� Given a CFG G = (N, ∑, P,S) and a string x ∈ ∑*, 
does x ∈ L(G)?

		  III.	 Given CFGs G
1
 and G

2
, is 

			   L(G
1
) = L(G

2
)?

		  IV	 Given a TM M, is L(M) = Φ?
	 (A)	 I and IV only
	 (B)	 II and III only
	 (C)	 III and IV only
	 (D)	 II and IV only

	29.	 Which one of the following regular expressions repre-
sents the language: the set of all binary strings having 
two consecutive 0’s and two consecutive 1s?� [2016]

	 (A)	 (0+1)* 0011 (0+1)* + (0+1)* 1100 (0+1)*
	 (B)	 (0+1)* (00(0+1)*11 + 11 (0+1)*00) (0+1)*
	 (C)	 (0+1)* 00 (0+1)* + (0+1)* 11 (0+1)*
	 (D)	 00 (0+1)* 11 + 11 (0+1)* 00

	30.	 The number of states in the minimum sized DFA that 
accepts the language defined by the regular expression

		  (0+1)* (0+1) (0+1)* is ______ .� [2016]

	31.	 Language L
1
 is defined by the grammar: S

1
→aS

1
b∈

		  Language L
2
 is defined by the grammar: S

2
→abS

2
∈
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		  Consider the following statements:
		  P:L

1
 is regular

		  Q:L
2
 is regular

		  Which one of the following is TRUE?� [2016]
	 (A)	 Both P and Q are true
	 (B)	 P is true and Q is false
	 (C)	 P is false and Q is true
	 (D)	 Both P and Q are false

	32.	 Consider the following two statements:

		    I.	� If all states of an NFA are accepting states then 
the language accepted by the NFA is S*.

		  II.	� There exists a regular language A such that for all 
languages B, A ∩ B is regular.

		  Which one of the following is CORRECT?� [2016]
	 (A)	 Only I is true	
	 (B)	 Only II is true
	 (C)	 Both I and II are true		
	 (D)	 Both I and II are false

	33.	 Consider the language L given by the regular expres-
sion (a + b)*b (a + b) over the alphabet {a, b}. The 
smallest number of states needed in a deterministic 
finite-state automaton (DFA) accepting L is ________.
� [2017]

	34.	 The minimum possible number of states of a deter-
ministic finite automaton that accepts the regular lan-
guage L = {w

1
aw

2
| w

1
, w

2 
∈ {a, b}*, |w

1
| = 2, |w

2
| ≥ 3} 

is __________.� [2017]

	35.	 Let δ  denote the transition function and d̂  denote 
the extended transition function of the ∈-NFA whose 
transition table is given below:

δ ∈ a b

→q
0

{q
2
} (q

1
} {q

0
}

q
1

{q
2
} {q

2
} {q

3
}

q
2

{q
0
} Ø Ø

q
3

Ø Ø (q
2
}

		  Then d̂ (q
2
, aba) is� [2017]

	 (A)  Ø	 (B)  {q
0
, q

1
, q

3
}

	 (C)  {q
0
, q

1
, q

2
}	 (D)  {q

0
, q

2
, q

3
}

	36.	 Let N be an NFA with n states. Let k be the num-
ber of states of a minimal DFA which is equivalent 
to N. Which one of the following is necessarily true?
� [2018]
(A)	 k ≥ 2n	 (B)	 k ≥ n
(C)	 k ≤ n2	 (D)	 k ≤ 2n

	37.	 Given a language L, define Li as follows:

		  L0	= {ε}

		  Li	= Li–1. L for all i > 0

		  The order of a language L is defined as the smallest 
k such that Lk = Lk+1. Consider the language L

1
 (over 

alphabet 0) accepted by the following automaton.	

0 
0 

0 

	 The order of L
1
 is ______.� [2018]

Answer Keys

Exercises

Practice Problems 1
	 1.  D	 2.  B	 3.  C	 4.  D	 5.  B	 6.  B	 7.  D	 8.  D	 9.  C	 10.  C
	11.  A	 12.  D	 13.  C	 14.  A	 15.  A

Practice Problems 2
	 1.  C	 2.  D	 3.  D	 4.  B	 5.  B	 6.  C	 7.  A	 8.  C	 9.  C	 10.  A
	11.  B	 12.  C	 13.  C	 14.  C	 15.  B

Previous Years’ Questions
	 1.  C	 2.  A	 3.  C	 4.  D	 5.  B	 6.  C	 7.  B	 8.  D	 9.  C	 10.  C
	11.  A	 12.  C	 13.  B	 14.  D	 15.  A	 16.  D	 17.  A	 18.  A	 19.  A	 20.  C
	21.  C	 22.  1	 23.  3	 24.  A	 25.  C	 26.  B	 27.  D	 28.  C	 29.  B	 30.  2
	31.  C	 32.  B	 33.  4	 34.  8	 35.  C	 36.  D	 37.  2
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