ELECTROMAGNETIC FORCE

MAGNETIC FLUX

Magnetic Flux is the amount of magnetic field passing through a given area.

$$\phi = \int \overrightarrow{B} \cdot d\overrightarrow{A} \implies \phi = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos\theta$$

Unit → weber (Wb)

FARADAY'S LAW OF ELECTROMAGNETIC INDUCTION

Whenever the flux of a magnetic field through the area bounded by a closed conducting loop changes, an emf is produced in the loop. The emf is given

by

$$\varepsilon = -\frac{d\phi}{dt}$$

LENZ'S LAW

According to lenz's law, if the flux associated with any loop changes than the induced current flows in such a fashion that it tries to oppose the cause which has produced it.

MOTIONAL EMF

$$E = \int (\overrightarrow{v} \times \overrightarrow{B}) . d\overrightarrow{i}$$

EMF developed across the ends of the rod moving perpendicular to magnetic field velocity perpendicular to the rod is $\epsilon = vB \ell$

INDUCED EMF IN A ROTATING ROD

INDUCED ELECTRIC FIELD

EMF,
$$e = \oint \vec{E} \cdot d\vec{i}$$

Using Faraday's law of induction

$$\varepsilon = -\frac{d\phi}{dt}$$

or,
$$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = -\frac{d\phi}{dt}$$

SELF INDUCTION

SELF INDUCTION

If current in the coil changes by Δi in a time interval Δt , the average emf induced in the coil is given as

$$\varepsilon = -\frac{\Delta(\mathbf{N}\phi)}{\Delta t} = -\frac{\Delta(\mathbf{L}i)}{\Delta t} = -\frac{\mathbf{L}\Delta i}{\Delta t}$$

, S.I unit of inductance is wb/amp or Henry (H)

SELF INDUCTANCE OF SOLENOID

$$L = \mu_0 \, n^2 \pi \, r^2 I$$

n = no. of turns/length

r = radius ; μ_o = Permeability

I = length

Inductance/Volume = µ_o n²

2 INDUCTOR

$$V_A - L \frac{di}{dt} = V_B$$
, Energy stored in inductor, $U = \frac{1}{2} Li^2$

$$U = \frac{1}{2} \operatorname{Li}^2$$

L - R CIRCUIT

At t = 0, inductor behaves as an open switch.

At t =∞, inductor behaves as plane wire.

GROWTH OF CURRENT

The maximum current in the circuit io = E/R. So

$$i = i_0 \left\{ 1 - e^{-\frac{R}{L}t} \right\}$$

4 DECAY OF CURRENT

$$i = i_0 e^{-\frac{R}{L}t} = i_0 e^{-\frac{t}{T}}$$

5 MUTUAL INDUCTANCE

$$\varepsilon = -M \frac{di_1}{dt} = \Rightarrow \phi_2 = Mi_1$$

M = Mutual inductance

Unit of Mutual inductance is Henry (H)

6 SERIES COMBINATION OF INDUCTORS

$$L_{eq} \ \frac{di}{dt} = L_1 \ \frac{di}{dt} + L_2 \ \frac{di}{dt} \ \Rightarrow L_{eq} = L_1 + L_2 +$$

PARALLEL COMBINATION OF INDUCTOR

$$i = i_1 + i_2 \implies \frac{di}{dt} = \frac{di_1}{dt} + \frac{di_2}{dt}$$

$$\frac{V}{L_{eq}} = \frac{V}{L_1} + \frac{V}{L_2}$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots$$

