Sample Question Paper - 6 Mathematics-Basic (241) Class- X, Session: 2021-22 **TERM II**

Time Allowed: 2 hours

General Instructions:

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study-based questions.

Section A

[2] Find the equations have real roots. If real roots exist, find them : $-2x^2 + 3x + 2 = 0$ 1.

OR

Find the value of k for which the given value is a solution of the given equation $7x^2 + kx - 3 = 0$; x = $\frac{2}{3}$

- 2. A 20 m deep well with diameter 7m is dug and the earth from digging is evenly spread out to [2] form a platform 22 m by 14 m. Find the height of the platform.
- 3. The following data gives the information on the observed lifetimes (in hours) of 225 electrical [2] components:

Lifetimes (in hours)	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.

4.

Marks	Number of Students	c.f.
0 - 10	5	5
10 - 30	15	F
30 - 60	f	50
60 - 80	8	58
80 - 90	2	60
	N = 60	$N = \Sigma f_i = 60$

Find f and F.

5.

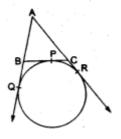
Maximum Marks: 40

[2] [2]

6. Two concentric circles are of radii 6.5 cm and 2.5 cm. Find the length of the chord of the larger [2] circle which touches the smaller circle.

OR

A circle is touching the side BC of $\triangle ABC$ at P and touching AB and AC produced at Q and R respectively. Prove that $AQ = \frac{1}{2}$ (perimeter of $\triangle ABC$).



Section **B**

- 7. If $(m + 1)^{th}$ term of an A.P. is twice the $(n + 1)^{th}$ term, prove that $(3m + 1)^{th}$ term is twice the $(m + [3] n + 1)^{th}$ term.
- 8. The angle of elevation of an aeroplane from a point A on the ground is 60°. After a flight of 30 [3] seconds, the angle of elevation changes to 30°. If the plane is flying at a constant height of 3600 $\sqrt{3}m$, find the speed in km/hr of the plane.

OR

A tower subtends an angle α at a point A in the plane of its base and the angle of depression of the foot of the tower at a point b metres just above A is β . Prove that the height of tower is b tan α cot β .

9. From an external point P, a tangent PT and a line segment PAB is drawn to a circle with centre [3]O. ON is perpendicular on the chord AB. Prove that.

i. PA.PB =
$$PN^2 - AN^2$$

ii.
$$PN^2 - AN^2 = OP^2 - OT^2$$

10. Solve: $\frac{3x-4}{7} + \frac{7}{3x-4} = \frac{5}{2}, x \neq \frac{4}{3}$

Section C

[3]

11. Draw a line segment AB of length 6.5 cm and divide it in the ratio 4:7. Measure each of the two **[4]** parts.

OR

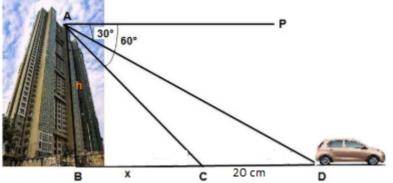
Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

12. The median of the following data is 52.5. Find the values of x and y, if the total frequency is [4]100.

C.I.	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	2	5	x	12	17	20	у	9	7	4

13. Vijay lives in a flat in a multi-story building. Initially, his driving was rough so his father keeps [4] eye on his driving. Once he drives from his house to Faridabad. His father was standing on the top of the building at point A as shown in the figure. At point C, the angle of depression of a car from the building was 60°. After accelerating 20 m from point C, Vijay stops at point D to

buy ice-cream and the angle of depression changed to 30° .



By analysing the above given situation answer the following questions:

i. Find the value of x.

ii. Find the height of the building AB.

14. Seema a class 10th student went to a chemist shop to purchase some medicine for her mother [4] who was suffering from Dengue. After purchasing the medicine she found that the upcount capsule used to cure platelets has the dimensions as followed:

The shape of the upcount capsule was a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm.

By reading the above-given information, find the following:

- i. The surface area of the cylinder.
- ii. The surface area of the capsule.

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

Section A

1. For real roots of quadratic equation, $b^2 - 4ac > 0$

We have, $-2x^{2+} 3x + 2 = 0$ Now, $b^{2} - 4ac > 0$ $\Rightarrow (3)^{2} - 4(-2)(2) > 0$ ($\therefore a = -2, b = 3, c = 2$) $\Rightarrow 9 + 16 > 0$ $\Rightarrow 25 > 0$ Now, $\sqrt{D} = 5$ And, $x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm 5}{2(-2)} = \frac{-3 \pm 5}{-4}$ $\Rightarrow x = \frac{-3 + 5}{-4}$ and $x = \frac{-3 - 5}{-4}$ $\Rightarrow x = \frac{2}{-4}$ and $x = \frac{-8}{-4}$ $\Rightarrow x = \frac{-1}{2}$ and 2

Therefore, the roots of the given equation are 2 and $\frac{-1}{2}$.

We have, $7x^2 + kx - 3 = 0$ Since $x = \frac{2}{3}$ is the solution of the given equation $\therefore x = rac{2}{3}$ satisfies the given equation $7(\frac{2}{3})^{2} + k(\frac{2}{3}) - 3 = 0$ $\implies \frac{28}{9} + \frac{2k}{3} - 3 = 0$ $\implies \frac{1}{9} + \frac{2k}{3} = 0$ 2. For well Diameter = 7 m \therefore Radius (r) = $\frac{7}{2}$ m Depth (h) = 20 m \therefore Volume = $\pi r^2 h = \pi \left(\frac{7}{2}\right)^2 (20)$ $= 245\pi \mathrm{cm}^3$ For platform Length (L) = 22 m Breadth (B) = 14 m Let the height of the platform be Hm. Then, volume of the platform $LBH = 22 \times 14 \times H = 308 \mathrm{Hm}^3$ According to the question, $308H = 245\pi$ $\Rightarrow H = rac{245\pi}{308} \Rightarrow H = rac{245 imes22}{308 imes7} \Rightarrow H = 2.5$ Hence, the height of the platform is 2.5 m.

3. Here, the maximum class frequency is 61, and the class corresponding to this frequency is 60-80. So, the modal class is 60-80.

Therefore h = 20, l = 60, f₁ = 61, f₀ = 52, f₂ = 38 $Mode = l + \left[\frac{f_1 - f_0}{2f_1 - f_1 - f_1}\right] \times h = 60 + \left[\frac{61 - 52}{2(61) - 52 - 28}\right] \times 20 = 0$

$$60 + \left[\frac{9}{122 - 90}\right] \times 20 = 60 + \frac{180}{32} = 60 + 5.625 = 65.625$$

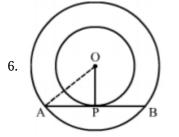
Therefore, the modal lifetime of the components is 65.625 hours.

4. Here we are given that 8x+4,6x-2 and 2x+7 are in AP Here

 $a_1 = 8x + 4, a_2 = 6x - 2 \text{ and } a_3 = 2x + 7$ Then common difference d = a₂ - a₁ = a₃ - a₂ ⇒(6x - 2) - (8x + 4) = (2x + 7) - (6x - 2) ⇒6x - 2 - 8x - 4 = 2x + 7 - 6x + 2 ⇒-2x - 6 = -4x + 9 ⇒-2x + 4x = 9 + 6 ⇒2x = 15 ⇒ x = $\frac{15}{2}$

Marks Number of Students c.f. 5. 0 - 10 5 5 15 + 5 = 20 = F10 - 30 15 50 - 20 = 30 = f30 - 60 50 60 - 80 8 58 80 - 90 2 60 N = 60 $N = \Sigma f_i = 60$

 $\overline{f=30~and~F=20}$



We know that the radius and tangent are perpendicular at their point of contact In right Triangle AOP

 $AO^2 = OP^2 + PA^2$ $\Rightarrow (6.5)^2 = (2.5)^2 + PA^2$ $\Rightarrow PA^2 = 36$ $\Rightarrow PA = 6cm$ Since, the perpendicular drawn from the center bisects the chord.

PA = PB = 6cm

Now, AB = AP = PB = 6 + 6 = 12cm

Hence, the length of the chord of the larger circle is 12 cm.

OR

We know that the lengths of tangents drawn from an external point to a circle are equal.

AQ = AR, ...(i) [tangents from A] BP = BQ ...(ii) [tangents from B] CP = CR ... (iii) [tangents from C] Perimeter of $\triangle ABC$ = AB + BC + AC = AB + BC + AC = AB + BP + CP + AC = AB + BQ + CR + AC [using (ii) and (iii)] = AQ + AR = 2AQ [using (i) $\therefore AQ = \frac{1}{2}$ (perimeter of $\triangle ABC$)

Section **B**

7. Given, $a_{m+1} = 2a_{n+1}$ \Rightarrow a + (m + 1 - 1)d = 2[a + (n + 1 - 1)d] \Rightarrow a + md = 2[a + nd] \Rightarrow a + md = 2a + 2nd \Rightarrow md - 2nd = 2a - a \Rightarrow md - 2nd = a(i) To prove: $a_{3m+1} = 2a_{m+n+1}$ **Proof:** LHS = a_{3m+1} = a + (3m + 1 - 1)d = a + 3md = md - 2nd + 3md [From (i)] = 4md - 2nd RHS $= 2a_{m+n+1}$ = 2[a + (m + n + 1 - 1)d]= 2[a + md - nd]= 2[md - 2nd + md + nd] [From (i)] = 2[2md - nd] = 4md - 2nd Hence, LHS = RHS 8. 3600√3 m 3600√3 m 30° ×m→C← — y m-►E In rt. \triangle ACB, $\tan 60^\circ = \frac{\mathrm{BC}}{\mathrm{AC}}$ $\sqrt{3} = \frac{3600\sqrt{3}}{3}$ xx = 3600 mNow, In right AED, $\tan 30^\circ = \frac{\mathrm{DE}}{4\pi}$ $-\overline{AE}$ $3600\sqrt{3}$ $\frac{1}{\sqrt{3}} =$ 3600 + y3600 + y = 10800y = 7200mBD = CE: Distance covered in 30 seconds = 7200, So, Speed = $rac{7200}{30} = 240 \mathrm{m/s}$ = $240 imes rac{18}{5}$ $= 864 \ km/hr.$

h bm α ß Proof: Let AQ = x $\angle \text{EBQ} = \beta$ [Given] EB II QA $\Rightarrow \angle BQA = \beta$ [Alternate angles] In right angled \triangle BAQ, $\frac{AB}{AQ} = \frac{b}{x} = \tan\beta$ $\frac{b}{x} = \tan \beta \Rightarrow x = b \cot \beta$ (i) \Rightarrow In right angled \triangle PQA, $\frac{PQ}{QA} = \frac{h}{x} = \tan \alpha$ $h = x \tan lpha = b \cot eta \tan lpha = b \tan lpha \cot eta$ 9. 0 i. PA .PB = (PN - AN)(PN + BN) $= (PN - AN) (PN + AN) \left[\begin{array}{c} \because ON \perp AB \\ \therefore N \text{ is the mid-point of } AB \\ \Rightarrow AN = BN \end{array} \right]$ $= PN^2 - AN^2$ ii. Applying Pythagoras theorem in right triangle PNO, we obtain $OP^2 = ON^2 + PN^2$ $\Rightarrow PN^2 = OP^2 - ON^2$ $\therefore PN^2 - AN^2 = (OP^2 - ON^2) - AN^2$ $= OP^2 - (ON^2 + AN^2)$ = Op^2 - OA^2 [Using Pythagoras theorem in ΔONA] = $OP^2 - OT^2$ [: OA = OT = radius] iii. From (i) and (ii), we obtain PA.PB = PN^2 - AN^2 and PN^2 - AN^2 = OP^2 - OT^2 \Rightarrow PA .PB = OP² - OT² Applying Pythagoras theorem in $\triangle OTP$, we obtain $OP^2 = OT^2 + PT^2$ $\Rightarrow OP^2 - OT^2 = PT^2$ Thus, we obtain $PA.PB = OP^2 - OT^2$ and $OP^2 - OT^2 = PT^2$ Hence, $PA.PB = PT^2$. 10. The given equation is: $\frac{3x-4}{7} + \frac{7}{3x-4} = \frac{5}{2}$ put $\frac{3x-4}{7} = y$, we obtain

$$y + \frac{1}{y} = \frac{5}{2}$$

$$\Rightarrow \frac{y^2 + 1}{y} = \frac{5}{2}$$

$$\Rightarrow 2y^2 + 2 = 5y$$

$$\Rightarrow 2y^2 - 5y + 2 = 0$$
By Factorisation we have:
$$2y^2 - 4y - y + 2 = 0$$

$$\Rightarrow 2y(y - 2) - 1(y - 2) = 0$$

$$\Rightarrow (y - 2) (2y - 1) = 0$$

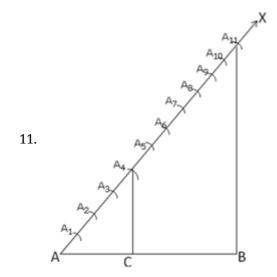
$$\Rightarrow y - 2 = 0 \text{ or } 2y - 1 = 0$$
Therefore, either $y = 2 \text{ or } y = \frac{1}{2}$
Now, $y = \frac{3x - 4}{7}$

$$\Rightarrow \frac{3x - 4}{7} = 2 \text{ or } \frac{3x - 4}{7} = \frac{1}{2}$$

$$\Rightarrow 3x - 4 = 14 \text{ or } 6x - 8 = 7$$

$$\Rightarrow 3x = 18 \text{ or } 6x = 15$$
Therefore, $x = 6 \text{ or } \frac{5}{2}$

Section C



Steps of construction:

- 1. Draw a line segment AB = 6.5 cm
- 2. Draw a ray AX making an acute \angle BAX with AB
- 3. Along AX mark (4 + 7) = 11 points
 - A₁, A₂, A₃, A₄, A₅, A₆, A₇, A₈, A₉, A₁₀, A₁₁

such that
$$AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7 = A_7A_8 = A_8A_9 = A_9A_{10} = A_{10}A_{11}$$

- 4. Join $A_{11}B$.
- 5. Through the point A_4 , draw a line parallel to AB by making an angle equal to $\angle AA_{11}B$ at A_4 . Suppose this line meets AB at a point C.

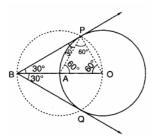
The point C so obtained is the required point, which divides, AB in the ratio 4:7.

OR

In order to draw the pair of tangents, we follow the following steps.

Steps of construction

STEP I Take a point O on the plane of the paper and draw a circle of radius OA = 5 cm. **STEP II** Produce OA to B such that OA = AB = 5 cm.



STEP III Taking A as the centre draw a circle of radius AO = AB = 5 cm. Suppose it cuts the circle drawn in step I at P and Q.

STEP IV Join BP and BQ to get the desired tangents.

Justification: In OAP, we have

OA = OP = 5 cm (= Radius)

Also, AP = 5 cm (= Radius of circle with centre A)

 $\therefore \Delta OAP$ is equilateral. $\Rightarrow \angle PAO = 60^{\circ} \Rightarrow \angle BAP = 120^{\circ}$

In ΔBAP , we have

BA = AP and $\angle BAP$ = 120° $\angle ABP = \angle APB = 30^{\circ}$

$$\Rightarrow \ \angle PBQ = 60^{\circ}$$

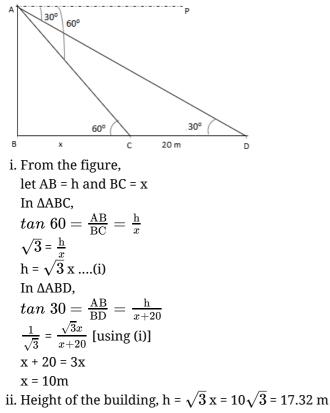
12

.2.	C.I.	f	c.f.
	0 - 10	2	2
	10 - 20	5	7
	20 - 30	X	7 + x
	30 - 40	12	19 + x
	40 - 50	17	36 + x
	50 - 60	20	56 + x
	60 - 70	у	56 + x + y
	70 - 80	9	65 + x + y
	80 - 90	7	72 + x + y
	90 - 100	4	76 + x + y
		Σf_i = 76 + x + y	

As given, $\Sigma f_i = 100$

 $\Rightarrow 76 + x + y = 100$ $\Rightarrow x + y = 24$ Median = 52.5, n = 100 $\Rightarrow \frac{n}{2} = 50$ Median Class is 50 - 60 Using formula for the median, $52.5 = 50 + \frac{[50 - (36 + x)]}{20} \times 10$ 20 $= 50 + \frac{14-x}{2}$ $52.5 - 50 = \frac{14 - x}{2}$ \Rightarrow 2.5 \times 2 = 14 - x $\Rightarrow 5 = 14 - x$ $\Rightarrow x = 14 - 5$ $\Rightarrow x = 9$ Putting in equation(i), we get 9 + y = 24 $\Rightarrow y = 24 - 9 = 15$

13. The above figure can be redrawn as shown below:



14. Let r = radius, h = cylindrical height

The radius of the hemisphere or cylinder, $r = \frac{5}{2}mm$ Height of cylinder, h = Total height - $2 \times$ radius of hemisphere $h=14-2 imes 2.5=9~\mathrm{mm}$

i. Surface area of cylinder $=2\pi rh$ m²

$$=2\pi\left(rac{5}{2}
ight)(9)=45\pi\,\mathrm{mr}$$

ii. Surface area of the capsule = curved surface area of cylinder + 2 imes surface area of the hemisphere $=2\pi rh+2(2\pi r^2)$

$$= 2\pi \left(\frac{5}{2}\right)(9) + 2\left[2 \cdot \pi \cdot \left(\frac{5}{2}\right)^2\right] \\= 45\pi + 25\pi \\= 70\pi = 70 \times \frac{22}{7} = 220 \text{ mm}^2$$