Chapter 5

State Space Analysis
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BAsic DEFINITIONS —|p |-
System state Minimum information needed in order to X ——
completely determine the output of the system from a given = u(t) 5 L x(t) 1L [ @ wt)
moment provided the input is known from that moment. 5 Z
System variable Any variable that responds to an input or T
initial conditions in a system I

State variables The smallest set of linearly, independent
system variables such that the values of the set members

at time ¢ along with known forcing function completely
determine the value of all system variables for all 7> 7.
State vector Vector whose elements are the state variables
State space n-dimensional space whose axes represent the
state variables

State equations A set of n simultaneous, first-order dif-
ferential equations with n variables, where n variables to be
solved are the state variables.

State space representation

A state space representation of an LTI system has the gen-
eral for x.

X () = Ax(t) + Bu(t)
Wo) = Cx(t) = Dult)
x(t,) =X, — initial conditions

Where
x(?) State vector (n dimensional)
w(t) Output vector (P dimensional)
u(f) : Input or control vector (m dimensional)
A : Dynamic or system matrix (n X n)
B Input matrix (n X m)
C Output matrix (p X n)
D Feed forward (direct) matrix (p X m)

Figure 1 Block diagram representation of state space model

Advantages of State Space Analysis

1. It is applicable to multiple input and multiple output
systems.

2. It is applicable to systems with non-zero initial
conditions.

3. It is applicable to both linear time-invariant (LTI) and
non-linear time-varying systems.

4. All the internal states can be determined.

It is more accurate than transfer function (TF).

. It gives the information about controllability and

observability.

oW

State space representation
In order to select the state variables, we must follow the
rules given here:

(a) A minimum number of state variables must be
selected.
(b) They must be linearly independent.

The minimum number of state variables required equals
the order of the differential equation describing the system.
From the TF point of view, the order of the differential equa-
tion is the order of the denominator of the TF after cancel-
ling common factors in the numerator and denominator.



A practical way to determine the number of state vari-
ables is to count the number of independent energy stor-
age clements in the system (capacitor and inductors in
electrical system and masses and springs in mechanical
system).

The following is the procedure for state representation of
electrical network:

1. Write a simple derivative equation for each energy stor-
age element (node equation for the node at which an
inductor is connected and loop equation for the loop in
which capacitor is connected in electrical network).

2. Solve for the each derivate term as a linear combination
of the system variable and the input.

3. Each differentiated variable is selected as a state
variable.

4. All other variables and output are written in terms of
the state variables and the input.

Solved Examples

Example 1

Find the state space representation of the system shown in
the figure if the output is the current through the resistor.

i) 1

—

L

) R

Solution
Step 1: Label all the branch variables in the network.

1

1
7000
1

s
1 1\1':51 \l/ 1

Step 2: Select the state variables. Write the derivative
equations for all energy storage elements (L and C)

dv, iy
tdat ¢ At b

Choose the differentiated quantities as the state variables
(Veand ip).

C

Step 3: Write each differentiated term as a linear combina-
tion of system variables and the input.

dv, . .

C.Z =l = fl(vc, i, V(1) (€9)]
diL .

LE =V = fz(an lLs V(t)) (2’)
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Applying node equation at V|

. S 1 .
ic=—ig+i = —E’UC-I-ZL 3)
Applying loop equation in capacitor loop
Vi=-V.+ W0 4

From Egs (1), (2), (3), and (4)

e __ 1, .1
d RC ¢ c*
dip, 1 1

i SR (.
dt L L )

L 1
Output equation i = 2 V¢

Step 4: Obtain state space representation in vector matrix
form.
-1 L L 1 [0
el=| RC € .C]+ Lo
ip _2 otk 5
L L 2
o 7.1
lin]=| = 0]{@
| R i |

TRANSFER FUNCTION To STATE
SpACE MODEL

This case corresponds to a linear system that can be repre-
sented as an nth-order differential equation with constant
coefficient as follows:

n n—1 n—-2

d yn(t) + d n}_/ft) n—1 d ni;Z(t) a, ) +...+q —dy(t) +a
dt dt dt dt

= b U(0)

The classical transfer function (TF) representation of the
system is obtained by applying the laplace transform to the
differential equation.

_Y® _ b,
US) s"+a, 5" " +a, ,s" 2 +...+as+a,

G(s)

If the state space representation has to be obtained, a con-
venient way to select state variables is to choose the output
y(f) and its ‘n — 1’ derivatives as the state variables. This is
called phase variables choice.

The state space representation using the phase variable
choice of the state variables is said to be in the controllable
canonical form (CCF).
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Controller canonical form of the given differential equation is as follows:

X1
x| o 1 0o o0 0 | [x ] [o0] !
. 0O 0 1 0 0 X, 0 *2
X3 ¥
. 0 0 0 1 . 0 X3 0 3
x4 0 0 0 o0 1 O |lx | |[0fYYy=p 00 . ... 0
= +
0 0 0 0 00 1 X, [ Xn ]
° -ay -4 —ay —a3 . . . . —a, X, b,
Xn-1 - - - T
L xn .
Consider a transfer function with polynomial in numerator: Y(S)  bys" + bys" +...b, s +b,
Wap' T ayt i+ ta, .,y +any=bo”n+b1”n:l Uuws) s"+as"'+..+a,s+a,
tont by u State space representation of the system in controllable
+bu. canonical form and observable canonical form are given as

where U is the input and y is the output. The transfer func- follows:
tion can be written as follows:

Controllable Canonical Form

%
. ) 1 0 . . ... 0][x] /o]
2 0 X,
]
. . . Coe . . Xy
=| . . . e .|+ - |Uy=I[b,—ap;b,  —a, bg;....b—ab]| . |+bu.
. 0 0 0 1 X, 0
Xnt | | =a, =@, G, . . . . . —a || x | [1]
M [, |

The controllable canonical form is important in discussing ' Qbservable Canonical Form
the pole placement approach to the control system design. = The following state—space representation is called an ob-
Mo servable canonical form.

T oo, .. ... 0-a, |[x] [6,-a,by ] R
X2 1 O e e O —da,_ Xy bn—l — an_lbo X,
X3
= N “y=[t oo ... .0 1| " |+bu
. Xn-1
Xn _0 0..... 1- a; ] _xnd _bl _alabO B X,




System matrix in observable canonical form is the trans-
pose of system matrix in controllable canonical form.
Diagonal Canonical Form

Transfer function with numerator polynomial can be writ-
ten as follows:

Y(s) _ bys"+ bs" ' +.b, s+b,
U(s)  (s+p)(s+pr)(s+ps).(s+p,)

Vxl ] V—Pl 0
X2 0 P2 0
|x,] L O —Dn |

Jordan Canonical Form

When the system involves multiple roots, the diagonal
canonical form must be modified into Jordon canonical form.
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G
s+ py

G

Ca
+
s+ P

+...
s+ P,

by +

where p,, p,, ... p, are the locations of poles.
The diagonal canonical form of the state space representa-
tion of this system is given as follows:

| >x1< 1] >x1<
Xy 1 Xy
uy=[CGC,...C]J +bu
+
| x, | 1] EM

For example, if there are three equal poles (p,= P, = P;), the
factored form ¥(s)/U(s) becomes

Y(S) C] C2 C3 C4 Cn
= b, + >+ + +..+

U(s) (s+R) (s+p) (s+p) s+h s+p,
Tl f-p 10 1 0] 1 ron o
. —p 1 X1 O X
*2 : ’ X 0
. 0 —Di 1 0 2 X3
X3. _ _ _ _ o . X3. 1
. X, 1 u
x| 0 0 0 -p4 0 4 N y=[C C,y..... Cl +bu.

' ) X 1
. | 0 0 0 0 -on] ndo Lo B
_Xna

Eigen values of an n X n matrix A

The characteristic equation of a square matrix ‘A’ is given
as follows:

|A1-4 =0

The values of A which satisfy the characteristic equation are
called eigen values of 4 matrix.

1. The poles of the transfer function are given by the
|sf — 4| = 0. This function is the same equation as the
characteristic equation of A. Therefore, we can con-
clude that the eigen values of the state model and the
poles of the transfer function are the same.

. Stability of the SISO (single input single output) sys-
tem depends on the eigen values of system matrix in
its state space model.
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CONTROLLABILITY

A state x(#) is said to be controllable at = 7, if there exists
a piecewise continuous input u(f) that will drive the state to
any final state x(z,) for a finite time (¢;,—7,) 2 0.

If every state x(%,) of the system is controllable in a finite
time interval, the system is said to be completely control-
lable or simply, controllable.

Kalman’s Test for Controllability
Consider a state space model:

).czAx+Bu

Then, controllability matrix

0,=[B:AB:A?B : .....A™ ' B]

1. A system is said to be controllable if the rank of Q. is
equal to the order of matrix A or |Q,|#0.

2. The number of uncontrollable states is computed as
the difference between order of A matrix (n) and rank

of O matrix (P).

OBSERVABILITY

An LTI system is said to be observable if in given any input
u(?), there exists a finite time ¢ 2 ¢, such that the knowledge
of u(¥) for £, < ¢, < f, matrix A, B, C, and D and the output
W) for ¢ < t <t are sufficient to determined x(Z).

If every state of the system is observable for a finite 7,
we say that the system is completely observable or simply,
observable.

Kalman’s Test for Observability
Consider a state space model:

x =Ax+Bu and y = Cx + Du
Then observability matrix

0,=[C Cc4 c4* .. cA T

1. The system is said to be observable if the rank of O, is
equal to the order of matrix A

or |QC|¢O.

2. The number of unobservable states is computed as the
difference between order of A matrix (n) and rank of Q)
matrix (q).

SoLUTION OF STATE EQUATIONS

The state equation of a linear system is as follows:

X =Ax+ Bu; x(ty) = x(0) :

The solution for the above state equation is

x(1) = e x(0)+ [ e~ Bu(t) .d*

Homogeneous © Forced Solution

Solution

In the absence of the input to the system, the response of the
system or solution of state equations with initial conditions
alone is given as follows:

X(#) e x(0)= el x,

It is observed that the initial state x; at £ = 0 is driven to a
state x(7) at time ‘¢#’. This transition in state is carried out
by the matrix exponential e*'. Due to this property, et is
known as state transition matrix and is denoted by ().

Properties of State Transition Matrix ¢(t)
The following are the properties of state transition matrix:
1. ¢(0)=e'=1
2. p(=e'"= (e =[p(-n]"
3. 9(t, +1,) = eAhth) = A gl
=0(1). 9(1) = 0(1,). ¢(1))
4. [p(O] =[] = e+ = ¢(nt)
5.0(,—1). ¢(t—t,)=ell1-0 d-12)
= Al —12) = ¢(tl _ tz)
Transfer Function
Given the state space model of SISO system as
X =A4x+ Bu
Y=Cx+ Du
The transfer function of the system is
TF=C[s1—A]"'B+D

Example 2

The maximum number of states required to describe the
network as shown in figure is

Ry R.
—\\\ AN
N HS R4
€=
L
A1 B 2 (©) 3 (D) 4
Solution

No. of energy storage elements (L, C) = 2
No. of states required to analysis = 2

Example 3

The matrix of any state space equation for the transfer
function % of the system shown in figure is
R(s



R(S)

N4
EN

o=

N B) [-1
(A) 0 1 B) [-1]
C) [4 i
(©) [4] (D) 0 4
Solution

Output of integrator is considered as state and number of
integrators is equal to the number of states.
Number of states = 1

R(S) X
> 4 >\ + . l
= S

T

X =—x, +4r(t)
[(x° 1= [-1] [x,] + [4] [*(D]

Matrix of state space equation is [—1].

X1 C(S)

Example 4
A system is described by the state equations as follows:

X =Ax + Bu . the output is given by y = Cx

-4 -1 1
where 4 = ;B=| [sCc=[0 1]
3 -1 1
The transfer function G(s) of the system is
A S ®B) _S5*7
s2+5s+7 s2+5s+7
(@ D 5
s2+5s+7 s2+s+5
Solution

Transfer function of the state space model is

TF= Y _ ClsI-A]'B+D
U(s)
LAl 1 o] [+4 -1
st=Al=s10 1171 5 -
3 s+4 1
T =3 s+
[S[—A]ilz 1 s+1 -1
(s+D)(s+4)|3 s+4
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o i3 L

s2+55+7

TF=—C[s] - A] ' B=

ORI e

s2+5s5+7

s+7
s +5s+7

Example 5

Given the homogeneous state space equations
. -4
X =

0

given the initial state value of x[0] = [10 — 10]T is

A B 10 B B —4
( )xss_ ~10 ()xss_ -3

0 oo
T

Solution
Solution of homogenous equation

1
_3] x, the steady-state value of x = Lt x(t),

t—oo

A x =Ax
x(t) = eAt x(0)
= L[[sI-A]"]

Sl A= s+4 -1
0 s+3

[sf — A" = -1 s+3 1
(s+4)(s+3)| 0 s+4
1 1
s+4 (s+4)(s+3)
0 L
s+3
4t LBt _ 4
A NI el —e
M= L(sI - A) ]—|: 0 o3

10e™ +10e™3 +10e™
—10e™3

x(t) = et x(0) = |:

2 —4t_1 =3t
x(t)=[0€ Oe ]

1073
It (206~ —10e)
= l[ )= (= =
LS R EH
f—>o0
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Example 6

A second-order system starts with an initial condition of

2
[ :| without any external input. The state transition matrix

e 0
for the system is given by 0 o

The state of the system at end of 2 s is given by

(A) 107 ><H (B) 1073 xﬂ
5 1

o) o]

Solution
Solution of state equations without external input is

x(t) = e x (0)

At =25, x(2) = [2e3x2] - H.lw

Example 7
For a system with transfer function
2s+4

Gls)= __ 25+4
s> +452+95+4

The matrix A in the state space form x = Ax + Bu is equal
to

0 1 0] 0
A |0 0 1 (B) | 0
-4 -9 —4] -4 -9 —4]
1 0 0] 0 1 0]
© 10 0 1 D) |2 -4 1
|2 -4 1] -4 -9 —4]

Practice Problems |

Direction for questions 1 to 15: Select the correct alterna-
tive from the given choices.

1. Giventhat X = AX for the system described by the dif-

ferential equation ¥ + 2y +3y =0 . The matrix A is

Solution

From the standard controllable canonical form of the trans-
fer function

2s+4

TF= —————
s> +452+95+4

State space representation

. 0 1 0l[x] Jo
XBH=0 0 1 ||x,]|+]|0[u®
4 9 —4||x]| |2

Example 8

. 3 4 1
For the system x = [O 5:| X+ [O] u, which of the following

statements about the system is true?
(A) Controllable and stable
(B) Uncontrollable and stable
(C) Controllable and unstable
(D) Uncontrollable and unstable
Solution
For stability analysis, location of poles are the roots of char-
acteristic equation.
s=3
0
s=3and 5

|sI—A|=

3 5 =0
ARSI

Therefore, poles are located on RHS plane, system is
unstable.
Controllability matrix Q. = [B  4B]

o=l L)L

1 3
Oc= [0 0] = |Qc| =0

Therefore, the system is uncontrollable.

oo o[l 0
A1, B, 3

o |01 o [0 1
© |5 @1 5



2. A signal flow graph of a system is given below:

If the state equation that corresponds to the above sig-
nal flow graph is X = AX + BU, the matrix A and B
are

B -v O 0
A |y « and

- B 0 |1 0]

0 o 7| [1 0]
B) |0 —a —y|and

0 B -B] [0 0]

[-a B 0] 10
() |-B -y O0land |0 1

la v 0] 00

B B ] 00
Dy 0 afand|0 1

-B 0 -af 10

3. Uit x'2 s '1 g ’

In the state diagram of a system shown in the figure,
which variables are controllable?

(A) x,(0)
(B) x,(1)

(C) Both x,() and x,(f)
(D) Neither x,(#) nor x,(¢)

4. The state equations of a linear time-invariant system

are represented by % = AX(t)+ BU(¥)

a3 0[]
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The state transition matrix ¢(t) is

e—3t 0 e—3t 0
(A) |: 0 e3t:| (B) |: 0 e—3t:|

e—t/3 0 et/3 0
(C) |: 0 et/3:| (D) |:O e—t/3:|

5. A particular control system is described by the follow-
ing state equations:

o e

The transfer function of this system is

Y(s) 2 Y(s) 4
&) U(s) s2+2s+5 ®) U(s) s2+2s+5

Y(s) 1
U(s) s*+2s+5

Y(s) 3
U(s) s*+2s+5

© D)

Direction for questions 6 and 7:
A system is characterized by the following state space
equations

e NEH
- |7 v, >0

2

X
Y=11 O]L :|
2

6. The transfer function of the system is

_ s By 1
(s+2)(s+1) s(s+2)(s+1)
) D 1
(s=2)(s+1) (s+2)(s+1)
7. The state transition matrix of the system is
[ et +2e72 el 4o
(A)
| —2e7" +2 e~ el 47U
®) [ et +2eY et —e2 |
| —2e™" + e et —eU ]
B e~ — g2 el —e 2 ]
(C) —t —2t -t -2t
| —2e7" —2e 2e7! —e™ |
i el +2e72 e~ — o2 ]
(D) —t —2t -t —2t
| —2e7" —2e 2e7 +e |

8. Match List-I (Matrix) with List—II (dimensions) for the
state equations:
X(t)= AX(t) + BU(t) and Y(t) = CX(t) + DU(t) and
select the correct answer using the codes given in the
lists:
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10.

11.

12.

List-1 List-II
A (1) nxp
B @ gxn
C @) nxn
D (4) gxp
Codes:
A B C D
A1 3 4 2
B)y1 3 2 4
@3 1 4 2
D3 1 2 4

Consider the single input, single output system with its
state variable representation:

S [-1 0 0 1
x=l0o 2 o|x+|l1|lUuY=[ 0 21X
0 0 -3 0

The system is

(A) neither controllable nor observable.
(B) controllable but not observable.
(C) uncontrollable but observable.

(D) both controllable and observable.

t
. . . e 0
Consider the state transition matrix: ¢(¢) = [ . t:|.
te e

The eigen values of the matrix when t = 0 are

A 1,2 B) 2,1

© L1 (D) 1,3

A linear sygtem is described by the following state
equation - X = AX(t) + BU(t).

[0
A=
-1

:|. The state transition matrix of the system is

cost sint —cost sint
(A) . (B) .
—sinz cost —sint —cost
—cost —sint cost —sint
© . (D) .
—sint  cost cost sint
. dx . 1 0
Consider the system — = AX + BU with 4 =
dt 0 1
and B= |:p:| where p and q are arbitrary real numbers.
q

Practice Problems 2

Direction for questions 1 to 15: Select the correct alterna-
tive from the given choices.

1.

The state equation of a linear system is given by

1 0
and B = . The

state transition matrix of the system is

-1
X:AX+BU,whereA=|: 0

13.

14.

15.

Which of the following statements about the control-

lability of the system are true?

(A) The system is completely controllable for any non-
zero values of p and q.

(B) Only p =0 and g = 0 result in controllability.

(C) The system is uncontrollable for all values of
pandgq.

(D) We cannot conclude about controllability from the
given data.

The state transition matrix of the system whose state

0 1] [x].
= 1S
-2 0 RY) |

equation

cos \/Et L cos \/Et
(A) V2
| —V2sin \/Et sin \/Et
cos \/Et L sin \/Et
(B) V2
| —V2sin V2t cosv2t
[ sint —cost
© .
| +cost  sint
D) [ sin \/Et cos \/Et
| —cos V2r sin2t

If the eigen values of a 3 X 3 matrix A are 1, — 3, and 4.
The eigen values of P~'AP (.. Pis a linear transforma-
tion) are

1

(A) 1, _?,and% (B) 1,-3, and 4

(C) 1,9,and 16 (D) -1,3,and — 4

o

0
x+ |:1:| u. The closed-loop poles of the system are

The state equations of a system are x =

(A) £2
©C) +1,-2

®B) -1,-1
D) +2,-1
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2. The eigen value and eigen vector pairs (4, V,) for the _

system are A) Xi|_ 106 10° || x N 0 < 10
R 1 X 110 0 |[x 103
(A) |-L| _ || and [—2, [ ZH L% 2]
L L B Xl T0 0] [x 0
- T : B) | . = . ; +103 x 10
B) [-2| || and |- { 2} | X2 | U107 10°]1x
- Xi| [-106 —10%][x 10°
1 1 _ 1
© |-1] " |].and 2,[ S N e T sz} i { 0 ] e
| -] -2 | X2t
i il 1 (D) None of these
D) |2, [_1] »and |:1’ |:_2 :| 7. The poles and zero of the following system
) . 0 1 0
3. The system matrix A is X = x+ u
o 1 L -20 -9 1
(A) -1 1] B) [—l _2:| y=[-17-5]x+[1]u are
- (A) poles: —4,—5, and zeros: — 1,—3
(©) 2 1 (D) 0 1 (B) poles: —3,—4, and zeros: — 3, -2
-1 -1 -2 =3 (C) poles: —2,— 3, and zeros: — 2, — 4

(D) None of these | -2
4. Letx= )} - [(1) ?:|X T [(1):| U.Y=[b 0]X 8. The second-order system x = Ax has 4 = |:+l —l:| .

The values of its damping factor and natural frequency

where b is an unknown constant. This system is .
Y ®, are, respectively

(A) observable for all values of b.

(A) 1.732,0.577 (B) 1.414,0.6
(B) unobservable for all values of b. (C) 0.577,1.732 (D) 0.6, 1.414
(C) observable for all non-zero values of b.
(D) unobservable for all non-zero values of b. Direction for questions 9 and 10:
5. A state variable representation of a system is given by =~ Consider the following block diagram
the expression J
Uis)—=> 1/s 1/s 3 %®+—>
— + Y(S)
X1 _ 1 0 X1 n 0 U(t)
o —1]|x] |1 ’ —{2}—
Xy |7|
L]
Y=[1 1] X 9. In the above figure, the state space representation in the
Xy vector matrix from is
The transfer function of the system is (A) x= 0 1 X+ 0 u
2 25 -7 2 1
(A) — B) ———r _
s+1 (s=D(s+1) Y=[31]x
2 1 0 1 0
<) —— (D) B) x= x+ u
(s=1)(s+1) (s+1) -7 2 1
. . Y=[31]x
6. The state space model for an electrical network is
shown in the figure where the current / and voltage €) x= 10 Y4 1 u
across the capacitor V_ are the state variables. -2 -7 0
10°0 Y=[13]x
(D) None of these
1 10. From question 9, the transfer function of the system is
10 volt 1nF (A s (B) _s+3
':/E)VO": s2+2s5+7 s2+2s+7
l 3 2s5+3
© 2a9erT (D) 2s—
s +2s+7 s°+2s+7
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Direction for questions 11 and 12:
The circuit diagram is shown in the

figure.
2F

_I+

5A 4 Q.

AW

10V

11. The state equations of the above circuit are

e 2

1/3

[

i | [ o —13][i
@ |- s

. -12 -18||v,

_VL_‘ -

ir| To —13][i 13 0 ][0
®) |- s

: 2 -18|[v.| (18 -12]| 5

ve | +

AREERI
© |. |= +

Ve | 118 —12]| v,

(D) None of these
12.

(A) -0.06 £j0.06

(C) -0.403 +,0.06

From question 11, the eigen values are
(B) —0.06 £,0.403
(D) -0.12£;0.12

:

‘

13.

14.

15.

A continuous time, linear time-invariant system is
&
dt
Assuming zero initial conditions, the response y(¢)
of the above system for the input x(f) = ¢ u(?) is
given by

(A) (e =€) u(t) (B) (e’ +e)u(h)

(©) (=€) u) (D) (e'+e) u(?)

The system with the state equation

d*y dx
described by ——+ 4 +3y(H)=2— +4x
Y (1) 7

-1
x=Ax+Buand A = |:1

(A) System is controllable

(B) System is uncontrollable

(C) System is controllable and observable
(D) None of these

Consider the state transition matrix:

o o s+1 -1
WO =L 1ol =L s2+35+2 s +3s+2
0 s+2
s +3s5+2
The eigen values of the system are
(A) Oand -2 (B) —-land2
(C) 1and2 (D) -land-2

PRrevious YEARS’ QUESTIONS

1. IfA= [_12 _23] , then sin A is [2004]
A) 1 sin(—4¢)+2sin(—¢) —2sin(—4¢)+ 2sin(—¢)
3| —sin(—4¢) +sin(—¢)  2sin(—4¢)+sin(—¢)
) sin(—2¢)  sin(2¢)
sin(¢)  sin(-3¢)

( l sin(4¢) + 2 sin(?)
3| —sin(—4¢) + sin(¢)

D) l[
3

cos(?)2cos(t)
—cos(—4t)+sin(—t) —2cos(—4t)+cos(—t)

2sin(—4t) + 2 sin(—t)
2sin(4t) + sin(¢)

—2 cos(—4t)+2sin(—t)

2. The state variable equations of system are

= X1 =-3x;,—=x,+u

= X2 =2x,

The system is

y=xtu

[2004]

(A) controllable but not observable

(B) observable

but not controllable

|

(C) neither controllable nor observable
(D) controllable and observable

1 0
. Given A = |:0 1:| , the state transition matrix e®! is

given by [2004]
*) [ot e—t:| ) [ez o]

e 0 0 €

e’ 0 0 ¢
© |:O e’:| &) |:e’ O]

A linear system is described by the following state
equation:

[0 1

X(t)=AX(t)+BU(¢t), A= . 0}

The state -transition matrix of the system is [2006]
cost sint [—cost sint

(A) [ . } (B) . ]
—sint cost | —sint —cost
—cost —sint [cost —sint

© [ . } (D) . }
—sint  cost |cost  sint
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5. The state space representation of a separately excited | 7. The state variable representation of the system x can
DC servo motor dynamics is given as follows: be [2010]
do v Lo
- = x u
ar | _|7L e 10, (A) -1 0] 7|2
di, -1 -10]| i, 10 0 0]
Za = Slx
di 7
where o is the speed of the motor, # L is the armature (-1 1] [0]
current and U is the armature voltage. The transfer (B) X= -1 0 2! Pl 2
function 26 of the motor is [2007] o A
U(S) y= [0 05] X
Lo B) x=| 1 Yyal?]
= x u
K 1—glls14(-)11 s +111s+11 ©) -1 0 2]
(GEEELAELAN D) ——— -
s +11s+11 S +s+] S|l O
6. A single flow graph of a system is given as follows: 1 1 0
= x+| _|u
(D) -1 0 2
y=[05 0.5]x
8. The transfer function of the system is [2010]
+1 s—1
A) = (B)
s2+1 s2+1
. L s+1 s—1
The set of equations that correspond to this signal ©) Pastl (D P astl
flow graph is [2008] STHst sTHst
xY [B -y Ol(x) [1 O] 9. The block diagram of a system with one input u and
(A) da Hl=ly « ofx|+o0 o L two outputs y, and y, is given below.
dt U
X3 _—Ot —ﬂ O_ X3 _0 1_ 1
_ i} _ ) uo > +—
d X1 0 o '}/ X1 0 0 s+2
u
B) —|x[=[0 —a —y|x|+|0 1|
dt U,
X3 gO ﬁ —ﬂ_ X3 _1 O_ > 2 — )
x) [~ =B 0](x) [1 0] s+2
C d u;
© 0 X |=|=-B —v Of x|[+|0 1 " A state space model of the above system in terms of
X3 la v O0f\x3) [0 O] 2 the state vector x and the output vector y =[y, y,]"is
X1 ’_—'y 0 ﬁ | X1 ’_0 1— . [2011]
D) % ul=ly 0 allx|+o of™ (A) X =2+ [1juy=[1 2]x
) |- 0 -allx) [1 0]\ . .
=[2@x+ 1y, y= X
i - B) X =[2]x+[llwy [ ]
Direction for questions 7 and 8: 2
The signal flow graph of a system is shown below. ©) X = -2 0 w4 1 v = 7]
1 0 -2 1
Y(s) D) X = 2 0 x+ ! uy= ! X
0 2 1 2
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Direction for questions 10 and 11:
The state diagram of a system is shown below, A system
is described by the state-variable equations

Xx=AX+Bu, y=CX+ Du
1 -1 1 -1 1
- \_‘/ U Oy
1 1
5 s

10. The state-variable equations of the system shown in
the figure above are [2013]

« [-1 0 -1
(A) X:|:1 _1:|X+|:1:|u;Y:[l—l]X+U

-1 0
-1 -1

<L ShE
X = X+ u
©) -1 -1 1

y=[-1 -1]X-u

6 S
X= X+ u
(D) 0 -1 1

(B) )}:[ :|X+|:_11:|u;Y:[—l X+ U

y=[l -1]X-u
11. The state transition matrix et of the system shown
figure above is [2013]
et 0 et 0
A B
) [te1 et:| ®) [—tet et:|
et 0 et —te!
C D
© |5 2 o | ]
12. Consider the state space model of a system as given
below. [2014]
X

s
X
y=[1 1 1]|x,
X3

The system is

(A) controllable and observable

(B) uncontrollable and observable
(C) uncontrollable and unobservable
(D) controllable and unobservable

13.

14.

15.

16.

An unforced linear time-invariant system is repre-

sented by

)21 _ -1 0 X1

o —2]x
If the initial conditions are x,(0) = 1 and x,(0) = -1,
the solution of the state equation is [2014]
(A) x,(=-1,x,(t)=2
(B) x,()=—e", x)(t)=2e"
(C) x(=et, xy()=—e2
(D) x,()=—e, x,(t) =—2e"
Consider the state space system expressed by the sig-
nal flow diagram shown in the figure. [2014]

The corresponding system is
(A) always controllable (B) always observable
(C) always stable (D) always unstable

The state equation of a second-order linear system is
given by

A=A A D)y

1 et
For x,= ,x(8)=
-1 —et
0 e—t _e—2t
and for x, :|:1:|’x(t):[—et +2e2t]
3 .
When X :[5}’x(t) 1S [2014]

@ [—se-fﬂle-%] ® [ lle™" —8e~ }

8¢l —22¢7% —lle" +16e7%
© 3¢t —Se72 ©) S5et —3e72
—3e~t +10e7 —Se~t +6e7 2

The state transition matrix @®(f) of a system

i :{0 1][“} is [2014]
0 0 .Xz

X2

At1 B
()10 ()tl

0 1 1 ¢

o] el



Direction for questions 17 and 18:
Consider a linear system whose state space representation
is y (t) = AX(t). If the initial state vector of the system is

1 Y
X(0)= , then the system response is X(t) = ¢ .
=) —De72
If the initial state vector of the system changes to X(0) =

1 =t
[ 1] , then the system response becomes X(¢) = [ e _t]
- —e

17. The eigen value and eigen vector pairs (4, v,) for the

system are [2014]
A) | -1 ! and (—2,[ ! D
| -1 -2
3B) |- : and (2,|: : :|)
| -1 -2
©) | -2, : and [—2,[ ! D
| —1] =2
D) | -2, ! and (1,[ ! D
| -1} -2
18. The system matrix A is [2014]
*) 0 1] ®) [ 11 }
-1 1 -1 =2
© 2 1 ] O [ 0 1 }
-1 -1 -2 3

19.

20.
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The network is described by the model is
X1 =2x,—x,+3u

x2 =—4x,—u

y=3x,—2x,
The transfer function H(s) (: &J is [2015]
U(s)
11s+35 11s—35
(s—2)(s+4) (s—2)(s+4)
©) 115438 (D) 11s—-38
(s=2)(s+4) (s=2)(s+4)

A second order linear time invariant system is
described by the following state equations

%xl(t) +2x,(1) = 3u(?)

d
E X,(1) + x,5(8) = u(?)

Where x, () and x,(¢) are the two state variables and
u(?) denotes the input. If the output c(f) = x,(¢), then
the system is [2016]
(A) Controllable but not observable

(B) Observable but not controllable

(C) Both controllable and observable

(D) Neither controllable nor observable

EXERCISES

Practice Problems |

1. D 2. C 3. A 4. B 5. C
11. A 12. C 13. B 14. B 15. B
Practice Problems 2

1. B 2. A 3.D 4. C 5.D
11. B 12. B 13. A 14. B 15. D
Previous Years’ Questions

1. A 2. D 3.B 4. A 5. A
11. A 12. B 13. C 14. A 15. B
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CONTROL SYSTEMS

Direction for questions 1 to 30: Select the correct alterna-
tive from the given choices.

1.

The transfer function gain between C(S) and R(S) in the
following figure is

-4
2 . 3 O
A(s) ~_,_ ¢
2
(A) 5 (B) 2.5 (©) 10 (D) 2

The Laplace transform of a transportation lag of 8 s is
(A) exp (8s) (B) exp (-8s)

1
© 34 (D) exp (-s/8)
. The transfer function of ZOH (zero-order hold) is
(A) 1-¢eT (B) 1-e*
1— eTs 1— e—Ts
©) (D)
s K

The main drawback of a feedback system is

(A) inaccuracy (B) inefficiency

(C) unstability (D) insensitivity

The transfer function of linear control system is defined
as the

(A) Fourier transform of impulse response

(B) Laplace transform of unit step response

(C) Laplace transform of impulse response

(D) None of these

Transfer function is defined for

(A) linear and time-variant system

(B) linear and time-invariant system

(C) non-linear and time-variant system
(D) non-linear and time-invariant system

The minimum phase transfer function is one having
(A) poles and zeros in RHS of s-plane

(B) poles and zeros in LHS s-plane

(C) poles in LHS and zeros in RHS s-plane

(D) poles in RHS and zeros in RHS s-plane

The unit impulse response of a unit feedback control
system is given by ¢(z) = —e™"+ 3¢™ (+ 2 0). The transfer
function is equal to

() 512 (®) S(zj)
5= s(s

(©) 2(s—2) (D) 2(s+2)
s2+1 s2-1

The unit step response of a unit feedback control sys-
tem is given by c(f) = —e + 2. ¢ (¢ 2 0). The impulse
response is

10.

11.

12.

13.

14.

Time: 60 Minutes

(A) —6.e+ et (B) et+2/3 ¢
(C) 6.8 —¢ (D) None of these

The impulse response of an initially relaxed system is
e u(t). To produce a response of ¢ .~ .u(¢), the input
must be equal to

(A) e u(-1) (B) e u(r)

(C) te™ (D) e™. u(?)

The closed loop gain of the system shown in the fol-
lowing figure is

Ris) + cls)
A 4 >
1/2
(A) 2 (B) 3 (C) 6/4 (D) —4/6

The response c(f) of a system to an input (#) is given by
the following differential equation

d*c (t) dc (t)
+3.——=+c(t)=2.r(t
dr? dt (v (v
The transfer function of the system is given by
-2
A 3 B) 2
s2+2s+1 §2+35+2
© 2 o %2
s2+3s5+3 s2+3s+1
Given open loop transfer function G(s) = 125 The
s (s + 1)

system with the transfer function is operated in a closed
loop with unity feedback. The closed loop system is
(A) unstable (B) stable

(C) marginally stable (D) conditionally stable

The signal flow graph of the system is shown in the
C(s)

D(s)

given figure. The transfer function of the system

is

D(s)

o(s)




15.

16.

17.

18.

8s 4s
A B
&) 1+ 6s ®) 1+ 6s
—4s —4s
C D
© 1-6s ®) 1+6s

N
If a system has an open-loop transfer function —,
+s

then the gain of the system at frequency of 1 rad/s will
be

A) 1 B) 0 ©) -1 (D) 12
The following block diagram is equivalent to
R C(s)
Xo
A C(s)
(A) . G
X
—e X2
B) X
—— G —>(g>—>
L‘Xg
C) X
o - %
—.Xz
(D) Band C

For what value of K, are the two block diagrams, as
shown in the following figure, equivalent?

Als) ] + Cls)
K
S+2 .:fﬁ

Figure 1

R(s
© e o
s+2
Figure 2
A 1 (B) -1 (C)3+1 (D)3+2

R(s) \+®_ —é @_ 8_ D62 E(S)

19.

20.

21.

Test | 3.341

The transfer function E(S) is
s

GG,
1+ G H +G,H,

G G,
1+ GG, + G,H, + G H, + GG, H H,
GG, +1
(D) None of these

(A)

B)

©

Cls)

The number of forward paths and individual loops are,

respectively,
(A) 2,2 (B) 2,3 (©) 3,2 (D) 2,4
Cls)
2 5"4 3/s _ 4/s
<

The output C(s) is

A) 4(2s+15) ®) (25+15)
55(5s+52) s(5s+52)

(©) M (D) None of these
5s(s+52)

The closed-loop transfer function of a control system is

given by ¢ (S) -2 (S * l) for a unit step input the

R(s) (s+2)(s—3)
output is

- 1 -2t 8 3t
(A) |: 3+Se +15 ]u(t)

(B) 0
©) [-1+e +e¥ Ju(r)

SI}M(ZL)

1
(D) L
53 15
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22.

23.

24,

25.

In the signal flow graph, the ratio between
equal to R(s)
(A) -15 (B) -10 (©) 20 (D) 25

A system has a single pole at origin. Its impulse
response will be

(A) constant

(C) decaying exponential

(B) ramp
(D) oscillating

1

An open loop system has a transfer function m

It is converted into a closed loop system by providing
a negative feedback having transfer function (2s + 1).
The open loop and closed loop systems are, respectively,
(A) stable and unstable

(B) unstable and stable

(C) unstable and unstable

(D) unstable and marginally stable

The unit ramp response of a system is 1 — e (1 + ¢).

Direction for questions 27 and 28:
For the SFG shown in the following figure:

—H

—H,

27. The number of forward path gains are
(A) 3 (B) 4 ©) 5

28. The number of individual loop gains are
A) 1 (B) 2
©) 3 (D) None of these

(D) 6

Direction for questions 29 and 30:

Which is this system? R(s) 1 C(s)
(A) unstable (B) stable * 3K
(C) marginally stable (D) None of these
. Y(s) L
26. The transfer function % ( ) of the linear time-invariant
K
system shown in the following figure 29. The transfer function © (s) s
+ R
. ] Gis) (s)
X(s) 378K 360K
) 4 A >k R
1552 +3s+6 552 +125+360K
L 378K
- D) None of these
(O 69| Y 552 +185+6 ®)
30. The sensitivity of the transfer function with parameter
) GOIGE+H] g Gi(s) G (s)+1] o P
1-G, (s).G, (s) 1-G, (s).G, (s)
378 -378
Ay =28 ® T =
©) G, (s)[G, (s)+1] (D) G, (s) [G, (s)+1] 55*+13s+6 (s2 +13s+6)
I_Gl (S)+G2 (S) 1+G1 (S).G2 (S) (C) 1 (D) 71
ANSWER KEYs
1. D 2. B 3.D 4. C 5. C 6. B 7. B 8. D 9. A 10. B
11. C 12. D 13. C 14. D 15. A 16. C 17. A 18. B 19. A 20. A
21. A 22. D 23. A 24. D 25. B 26. B 27. C 28. A 29. A 30. C
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