
Chapter 1

Machine Instructions,
Addressing Modes

  Computer

  Computer system

  Computer component

  Machine instruction

  Instruction types

  Types of operands

  Types of operations

  Procedure call instruction

  Addressing modes

  Computer performance

LEARNING OBJECTIVES

coMputer
A computer is a data-processing machine which is operated auto-
matically under the control of a list of instructions (called a pro-
gram) stored in its main memory.

Data

Control

Main memoryCentral processing
unit (CPU)

Computer System
 • A computer system consists usually of a computer and its

peripherals.
 • Computer peripherals include input devices, output devices and

secondary memories.

Computer Architecture: Computer Architecture refers to those
attributes of a system visible to a programmer, i.e., the attributes
that have direct impact on the logical execution of a program.

Example: Whether a computer will have a multiply instruction
or not.

Computer Organization: Computer organization refers to opera-
tional units and their interconnections that realize the architectural
specifi cations.

Example: Whether the multiply instruction will be implemented
by a special multiply unit or by a mechanism that makes repeated
use of the add unit of the system.

Computer Components
 • R

1
, R

2
 … R

n
: General Purpose Registers.

 • PC: Program counter. Holds address of next instruction to be
executed. PC = PC + I (I = instruction length)

 • IR: Instruction Register. It holds the instruction which is fetched
from memory.

 • MAR: Memory Address Register: MAR specifi es the address in
memory for the next read or write.

 • MBR: Memory Buffer Register. It contains the data to be writ-
ten into memory or receives the data read from memory.

 • Input–outputAR: Input–output Address Register. It specifi es a
particular input–output device.

 • Input–outputBR: Input–output Buffer Register. Used for the
exchange of data between an input–output module and the CPU.

 • ALU: Arithmetic and Logic Unit. Used to perform arithmetic
and logical operations.

2.4  |  Unit 2  •  Computer Organization and Architecture

PC System
bus

I/O module

CPU Main memory

IR

MAR

MBR

I /OAR

I /OBR

ALU

CU

R0

R1

Rn

n − 2

n − 1

Buffers

0

1

2

Instruction

Instruction

Instruction

Data

Data

Data

•• CU: Control Unit. It causes operations to happen within
the processor. Also generates timing signals.

•• Memory: It consists of set of locations, defined by
sequential numbered address.

•• Input–output module: Transfer data from external
device to CPU and memory and vice versa.

•• System bus: A bus that connects major computer compo-
nents is called a system bus.

Machine Instructions
•• The operation of the CPU is determined by the instruc-

tions it executes. These instructions are called machine
instructions or computer instructions.

•• The collection of different instructions that the CPU can
execute is referred to as the CPU’s instruction set.

Elements of Machine Instructions
Each instruction must contain the information required by
the processor for execution. The elements of a machine
instruction are

	 1.	 Operation code: Specifies the operation
	 2.	 Source operand reference: Inputs for operation.

	 3.	 Result operand reference
	 4.	 Next instruction reference

Instruction representation
•• Each instruction is represented by a sequence of bits.
•• Example: 20-bit instruction format:

Opcode

4

Operand reference

20-bits

Operand reference

8 8

Instruction Types
Number of addresses
Most of the instructions have one, two or three operand
addresses, with the address of next instruction being implicit.

	 (i)	 3-address instructions: Computers with 3-address
instruction formats can use each address field to spec-
ify either a processor register or a memory operand.

		 Example:  3-address instruction format for the evalu-
ation of X = (P + Q) × (R + S) is

		 ADD R
1
, P, Q

		 ADD R
2
, R, S

		 MUL X, R
1
, R

2
.

		 Here R
1
, R

2
 are processor registers.

Advantage: Shorter programs when evaluating arithmetic
expressions.

Disadvantage: The binary coded instructions required too
many bits to specify three addresses.

	(ii)	 2-address instructions: These are most common in
commercial computers. Each address field can specify
either a processor register or a memory word.

		 Example:  For evaluating X = (P + Q) × (R + S),

		 The 2-address instructions are

		 MOV R
1
, P

		 ADD R
1
, Q

		 MOV R
2
, R

		 ADD R
2
, S

		 MUL R
1
, R

2

		 MOV X, R
1
.

		 (The first symbol of instruction is both source and
destination)

	(iii)	 One-address instructions: Use an implied accumula-
tor (AC) register for all data manipulations.

		 Example:  1-address instructions to evaluate R = (P +
Q) × (R + S).

		 LOAD P
		 ADD Q

Chapter 1  •  Machine Instructions, Addressing Modes  |  2.5

		 STORE T
		 LOAD R
		 ADD S
		 MUL T
		 STORE X.

		 Here ‘T ’ is a temporary memory location required to
store the intermediate result.

	(iv)	 Zero-address instructions: A stack organized com-
puter does not use an address field for the instructions
ADD and MUL. The push and pop instructions require
an address field to specify the operand that communi-
cates with the stack.

		 Example:  Zero-address instructions for the evalua-
tion of X = (P + Q) × (R + S)

		 PUSH P
		 PUSH Q
		 ADD
		 PUSH R
		 PUSH S
		 ADD
		 MUL
		 POP X.

	(v)	 RISC instructions: The instruction set of a reduced
instruction set computer (RISC) processor is restricted
to the use of load and store instruction when communi-
cating between memory and CPU. All other instructions
are executed with in the register of the CPU without
referring to memory.

		 Example:  RISC instruction to evaluate,
		 X = (P + Q) × (R + S)

		 LOAD R
1
, P

		 LOAD R
2
, Q

		 LOAD R
3
, R

		 LOAD R
4
, S

		 ADD R
1
, R

1
, R

2

		 ADD R
3
, R

3
, R

4

		 MUL R
1
, R

1
, R

3

		 STORE X, R
1

Types of Operands
Machine instructions operate on data. The most important
general categories of data are

•• Addresses
•• Numbers
•• Characters
•• Logical data.

Types of Operations
The number of different opcodes varies widely from
machine to machine. A useful and typical categorization is
the following

	 1.	 Data transfer
	 2.	 Arithmetic

	 3.	 Logic
	 4.	 Conversion
	 5.	 Input–output
	 6.	 System control
	 7.	 Transfer of control

	 (i)	 Data transfer operations: This type of instructions
transfers data from one location to another.

		 Example:  move, store, load, exchange, clear, set,
push, pop.

	(ii)	 Arithmetic operations: Perform some function in ALU.

		 Example:  add, subtract, multiply, divide, absolute,
negate, increment, decrement

	(iii)	 Logical operations: Perform some logical operation
in ALU and set condition codes and flags.

		 Example:  AND, OR, NOT, EX-OR, Test, Compare,
set control variables, shift, Rotate.

		 Let R
1
 = 10100101, R

2
 = 00001111 then

		 (R
1
) AND (R

2
) = 00000101.

		 AND is also called mask operation.
		 (R

1
) OR (R

2
) = 10101111.

		 NOT (R
1
) = 01011010.

		 (R
1
) EX-OR (R

2
) = 10101010.

	(iv)	 Shifting and rotating operations: The operations
are:

		 (a)	 Logical left shift:

S 0

		 Here the bits of a word are shifted left. The left most
bits is lost and 0 is shifted in right most bit position
(i.e., bit empty).

		 Example:  R
1
 = 1010 0101

		 Logical left shift R
1
:

1 0 01 0 0 1 0 1

		 After left shift R
1
 = 0100 1010.

		 (b)	� Logical right shift: Here the bits of a word are
shifted right. The right most bit lost and ‘0’ is
shifted in left most bit position.

0

		 Example:  R
1
 = 1010 0101

		 Logical right shift R
1
= 0101 0010

1 00 1 0 0 1 0 1

		 Logical shift operations are useful primarily for iso-
lating fields within a word and also used to displace
unwanted information.

2.6  |  Unit 2  •  Computer Organization and Architecture

		 (c)	� Arithmetic left shift: Arithmetic shift operation
treats the data as a signed integer and does not shift
the sign bit. In Arithmetic left shift, a logical left
shift is performed on all bits but the sign bit, which
is retained.

S 0

		 Example:  R
1
 = 1010 0101

		 Arithmetic Left shift R
1
 = 1100 1010.

1 0 1 0 0 1 0 01

	 	 (d)	� Arithmetic right shift: Here, the sign bit is repli-
cated into the bit position to its right.

S

		 Example:  R
1
 = 1010 0101

		 Arithmetic Right shift R
1
 = 1101 0010

1 0 1 0 0 1 0 1

		 Notes:
		 1. � With numbers in 2’s complement form, a right

arithmetic shift corresponds to a division by 2, with
truncation for odd numbers.

		 2. � Both arithmetic left shift and logical left shift cor-
respond to a multiplication by 2 when there is no
overflow.

		 (e)	� Left rotate (Cyclic left shift): Rotate operations
preserve all the bits being operated on. Here the
bits from LSB will move one bit position to the left
and MSB will placed in LSB position.

		 Example:  R
1
 = 1010 0101

		 Left Rotate R
1
 = 0100 1011

1 0 1 0 0 1 0 1

		 (f)	� Right rotate (Cyclic right shift): Here the bits
from MSB will be shifted to one bit position right
and LSB is placed in MSB.

		 Example:  R
1
: 1010 0101

		 Right Rotate R
1
 = 1101 0010.

1 0 1 0 0 1 0 1

	(v)	 Transfer of control: This type of operations updates
the program counter. Used for subroutine call/return,
manage parameter passing and linkage.

		 Example:  Jump, jump unconditional, return, execute,
skip, skip conditional, Halt, Wait, NOP, etc.

	(vi)	 Input–output operations: These are used to issue a
command to input–output module.

		 Example:  input, output, start input–output, test
input–output etc.

	(vii)	Conversion operations: These are similar to arith-
metic and logical operations. May also involve special
logic to perform conversion.

Procedure Call Instruction
A procedure is a self-contained computer program that is
incorporated into a large program. It allows us to use the
same piece of code many times. The procedure mechanism
involves two basic instructions:

	 1.	 A call instruction that branches from the present
location to the procedure.

	 2.	 A return instruction that returns from the procedure
to the place from where it was called.

Example: 

Main programe

Call and returns Execution sequence

5000

5100
5101

5500

5600

5601

5650
5651

5800

Call f1

f1

Call f1

Call f2

return

return

f2

We can call a procedure from a variety of points, so the
processor must somehow save the return address to return

Chapter 1  •  Machine Instructions, Addressing Modes  |  2.7

appropriately. We can store the return address in the follow-
ing places.

	 1.	 Register
	 2.	 Start of called procedure
	 3.	 Top of stack.

If the register approach is used, call X causes the follow-
ing actions:

RN ← PC + L
PC ← X

Where RN is a used to store return address, PC is the pro-
gram counter and L is instruction length.

To store the return address at the start of the procedure
for call X, the following tasks required.

X ← PC + L
PC ← X + 1

We can pass the parameters using registers or store in mem-
ory after call instruction or use stack.

Example 1:  Consider the following program fragment in
the assembly language of a certain hypothetical processor.
The processor has three 8-bit general purpose registers R

1
,

R
2
, R

3
.

Instruction Meaning

X: CMP R1,0 Compare R1 and 0, set flags appropriately
in status register.

JZ Z Jump if zero to target Z.

MOV R2, R1 Copy contents of R1 to R2.

SHR R1 Shift Right R1

SHL R1 Shift left R1

CMP R2, R1 Compare R2 and R1 and set flag in status
register

JZ Y Jump if zero to Y.

INC R3 Increment R3

Y: SHR R1 Shift Right R1 by 1-bit

JMP X Jump to X

Z: ...

Let R
1
, R

2
, R

3
 contain the values 3, 0, 0 respectively. What

are the final values of R
1
, R

2
, R

3
 when control reaches Z?

(A)	 0, 0, 0			 (B)	 0, 1, 2
(C)	 0, 1, 1			 (D)	 0, 2, 1

Solution:  (B)
	 R

1
 = 0000 0011

	 R
2
 = 0000 0000

	 R
3
 = 0000 0000

CMP R
1
, 0, As R

1
 ≠ 0 ⇒ Zero flag = 0.

Jump to Z if Zf = 1; but Zf = 0

MOV R
2
, R

1
; R

2
 ← R

1
 i.e., R

2
 = 0000 0011

SHIFT right R
1
; R

1
 = 0000 0011

⇒  shr(R
1
) = 00000001

SHIFT left R
1
; R

1
	= 0000 0001 ⇒ shl (R

1
)

	 = 0000 0010

Compare R
2
, R

1
; R

1
 ≠ R

2
 ⇒ ZF = 0

As Zero flag is not set, increment R
3
: R

3
 = 0000 0001

Shift Right R
1
; i.e., 0000 0001.

Jump to X.

Compare R
1
, 0; As R

1
 ≠ 0 ⇒ ZF = 0.

Move R
2
, R

1
; R

2
 ← 0000 0001.

Shift right R
1
; R

1
 = 0000 0000.

Shift left R
1
; R

1
 = 0000 0000.

Compare R
2
, R

1
; R

1
 ≠ R

2
⇒

ZF = 0.

Increment R
3
; R

3
 = 0000 0010.

Shift Right R
1
; 0000 0000.

Jump to X.

Compare R
1
, 0; As R

1
 = 0 ⇒ ZF = 1

As ZF = 1, jump to Z.

∴ R
1
 = 0; R

2
 = 1; R

3
 = 2.

Addressing Modes
The different ways in which the location of an operand is
specified in an instruction are referred to as addressing
modes.

Computers use addressing mode techniques for the pur-
pose of accommodating the following provisions:

	 1.	 Facilitates pointers to memory.
	 2.	 Facilitates counters for loop control
	 3.	 Facilitates indexing of data
	 4.	 Facilitates program relocation.
	 5.	 Reduce the number of bits in the addressing field of

the instruction.

The most common addressing techniques are

	 i.	 Implied mode
	 ii.	 Immediate mode
	 iii.	 Direct mode
	 iv.	 Indirect mode
	 v.	 Register mode
	 vi.	 Register Indirect mode
	 vii.	 Auto-increment or Auto-decrement mode
	 viii.	 Displacement mode

•• PC relative mode
•• Indexed mode
•• Base register mode

	 (i)	 Implied mode: Operands are specified implicitly in
the definition of the instruction.

		 Example:  CPL (complement accumulator)

2.8  |  Unit 2  •  Computer Organization and Architecture

		 Here operand in accumulator is implied in the
definition of instruction.
•• All register-reference instructions that use an accu-

mulator are implied mode instructions.
•• Zero-address instructions in a stack-oriented com-

puter are implied-mode instructions.

	 (ii)	 Immediate mode: The operand is specified in the
instruction itself. Instruction format in immediate
mode is

Opcode Operand

		 Example:  Move A, 50.
•• These are useful for initializing registers to constant

value or to set initial values of variables.
•• No memory reference is required other than the

instruction fetch.
•• The size of number is restricted to the size of the

address (operand) field.

	(iii)	 Direct mode:
•• Here the address of the operand is equal to the

address part of the instruction.

Operand

Memory

Address
Instruction

•• Required only one memory reference and no special
calculation required.

•• Limitation is limited address space.

	(iv)	 Indirect mode:
•• The address field of the instruction gives the address

of the operand which is stored in memory.
•• The advantage of this approach is that for a word

length of N, an address space of 2N is available.
•• The disadvantage is that the instruction execution

requires two memory references to fetch the operand.

Operand

Memory
Address

Instruction

EA

  (Here EA is effective address of operand)

	 (v)	 Register mode:
•• Here the operands are in registers that reside within

the CPU.
•• Only small address field required in instructions.
•• No time consuming memory references are required.
•• Address space is very limited.

Operand

Registers

Register
Instruction

	(vi)	 Register indirect mode: In this mode the instruction
specifies a register in the CPU whose contents give
the address of the operand in memory. Address field
of the instruction uses fewer bits to select a register
than would have required to specify a memory address
directly.

Address

Register

Registers

Instruction

Operand

Memory

Effective address: The effective address is defined to be the
memory address obtained from the computation based on the
addressing mode, consists the actual address of the operand.

	(vii)	Auto increment and auto decrement mode: This is
similar to register indirect mode except that the regis-
ter is incremented or decremented after (or before) its
value is used to access memory.

Address

Register

Registers

Instruction

Operand

Memory

•• After fetch operand, increment or decrement address.
•• Used to access table of data.

	(viii)	 PC-relative mode: Here the content of the program
counter is added to the address part of the instruction
to get the effective address.

		 The address part of the instruction is usually a signed
number which can be either positive or negative. The
effective address will be a displacement relative to
address of the inst ruction.

Registers

Instruction
AddressPC

Operand

Memory

+

		 Effective address = PC + address part

Chapter 1  •  Machine Instructions, Addressing Modes  |  2.9

		 Example:  Let PC = 900 and address part of the
2-word instruction = 20.

Instruction
20901

902
PC

900

		 The instruction at location 900 is read memory during
fetch phase and the PC will be incremented by instruc-
tion length i.e., 2. Then PC = 902.

	 	 ∴ �The effective address using PC-relative = 902 +
20 = 922.

•• This addressing mode is used with branch-type
instructions.

•• Requires shorter address field.

	(ix)	 Indexed mode: Here the content of the index register
is added to the address part of the instruction to obtain
the effective address. The address field of the instruc-
tion defines the beginning address of a data array in
memory. The distance between the beginning address
and the address of the operand is the index value stored
in the index register, is a positive displacement from
the address.

AddressIndex registers

Operand

Memory

Registers

+

Effective Address = Index Register + Address part of
instruction.
This approach is opposite to the interpretation of base-
register addressing. This is used to provide an efficient
mechanism for performing iterative operations. To
store an array using indexed mode, the address part
consists of the address of first element of array and the
index register specifies the index value.

Example:  Let address part of instruction = 300
Index register = 5 and each element of array requires
2 bytes then address of 5th element = 300 + 5 × 2 = 310.

	(x)	 Base Register mode: Here the content of a base reg-
ister is added to the address part of the instruction to
obtain the effective address. Base register has a base
address and the address field of the instruction gives a
displacement relative to the base address.

AddressBase registers

Operand

Registers

Memory

+

This addressing mode is used in computers to facilitate
the relocation of programs in memory, i.e., when pro-
grams and data are moved from one segment of memory
to another, as required in multiprogramming system, the
address values of instructions must reflect this change of
position. With a base register, the displacement values of
instructions do not have to change. Only the value of the
base register requires updating to reflect the beginning of
a new memory segment.

Example 2:  If base register is 200 and address part of the
instruction is 31, then effective address = 200 + 31 = 231.

If the program’s base address is changed from 200 to
400, then new effective address will be 400 + 31 = 431.

Example 3:  Match the following:

LIST I LIST II

P. P[i] = Q[i]; 1. Indexed mode

Q. while(i++); 2. Immediate mode

R. int i = 10; 3. Auto increment mode

	 (A)	 P – 1, Q – 2, R – 3	 (B)	 P – 2, Q – 3, R – 1
	 (C)	 P – 1, Q – 2, R – 2	 (D)	 P – 1, Q – 2, R – 2

Solution:  (C)
Array indexing uses indexed mode. For increment opera-
tions use Auto increment mode. To initialize variables use
immediate mode.

Example 4:  The instruction format of a CPU is

Opcode Mode

One memory word

Register

Mode and Register together specifies the operand. Register
specifies a CPU register and mode specifies an addressing
mode. Let mode = 3, specifies that the register contains
the address of the operand, after fetching the operand, the
contents of register are incremented by 1. An instruction
at memory location 3000 specifies mode = 3 and register
refers to program counter (PC). Then what is the address of
the operand?

(A)	 3000			 (B)	 3001
(C)	 3002			 (D)	 Data insufficient

2.10  |  Unit 2  •  Computer Organization and Architecture

Solution:  (B)

3 30013000

PC → 3001

∴ Address of operand = 3001

Example 5:  Consider the following machine instruction:

MUL P[R
0
], @Q

The first operand (destination) ‘P[R
0
]’ uses indexed address-

ing mode with R
0
 as the index register. The second operand

(source) ‘@Q’ uses indirect addressing mode. P and Q are
memory addresses residing at the second and third words
respectively. The first word of instruction specifies the
opcode, the index register designation, source and destina-
tion addressing modes. During the execution of MUL, the
result is stored in destination. How many memory cycles
needed during the execution cycle of the instruction?
(A)	 3			 (C)	 5
(B)	 4			 (D)	 6

Solution: (C)
The first operand P[R

0
] uses indexed mode. So it requires

two memory references: on reference to the address part
and next one to obtain the operand. The second operand
@Q uses indirect addressing mode, so it requires two mem-
ory references, one to obtain the address, and the second,
to obtain operand. Finally one more memory reference
required to store result. Total five references.

Computer Performance
Response time: The time between the start and completion
of a task. This is also referred as execution time.

Throughput: The total amount of work done in a given time.

Exercises

Practice Problems 1
Directions for questions 1 to 20:  Select the correct alterna-
tive from the given choices.
	 1.	 An instruction is stored at location 301 with its

address field at location 300. The address field has the
value 400. A processor register R

1
 contains the num-

ber 200. Evaluate the effective address and Match the
following:

	 (A)	 Direct			 (1)	 702
	 (B)	 Immediate			 (2)	 600
	 (C)	 Relative			 (3)	 301
	 (D)	 Register Indirect	 (4)	 400
	 (E)	 Index with R

1
 as index	 (5)	 200

			 Register

	 (A)	 A – 4, B – 3, C – 1, D – 5, E – 2
	 (B)	 A – 3, B – 4, C – 1, D – 5, E – 2
	 (C)	 A – 4, B – 3, C – 1, D – 2, E – 5
	 (D)	 A – 3, B – 3, C – 1, D – 2, E – 5

	 2.	 The two word instruction is stored in memory at an
address designated by symbol W. The address field of
the instruction (stored at W + 1) is designated by the
symbol Y. The operand used during the execution of
the instruction is stored at address symbolized by Z.
An index register contains the value X. State how Z is
calculated from the other addresses if the addressing
mode of the instruction is

	 (A)	 Direct			 (1)	 Z = Mem(Y)
	 (B)	 Indirect			 (2)	 Z = Y + W + 2

Performance can be defined as Performance

Pertermance
Execution time

=
1

CPU execution time or CPU time: This is the time the CPU
spends computing for the task and does not include time
spent waiting for input–output or running other programs.

CPU time can be divided into

	 1.	 User CPU time
	 2.	 System CPU time

User CPU time: CPU time spent in the program.

System CPU time: CPU time spent in the operating system
performing tasks on behalf of the program.

Clock cycle: Computers are constructed using a clock that
determines when events take place in the hardware. These
discrete time intervals are called clock cycles.

Clock period: The length of each clock cycle.

Clock rate: Inverse of the clock period.
CPU execution time for a program = CPU clock cycles

for a program ∗ clock cycle time

=
CPU clock cycles for a program

Clock rate

CPU clock cycles = Instructions for a program ∗ Average
clock cycles per instructions.

CPI (clock cycles per instructions): CPI is the average
number of clock cycles each instruction takes to execute.

CPU Performance Equation:
CPU time = Instruction count ∗ CPI ∗ Clock cycle time

	 =
Instruction count * CPI

Clock rate

Chapter 1  •  Machine Instructions, Addressing Modes  |  2.11

	 (C)	 Relative			 (3)	 Z = Y + X
	 (D)	 Indexed			 (4)	 Z = Y

	 (A)	 A – 4, B – 1, C – 2, D – 3
	 (B)	 A – 3, B – 1, C – 2, D – 4
	 (C)	 A – 4, B – 2, C – 1, D – 3
	 (D)	 A – 3, B – 2, C – 1, D – 4

	 3.	 A computer has 32-bit instruction and 12-bit addresses.
If there are 250 two-address instructions, how many
one-address instructions can be formulated?

	 (A)	 6	 (B)	 256
	 (C)	 12,288	 (D)	 24,576

	 4.	 The memory unit of a computer has 256k words of
32-bits each. The computer has an instruction format
with four fields:

	 1.  An operation field
	 2.  A mode field to specify one of 8 addressing modes
	 3. � A Register address field to specify one of 120 pro-

cessor registers.
	 4.  A memory address.

	� Then what is the number of bits in each field respectively if
the instruction is in one memory word?

	 (A)	 4, 3, 7, 18	 (B)	 3, 4, 7, 18
	 (C)	 2, 1, 6, 23 	 (D)	 3, 7, 4, 18

Common data for questions 5 to 7: A relative mode
branch type of instruction is stored in memory at an address
equivalent to decimal 750. The branch is made to an address
equivalent to decimal 400.

	 5.	 What should be the value of the relative address field of
the instruction in decimal?

	 (A)	 351	 (B)	 −351
	 (C)	 350	 (D)	 −350

	 6.	 The relative address value in binary using 12-bits, will
be

	 (A)	 000101011111	 (B)	 100101011111
	 (C)	 111010100000	 (D)	 111010100001

	 7.	 What will be the binary value in PC after the fetch
phase (in binary)?

	 (A)	 001011101111	 (B)	 001011101110
	 (C)	 111011101111	 (D)	 110100010001

Common data for questions 8 to 10: Consider a 16-bit
processor in which the following appears in main memory,
starting at location 200:

500

200

201

202 Next to instruction

Load to AC Mode

		 The first part of the first word indicates that this instruc-
tion loads a value into an accumulator. The mode field
specifies an addressing mode or a source register, R

1
,

which has a value 400. There is a base register that

contain the value 100. The value 500 in location 201,
may be the part of address calculation. Assume that
location 399 contains the value 999, location 400 con-
tains the value 1000 and so on.

	 8.	 What will be the effective address and operand to be
loaded by using Register indirect mode?

	 (A)	 200, 400	 (B)	 400, 1000
	 (C)	 400, 500	 (D)	 200, 1000

	 9.	 What will be the effective address using indirect
addressing mode?

	 (A)	 200	 (B)	 201
	 (C)	 500	 (D)	 Present in 500 location

	10.	 What will be the effective address using immediate
addressing mode?

	 (A)	 202	 (B)	 201
	 (C)	 500	 (D)	 400

	11.	 A CPU of a computer has 48-bit instructions. A pro-
gram starts at address (600)

10
. Which one of the follow-

ing is a legal program counter value in decimal?
	 (A)	 610	 (B)	 650
	 (C)	 672	 (D)	 693

	12.	 Consider a new instruction named branch- on-bit-reset
(bbr). The instruction ‘BBR R

1
, I, label’

		 Jumps to label, and if bit in position I of register
operand, R

1
 is zero. The registers of the computer are

16-bits wide and are numbered 0 to 15, position 0
being LSB. Consider the following implementation of
this instruction on a processor that does not have BBR
implemented.

		 Temp ← R
1
 and mask

		 Branch to label if temp is zero.

		 The variable ‘temp’ is a temporary register. For correct
implementation, the variable ‘mask’ must be generated
by

	 (A)	 mask ← 0 × 1 << I
	 (B)	 mask ← 0 × FFFFFFFF >> I
	 (C)	 mask ← I
	 (D)	 mask ← 0 × F.

	13.	 Consider a hypothetical processor with an instruction
of type

		 LW R
1
, 40(R

2
)(R

3
).

		 Which during execution reads a 16-bit word from
memory and stores it in a 16-bit register R

1
. The effec-

tive address of the memory location is obtained by the
addition of constant 40, contents of R

2
 and R

3
 regis-

ters. Which of the following best reflects the addressing
mode implemented by this instruction for the operand
in memory?

	 (A)	 Immediate addressing
	 (B)	 Register addressing
	 (C)	 Register indirect scaled addressing
	 (D)	 Base with index and displacement addressing

2.12  |  Unit 2  •  Computer Organization and Architecture

Practice Problems 2
Directions for questions 1 to 20:  Select the correct alterna-
tive from the given choices.
	 1.	 The addressing mode that facilitates access to an oper-

and whose location is defined relative to the beginning
of the data structure in which it appears is

	 (A)	 Direct	 (B)	 Indirect
	 (C)	 Immediate	 (D)	 Index

	 2.	 Stack addressing is same as
	 (A)	 Direct addressing
	 (B)	 Indirect addressing
	 (C)	 Zero addressing
	 (D)	 Relative addressing

	 3.	 The Register which contain the Instruction to be exe-
cuted is called

	 (A)	 Instruction register
	 (B)	 Memory address register
	 (C)	 Index register
	 (D)	 Memory data register

	 4.	 The Register which keeps track of the execution of a
program and which contains the memory address of the
next instruction to be executed is called

	 (A)	 Instruction register
	 (B)	 Program counter

	 (C)	 Index register
	 (D)	 Memory address register

	 5.	 A stack pointer is
	 (A)	� A 16-bit register in the microprocessor that indi-

cate the beginning of the Stack Memory
	 (B)	� A register that decodes and execute 16-bit arith-

metic operation.
	 (C)	� The first memory location where a subroutine ad-

dress is stored
	 (D)	 A register in which flag bits are stored.

	 6.	 Function of Control Unit in the CPU is
	 (A)	 To transfer data to primary storage
	 (B)	 To store program instruction
	 (C)	 To perform logic operations
	 (D)	 To generate timing signals

	 7.	 When a subroutine is called the address of the instruc-
tion following the CALL instruction stored in the

	 (A)	 Stack	 (B)	 Accumulator
	 (C)	 Program counter	 (D)	 Stack pointer

	 8.	 In Immediate addressing mode the operand is placed
	 (A)	 In the CPU Register
	 (B)	 After the OP Code in the instruction
	 (C)	 In the memory
	 (D)	 In the stack memory

	14.	 Which of the following is true of base-register address-
ing mode?

	 (i)	 It is useful in creating self-relocating code.
	 (ii)	� If it is included in an instruction set architecture, then

an additional ALU is required for effective address
calculation.

	 (iii)	� The amount of displacement depends on the con-
tent of base register.

	 (A)	 (i) only	 (B)	 (ii) only
	 (C)	 (i) and (ii) only	 (D)	 (ii) and (iii) only

	15.	 Which of the following addressing modes are suitable
for program relocation at run time?

	 (i)	 Direct addressing
	 (ii)	 Based register addressing
	 (iii)	 PC-relative addressing
	 (iv)	 Index register addressing
	 (A)	 (i) and (ii)	 (B)	 (ii) and (iii)
	 (C)	 (iii) and (iv)	 (D)	 (ii), (iii) and (iv)

	16.	 In which of the following addressing mode, the address
of the operand is inside the instruction?

	 (A)	 Implied mode
	 (B)	 Absolute addressing mode
	 (C)	 Immediate addressing mode
	 (D)	 Register addressing mode

	17.	 A certain processor supports only the immedi-
ate and the direct addressing modes. Which of the

following programming language features can be on
this processor?

	 (i)	 Pointers
	 (ii)	 Arrays
	 (iii)	 Initialization
	 (A)	 (i) and (ii)	 (B)	 (i) and (iii)
	 (C)	 (ii) and (iii)	 (D)	 (iii) only

	18.	 In which of the following situation, relative addressing
mode is useful?

	 (A)	 Coroutine writing
	 (B)	 Position-independent code writing
	 (C)	 Sharable code writing
	 (D)	 Interrupt handlers

	19.	 In indexed addressing mode with scaling, the effective
address is calculated as

	 (A)	 Index + scaling + signed displacement
	 (B)	 (Index * scaling) + signed displacement
	 (C)	 Index + (scaling * displacement)
	 (D)	 (Index + scaling) * displacement

	20.	 Which of the following addressing modes require more
number of memory accesses?

	 (A)	 DIRECT
	 (B)	 IMMEDIATE
	 (C)	 INDIRECT
	 (D)	 IMPLIED

Chapter 1  •  Machine Instructions, Addressing Modes  |  2.13

	 9.	 When the RET instruction at the end of subroutine is
executed

	 (A)	� The information where the stack is initialized is
transferred to the stack pointer.

	 (B)	� The memory address of the RET instruction is
transferred to the program counter.

	 (C)	� Two data bytes stored in the top two locations of the
stack are transferred to the program counter.

	 (D)	� Two data bytes stored in the top two location of the
stack are transferred to the stack pointer.

	10.	 Match the following:

List I List II

P. Indirect Addressing 1. Loops

Q. Auto decrement Addressing 2. Constants

R. Immediate Addressing 3. Pointers

	 (A)	 P – 1, Q – 3, R – 2
	 (B)	 P – 3, Q – 1, R – 2
	 (C)	 P – 2, Q – 1, R – 3
	 (D)	 P – 3, Q – 2, R – 1

	11.	 An instruction used to set the carry flag in a computer
can be

	 (A)	 Data control	 (B)	 Process control
	 (C)	 Logical	 (D)	 Data transfer

	12.	 The addressing mode in which the address of the loca-
tion of the operand is given explicitly as part of the
instruction is

	 (A)	 Direct addressing mode
	 (B)	 Indirect addressing mode
	 (C)	 Immediate addressing mode
	 (D)	 Register addressing mode

	13.	 The unit that is used to supervise each instructions in
the CPU is

	 (A)	 Control register	 (B)	 Control logic unit
	 (C)	 ALU	 (D)	 Address register

	14.	 The address of the location to or from which data are to
be transferred is called

	 (A)	 Memory data register
	 (B)	 Memory address register
	 (C)	 Program counter
	 (D)	 Index register

	15.	 Which register is used as a working area in CPU?
	 (A)	 Program counter	 (B)	 Accumulator
	 (C)	 Stack pointer	 (D)	 Instruction register

	16.	 Which of the following statement is false about the PC
relative addressing mode?

	 (A)	� It allows indexing of array element with same in-
struction.

	 (B)	 It enables reduced instruction size.
	 (C)	� It enables faster address calculations than indirect

addressing.
	 (D)	 It enables easy relocation of data.

	17.	 Which of the following is not an application of logic
operations?

	 (A)	 Insert new bit values into a register
	 (B)	 Change bit value
	 (C)	 Delete a group of bits
	 (D)	 Shift bit values in a register

	18.	 In which of the following addressing mode, less num-
ber of memory references are required?

	 (A)	 Immediate	 (B)	 Register
	 (C)	 Implied	 (D)	 All of the above

	19.	 Which of the following is not involved in a memory
write operation?

	 (A)	 MDR	 (B)	 MAR
	 (C)	 PC	 (D)	 Data bus

	20.	 In ____ addressing mode the instruction contains 8-bit
signed offset, address register A

n
 and index register R

K
.

	 (A)	 Basic index	 (B)	 Full index
	 (C)	 Basic relative	 (D)	 Full relative

Previous Years’ Questions

Common Data for Questions 1 to 3: Consider the fol-
lowing program segment. Here R

1
, R

2
 and R

3
 are the gen-

eral purpose registers.

Instruction Operation
Instruction Size
(No. of Words)

MOV R1, (3000) R1 ← M[3000] 2

LOOP: MOV R2, (R3) R2 ← M[R3] 1

ADD R2, R1 R2 ← R1 + R2
1

MOV (R3), R2 M[R3] ← R2
1

INC R3 R3 ← R3 + 1 1

DEC R1 R1 ← R1 – 1 1

BNZ LOOP Branch on not
zero

2

HALT Stop 1

		 Assume that the content of memory location 3000 is
10 and the content of the register R

3
 is 2000. The con-

tent of each of the memory locations from 2000 to
2010 is 100. The program is loaded from the memory
location 1000. All the numbers are in decimal.

	 1.	 Assume that the memory is word addressable. The
number of memory references for accessing the data

2.14  |  Unit 2  •  Computer Organization and Architecture

in executing the program completely is:� [2007]
	 (A)	 10	 (B)	 11
	 (C)	 20	 (D)	 21

	 2.	 Assume that the memory is word addressable. After
the execution of this program, the content of memory
location 2010 is:� [2007]

	 (A)	 100	 (B)	 101
	 (C)	 102	 (D)	 110

	 3.	 Assume that the memory is byte addressable and the
word size is 32 bits. If an interrupt occurs during the
execution of the instruction ‘INC R

3
’, what return

address will be pushed on to the stack? � [2007]
	 (A)	 1005	 (B)	 1020
	 (C)	 1024	 (D)	 1040

	 4.	 Which of the following is/are true of the auto-
increment addressing mode?

	  (i)	 It is useful in creating self-relocating code
	  (ii)	� If it is included in an Instruction Set Architec-

ture, then an additional ALU is required for ef-
fective address calculation

	 (iii)	� The amount of increment depends on the size of
the data item accessed � [2008]

	 (A)	 (i) only	 (B)	 (ii) only
	 (C)	 (iii) only	 (D)	 (ii) and (iii) only

	 5.	 Consider a hypothetical processor with an instruction
of type LW R

1
, 20(R

2
), which during execution reads

a 32-bit word from memory and stores it in a 32-bit
register R

1
. The effective address of the memory loca-

tion is obtained by the addition of a constant 20 and
the contents of register R

2
. Which of the following

best reflects the addressing mode implemented by this
instruction for the operand in memory?� [2011]

	 (A)	 Immediate addressing
	 (B)	 Register addressing
	 (C)	 Register indirect scaled addressing
	 (D)	 Base indexed addressing

	 6.	 Consider two processors P
1
 and P

2
 executing the same

instruction set. Assume that under identical condi-
tions, for the same input, a program running on P

2

takes 25% less time but incurs 20% more CPI (Clock
cycles per instructions) as compared to the program
running on P

1
. If the clock frequency of P

1
 is 1GHz,

then the clock frequency of P
2

(in GHz) is ______.
� [2014]

	 7.	 A machine has a 32-bit architecture with 1-word long
instructions. It has 64 registers, each of which is 32
bits long. It needs to support 45 instructions, which
have an immediate operand in addition to two register
operands. Assuming that the immediate operand is an
unsigned integer, the maximum value of the immediate
operand is ________.� [2014]

	 8.	 Consider a new instruction named branch-on-bit-
set (mnemonic bbs). The instruction ‘bbs reg, pos,

label’ jumps to label if bit in position pos of register
operand reg is one. A register is 32 bits wide and the
bits are numbered 0 to 31, bit in position 0 being the
least significant. Consider the following emulation of
this instruction on a processor that does not have bbs
implemented.

temp ← reg & mask

		 Branch to label if temp is non-zero.
		  The variable temp is a temporary register. For cor-

rect emulation, the variable mask must be generated
by� [2006]

	 (A)	 mask ← 0 × 1 << pos
	 (B)	 mask ← 0 × ffffffff >> pos
	 (C)	 mask ← pos
	 (D)	 mask ← 0 × f

	 9.	 Consider a processor with byte-addressable memory.
Assume that all registers, including Program Counter
(PC) and Program Status Word (PSW), are of size 2
bytes. A stack in the main memory is implemented
from memory location (0100)

16
 and it grows upward.

The stack pointer (SP) points to the top element of
the stack. The current value of SP is (016E)

16 
. The

CALL instruction is of two words, the first word is the
op-code and the second word is the starting address
of the subroutine (one word = 2 bytes). The CALL
instruction is implemented as follows:

•• Store the current value of PC in the stack
•• Store the value of PSW register in the stack
•• Load the starting address of the subroutine in PC

		 The content of PC just before the fetch of a CALL
instruction is (5FA0)

16
. After execution of the CALL

instruction, the value of the stack pointer is � [2015]

	 (A)	 (016A)
16

	 (B)	 (016C)
16

	 (C)	 (0170)
16

	 (D)	 (0172)
16

	10.	 A processor has 40 distinct instructions and 24 gen-
eral purpose registers. A 32 - bit instruction word has
an opcode, two register operands and an immediate
operand. The number of bits available for the immedi-
ate operand field is ____.� [2016]

	11.	 Suppose the functions F and G can be computed
in 5 and 3 nanoseconds by functional units U

F
 and

U
G
, respectively. Given two instances of U

F
 and two

instances of U
G
, it is required to implement the com-

putation F (G(X
i
)) for 1 ≤ i ≤ 10. Ignoring all other

delays, the minimum time required to complete this
computation is _____ nanoseconds.� [2016]

	12.	 Consider a processor with 64 registers and an instruc-
tion set of size twelve. Each instruction has five distinct
fields, namely, opcode, two source register identifiers,
one destination register identifier, and a twelve - bit
immediate value. Each instruction must be stored in

Chapter 1  •  Machine Instructions, Addressing Modes  |  2.15

memory in a byte - aligned fashion. If a program has
100 instructions, the amount of memory (in bytes)
consumed by the program text is ___.� [2016]

	13.	 Consider the C struct defined below:
struct data {

int marks [100];
char grade;
int cnumber;

};
struct data student;

	 	� The base address of student is available in regis-
ter R1. The field student.grade can be accessed
efficiently using� [2017]

	 (A)	 Post-increment addressing mode, (R1)+
	 (B)	 Pre-decrement addressing mode, − (R1)
	 (C)	 Register direct addressing mode, R1
	 (D)	� Index addressing mode, X(R1), where X is an

offset represented in 2’s complement 16-bit rep-
resentation.

	14.	 Consider a RISC machine where each instruction is
exactly 4 bytes long. Conditional and unconditional
branch instructions use PC-relative addressing mode
Offset specified in bytes to the target location of the
branch instruction. Further the Offset is always with
respect to the address of the next instruction in the

program sequence. Consider the following instruction
sequence.

Instr.No. Instruction

i : add R2, R3, R4

i+1 : sub R5, R6, R7

i + 2 : cmp R1, R9, R10

i + 3 : beq R1, Offset

		� If the target of the branch instruction is i, then the
decimal value of the Offset is 	 .� [2017]

	15.	 A processor has 16 integer registers (R0, R1, ..., R15) and
64 floating point registers (F0, F1, ..., F63). It uses a
2-byte instruction format. There are four categories
of instructions: Type-1, Type-2, Type-3, and Type-4.
Type-1 category consists of four instructions, each
with 3 integer register operands (3Rs). Type-2 cat-
egory consists of eight instructions, each with 2 float-
ing point register operands (2Fs). Type-3 category
consists of fourteen instructions, each with one inte-
ger register operand and one floating point register
operand (1R + 1F). Type-4 category consists of N
instructions, each with a floating point register oper-
and (1F).

The maximum value of N is ______.� [2018]

Answer Keys

Exercises

Practice Problems 1
	 1.  A	 2.  A	 3.  D	 4.  A	 5.  B	 6.  D	 7.  A	 8.  B	 9.  D	 10.  B
	11.  C	 12.  A	 13.  D	 14.  A	 15.  B	 16.  B	 17.  B	 18.  B	 19.  B	 20.  C

Practice Problems 2
	 1.  D	 2.  C	 3.  A	 4.  B	 5.  A	 6.  D	 7.  A	 8.  B	 9.  C	 10.  B
	11.  B	 12.  A	 13.  B	 14.  B	 15.  B	 16.  A	 17.  D	 18.  B	 19.  D	 20.  B

Previous Years’ Questions
 1.  D	 2.  A	 3.  C	 4.  C	 5.  D	 6.  1.6	 7.  16383	 8.  A	 9.  D	 10.  16
	11.  28	 12.  500	 13.  D	 14.  -16	 15.  32

	Unit 2: Computer Organization and Architecture
	Chapter 1: Machine Instructions, Addressing Modes
	Computer
	Machine Instructions
	Addressing Modes
	Computer Performance
	Exercises
	Previous Years’ Questions
	Answer Keys

