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 7.1 Introduction  
 

Translation is motion along a straight line but rotation is the motion of wheels, gears, motors, 

planets, the hands of a clock, the rotor of jet engines and the blades 

of helicopters. First figure shows a skater gliding across the ice in a 

straight line with constant speed. Her motion is called translation 

but second figure shows her spinning at a constant rate about a 

vertical axis. Here motion is called rotation. 

Up to now we have studied translatory motion of a point mass. 

In this chapter we will study the rotatory motion of rigid body about 

a fixed axis. 

(1) Rigid body : A rigid body is a body that can rotate with all the parts locked together and without 

any change in its shape. 

(2) System : A collection of any number of particles interacting with one another and are under 

consideration during analysis of a situation are said to form a system. 

(3) Internal forces : All the forces exerted by various particles of the system on one another are 

called internal forces. These forces are alone enable the particles to form a well defined system. Internal 

forces between two particles are mutual (equal and opposite). 

(4) External forces : To move or stop an object of finite size, we have to apply a force on the object 

from outside. This force exerted on a given system is called an external force. 

 7.2 Centre of Mass  
 

Centre of mass of a system (body) is a point that moves as though all the mass were concentrated 

there and all external forces were applied there. 

(1) Position vector of centre of mass for n particle system : If a system consists of n 
     

particles of masses m1, m2 , m3 ......... mn , whose positions vectors are r1, r2 , r3 .............................rn 

respectively then position vector of centre of mass 

   

 m1 r1  m 2  r2  m 3 r3 mn rn 
 

m1  m 2   m 3  mn 

Hence the centre of mass of n particles is a weighted average of the position 

vectors of n particles making up the system. 

 

(2) Position vector of centre of mass for two particle system : 
 

 
m1 r1  m 2 r2

 
 

m1  m 2 

and the centre of mass lies between the particles on the line joining them. 

 
 r  r If two masses are equal i.e. m    m  , then position vector of centre of mass   

1
 

2
 

1 2 r 
2

 

(3) Important points about centre of mass 

y 

m1 C.M. 
 

m2 
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(i) The position of centre of mass is independent of the co-ordinate system chosen. 

(ii) The position of centre of mass depends upon the shape of the body and distribution of mass. 

Example : The centre of mass of a circular disc is within the material of the body while that of a 

circular ring is outside the material of the body. 

(iii) In symmetrical bodies in which the distribution of mass is homogenous, the centre of mass 

coincides with the geometrical centre or centre of symmetry of the body. 

(iv) Position of centre of mass for different bodies 

 
S. No. Body Position of centre of mass 

(a) Uniform hollow sphere Centre of sphere 

(b) Uniform solid sphere Centre of sphere 

(c) Uniform circular ring Centre of ring 

(d) Uniform circular disc Centre of disc 

(e) Uniform rod Centre of rod 

(f) A plane lamina (Square, Rectangle, 

Parallelogram) 

Point of inter section of diagonals 

(g) Triangular plane lamina Point of inter section of medians 

(h) Rectangular or cubical block Points of inter section of diagonals 

(i) Hollow cylinder Middle point of the axis of cylinder 

(j) Solid cylinder Middle point of the axis of cylinder 

(k) Cone or pyramid 
On the axis of the cone at point distance 

3h
 

4 

from the vertex where h is the height of cone 

 
(v) The centre of mass changes its position only under the translatory motion. There is no effect of 

rotatory motion on centre of mass of the body. 

(vi) If the origin is at the centre of mass, then the sum of the moments of the masses of the system 


about the centre of mass is zero i.e.  mi ri  0 . 

(vii) If a system of particles of masses m1 , m 2 , m 3 ,...... move with velocities v1 , v 2 , v3 ,...... 

 

then the velocity of centre of mass vcm  
 mivi .

 
 m 

i 

(viii) If a system of particles of masses m1, m2 , m3 ,...... 

 
move with accelerations a1 , a2 , a3 ,...... 

 

then the acceleration of centre of mass 
 
Acm  

 miai 

 m 
i 

 



(ix) If r is a position vector of centre of mass of a system 

 
     

then velocity of centre of mass v cm  
d r

 
  

d   m1 r1  m2 r2  m3 r 3 


 

dt dt 
 m1   m2  m3 


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1 2 3 

r 

 ̂

 


   
 2 2 

(x) Acceleration of centre of mass Acm    
d v cm  

  
d    r 

  
d    m1 r1  m2 r2 


   

dt dt 
2
 dt 

2
 
 

m   m    m  



 



  d 2 r 

(xi) Force on a rigid body F  M Acm  M 
 

 

dt 
2
 

(xii) For an isolated system external force on the body is zero 
 d   



F  M  v cm   0  v cm  constant. 
dt  

i.e., centre of mass of an isolated system moves with uniform velocity along a straight-line path. 

 
Sample problems based on centre of mass 

Problem 1.      The distance between the carbon atom and the oxygen atom in a carbon monoxide molecule is 1.1 

Å.   Given, mass of carbon atom is 12  a.m.u. and mass of oxygen atom is 16  a.m.u., calculate the 

position of the center of mass of the carbon monoxide molecule 

(a) 6.3 Å from the carbon atom (b) 1 Å from the oxygen atom 

(c)  0.63 Å from the carbon atom (d)  0.12 Å from the oxygen atom 

Solution : (c) Let carbon atom is at the origin and the oxygen atom is placed at x-axis 

 
m1  12 , m2 





 16 ,  r 1 



 0̂ i  0 ĵ and 


r 2  1.1ˆi  0ˆj 

 m1 r1  m 2 r2  
16  1.1 ̂

i
 

m1  m 2 28 



r  0.63 i i.e. 0.63 Å from carbon atom. 
  

Problem 2. The  velocities  of  three  particles  of  masses  20g,  30g  and  50  g  are  10 i , 10 j, and 10k respectively. 

The velocity of the centre of mass of the three particles is [EAMCET 2001] 
           

(a) 2i  3 j  5k (b) 10(i  j  k ) (c) 20 i  30 j  5k (d) 2i  30 j  50k 

Solution : (a) Velocity of centre of mass 

v  
m1v1  m2v2  m3v3 

  
20  10î  30  10 ĵ  50  10k̂  2î  3 ĵ  5k̂ . 

cm 
1  m2  m3 100 

Problem 3. Masses 8, 2, 4, 2 kg are placed at the corners A, B, C, D respectively of a square ABCD of 

diagonal 80 cm . The distance of centre of mass from A will be 

(a) 20 cm (b) 30 cm (c) 40 cm (d) 60 cm 

Solution : (b) Let corner A of square ABCD is at the origin and the mass 8 kg is placed at this corner (given in 

problem) Diagonal of square d  a  80 cm  a  40 2cm 

m1  8kg, m 2  2kg, m3  4kg, m 4  2kg 

Let r1 , r 2 , r 3 , r 4 are the position vectors of respective masses 

r1  0ˆi  0ˆj , r2  aˆi  0ˆj , r3  â i  â j , r4  0ˆi  aˆj 

From the formula of centre of mass 

r  
m1 r1  m 2 r2  m 3 r3  m 4 r4 

m1  m 2  m 3  m 4 

 15 2i  15 2ˆj 

2 

y 

m1 

C O x 

m2 

y 

D C 
(0, 

2kg 4kg 
 

C.M 

(a, 

(0,   8kg 2kg  (a, 0) 

A 
402 

B 
x 

m 
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(x2  x1)2 (y2  y1)
2 (15 2  0)2  (15 2  0)2 900 

 co-ordinates of centre of mass  (15 2,15 2 ) and co-ordination of the corner  (0, 0) 

From the formula of distance between two points (x1, y1) and (x2, y2 ) 
 

distance  = = = 30cm 

Problem 4. The coordinates of the positions of particles of mass 7, 4 and 10 gm are (1, 5,  3), (2, 5,7) and 

(3, 3,  1)cm respectively. The position of the centre of mass of the system would be 

 (a)  
15 

, 
85 

, 
1  

cm
 

 
   

 (b)  15 
, 

85 
, 

1  
cm

 
 

   

 (c)  15 
, 

85 
, 

1  
cm

 
 

   

 (d)  15 
, 

85 
, 

7  
cm

 
 

    
 7 17    7 

 
 7 17    7 

 
 7 21 7 

 
 7 21   3 



Solution: (c) m1  7 gm , m 2  4 gm , m3  10 gm and 

Position vector of center mass 

r1   (̂i  5 ĵ  3k̂ ),  r2   (2i  5 j  7k ), r3   (3 î  3 ĵ  k̂) 

r  
7(̂i  5 ĵ  3k̂)  4(2î  5 ĵ  7k̂)  10(3î  3 ĵ  k̂) 

 
(45 î  85 ĵ  3k̂) 

  

7  4  10 21 

 r  
15 ˆi  

85 ˆj  
1 

kˆ . So coordinates of centre of mass 
15 

, 
85 

, 
 1  

. 

7 21 7 
 7

 
21 7 

 7.3 Angular Displacement  
 

 
 

It is the angle described by the position vector r about the axis of rotation. 

Angular displacement ( )  
Linear

 

(1) Unit : radian 

(2) Dimension : [M 
0
 L

0
 T 

0
 ] 

displaceme nt (s) 

Radius (r) 

  

(3) Vector form S    r 

i.e., angular displacement is a vector quantity whose direction is given by right hand rule. It is also 

known as axial vector. For anti-clockwise sense of rotation direction of  is perpendicular to the plane, 

outward and along the axis of rotation and vice-versa. 

(4) 2 radian  360   1 revolution. 

(5) If a body rotates about a fixed axis then all the particles will have same angular displacement 

(although linear displacement will differ from particle to particle in accordance with the distance of 

particles from the axis of rotation). 

7.4 Angular Velocity  

The angular displacement per unit time is defined as angular velocity. 

If a particle moves from P to Q in time  t ,    



t 
where 



is the angular displacement. 

(1) Instantaneous angular velocity   lim 



t0 t 
 

d

dt 

(2) Average angular velocity av  
total angular displacement 

total time 
 
 2  1 
t  t 

2 1 
 

(3) Unit : Radian/sec 

(4) Dimension : [M 
0
 L

0
 T 

1
 ] which is same as that of frequency. 

 
    

(5) Vector form  v     r [where v = linear velocity, r = radius vector] 

Q 


P 

Q 

S 



r 
P 
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

 


 is a axial vector, whose direction is normal to the rotational plane and its direction is given by 

right hand screw rule. 

(6)   
2


T 

 

 2n 

 
[where T = time period, n = frequency] 

(7) The magnitude of an angular velocity is called the angular speed which is also represented by  . 

7.5 Angular Acceleration. 

The rate of change of angular velocity is defined as angular acceleration. 

If particle has angular velocity 1 at time t1 and angular velocity  2 at time t 2 then, 

 

Angular acceleration 
 

 
 2   1

 
 

t 2  t1  

 




 

d  d 
2
 

(1) Instantaneous angular acceleration   lim 
t0 t 

  . 
dt dt 

2
 

(2) Unit : rad/sec 
2
 

(3) Dimension : [M 
0
 L

0
 T 

2
 ] . 

(4) If   0 , circular or rotational motion is said to be uniform. 

(5) Average angular acceleration   
 2  1 

.
 

 

av 

2  t1 
 

 
  

(6) Relation between angular acceleration and linear acceleration a    r . 

(7) It is an axial vector whose direction is along the change in direction of angular velocity i.e. 

normal to the rotational plane, outward or inward along the axis of rotation (depends upon the sense of 

rotation). 

 7.6 Equations of Linear Motion and Rotational Motion  
 

 

Linear Motion Rotational Motion 

(1) If linear acceleration is 0, u = constant and s = u t. If angular acceleration is 0,  = constant and   t 

(2) If linear acceleration a = constant, 

(i) s  
(u  v) 

t 
2 

(ii) a    
v  u

 
t 

(iii)  v   u  at 

 

(iv) s  ut  
1 

at 
2
 

2 

(v)  v 2  u 2  2as 

(vi) s  u  
1 

a(2n  1) 
nth 

2
 

If angular acceleration  = constant then 

(i)   
(1   2 ) t 

2 

(ii)     
 2    1

 

t 

(iii)  2   1  t  

(iv)    t  
1 
t 

2
 

1 
2

 

 
(v)  

2
   

2
  2

2 1 
 

(vi)      (2n  1) 



nth 1 
2

 

(3) If acceleration is not constant, the above equation will 

not be applicable. In this case 

If acceleration is not constant, the above equation will 

not be applicable. In this case 

t 
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     

 

 
(i) v  

dx
 

dt 
 

dv d 
2
 x 

(ii) a  
dt dt 2 

(iii)  vdv  ads 

(i)   
d


dt 

d d 
2

(ii)   
dt dt2 

(iii) d   d

Sample problems based on angular displacement, velocity and acceleration 

Problem 5. The angular velocity of seconds hand of a watch will be 

 
(a) 

 
rad / sec 

60 

 
(b) 

 
rad / sec 

30 

 
(c) 

 

60  rad / sec 

 
(d) 

 

30  rad / sec 

Solution : (b) We know that second's hand completes its revolution (2) in 60 sec     


t 
 

2 

60 
 
 

rad/sec 
30 

Problem 6.      The  wheel  of  a  car  is  rotating  at  the  rate  of  1200  revolutions  per  minute.  On  pressing  the 

accelerator for 10 sec  it starts rotating at 4500 revolutions per minute.  The angular acceleration of 

the wheel is [MP PET 2001] 

(a) 30 radians/sec2 (b)  1880 degrees/sec2      (c)  40 radians/sec2 (d) 1980 
degrees/sec2 

Solution: (d) Angular acceleration () = rate of change of angular speed 

2 
 4500  1200 

2 
3300 

 
2 (n2   n1 ) 

 60 
 60  

360 degree  1980 degree / sec 2 . 
t 10 10 2 sec 2 

Problem 7. Angular  displacement 

acceleration is given by 

( ) of a flywheel varies with time as   at  bt2  ct3 then angular 

(a) a  2bt  3ct 2 (b) 2b  6t (c) a  2b  6t (d) 2b  6ct 

Solution: (d) Angular acceleration   
d 

2 
 

d 
2 

(at  bt 
2
  ct 

3
 )  2b  6ct 

  

dt 
2
 dt 

2
 

Problem 8. A wheel completes 2000 rotations in covering a distance of  9.5 km . The diameter of the wheel is [RPMT 199 

(a) 1.5 m (b) 1.5 cm (c) 7.5 m (d) 7.5 cm 

Solution: (a) Distance covered by wheel in 1 rotation =  2r  D  (Where D= 2r = diameter of wheel) 

 Distance covered in 2000 rotation = 2000  D =  9.5  103m  (given) 

 D  1.5 meter 

Problem 9. A wheel is at rest. Its angular velocity increases uniformly and becomes 60 rad/sec after 5 sec. The 

total angular displacement is 

(a) 600 rad (b) 75 rad (c) 300 rad (d) 150 rad 

Solution: (d) Angular acceleration   
 2  1

 

t 
 

60  0 
 12rad / sec 

2
 

5 

Now from    t  
1 
 t 2

 = 0  
1 

(12)(5)
2
  150 rad. 

  

1
 2 2 

Problem 10.   A wheel initially at rest, is rotated with a uniform angular acceleration. The wheel rotates through 

an  angle   1  in first  one second  and  through an  additional angle   2 in the next one second. The 

ratio 
 2 is 
1 

(a)  4 (b)  2 (c)  3 (d)  1 
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A 
 

B 

ˆ  ̂ ˆ  ̂

 
Solution: (c) Angular displacement in first one second    

1 
 (1)

2
   

   
......(i) [From    t  

1 
 t 2 ] 

  
 

1
 2 2 

1
 2 

Now again we will consider motion from the rest and angular displacement in total two seconds 

 1   2  
1 
 (2)

2
 

2 
 2


......(ii) 

Solving (i) and (ii) we get        
   

and    
3 

 
 2  3 . 

1
 2 

2
 2 

Problem 11. As a part of a maintenance inspection the compressor of a jet engine is made to spin according to 

the graph as shown. The number of revolutions made by the compressor during the test is 

 
 
 
 
 
 
 
 
 

(a)  9000 (b)  16570 (c)  12750 (d)  11250 

Solution: (d) Number of revolution = Area between the graph and time axis = Area of trapezium 

= 
1 
(2.5  5) 3000 

2 

 
= 11250 revolution. 

Problem 12.    Figure shows a small wheel fixed coaxially on a bigger one of double the radius. The system rotates 

about the common axis. The strings supporting A and B do not slip on the wheels. If x and y be the 

distances travelled by A and B in the same time interval, then 

(a) x  2y 

(b) x  y 

(c) y  2x 

(d) None of these 

Solution: (c) Linear displacement (S) = Radius (r) × Angular displacement () 

S  r (if   constant) 

Distance travelled by mass A (x) 

 Radius of pulley concerned with mass A (r) 

 
1 

 
 y  2x . 

Distance travelled by mass B (y) Radius of pulley concerned  with mass B (2r) 2 

 

Problem 13. If the position vector of a particle is 

 


r  (3i  4 j) 

 
meter and its angular velocity is 

 


  ( j  2k) 

rad/sec then its linear velocity is (in m/s) 
 

(a) (8 î  6 ĵ  3k̂) 
 

(b) (3î  6 ĵ  8k̂) 

î ĵ 

 

(c) 

kˆ 

 (3î  6 ĵ  6k̂) 
 

(d) (6 î  8 ĵ  3k̂) 

Solution: (a) 
 

  

v    r = (3î  4 ĵ  0k̂) (0 î  ĵ  2k̂)     3    4 

0 1 

0  8ˆi  6ˆj  3kˆ 

2 
 

7.7 Moment of Inertia  

Moment of inertia plays the same role in rotational motion as mass plays in linear motion. It is the 

property of a body due to which it opposes any change in its state of rest or of uniform rotation. 
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I 

M 
m 

m 

r2 

r3 

r1 
m 

m r5  

r4 
m 

1 1 2 2 3 3 

1 n 

(1) Moment of inertia of a particle 

rotational axis. 

I  mr 
2
 ; where r is the perpendicular distance of particle from 

(2) Moment of inertia of a body made up of number of particles (discrete distribution) 

I  m r 
2
  m r 

2
  m r 

2
  ....... 

(3) Moment of inertia of a continuous distribution of mass, treating the element of mass dm at position r 

as particle 

dI  dm r 
2
 i.e., I   r 

2
 dm 

 

   

(4) Dimension : [ML
2
 T 

0
 ] 

(5) S.I. unit : kgm2. 

(6) Moment of inertia depends on mass, distribution of mass and on the position of axis of rotation. 

(7) Moment of inertia does not depend on angular velocity, angular acceleration, torque, angular 

momentum and rotational kinetic energy. 

(8) It is not a vector as direction (clockwise or anti-clockwise) is not to be specified and also not a 

scalar as it has different values in different directions. Actually it is a tensor quantity. 

(9) In case of a hollow and solid body of same mass, radius and shape for a given axis, moment of 

inertia of hollow body is greater than that for the solid body because it depends upon the mass 

distribution. 

 7.8 Radius of Gyration  

Radius of gyration of a body about a given axis is the perpendicular distance of a point from the 

axis, where if whole mass of the body were concentrated, the body shall have the same moment of inertia 

as it has with the actual distribution of mass. 

When square of radius of gyration is multiplied with the mass of the body gives the moment of 

inertia of the body about the given axis. 
 

I  Mk 
2
  or k  . 

 

Here k is called radius of gyration. 

From the formula of discrete distribution 

I  mr 
2
  mr 

2
  mr 

2
  mr 

2
 

If m1  = m2  = m3  =  ....... = m then 

I  m(r 
2
  r  

2
  r  

2
 r 

2
 ) 

 

 
........(i) 

1 2 3 n 

From the definition of Radius of gyration, 

I  Mk 
2
 

By equating (i) and (ii) 

 

 
........(ii) 

 
 

r 

dm 

r1 

    m1 

m2 
r2 

r3 

m3 

r 
m 

k 
M 

2 3 
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I 

M 

(1 2)MR 
2
 

M 2 

Mk 
2
   m(r 

2
  r  

2
  r  

2
  r 

2
 ) 

1 2 3 n 

nmk 
2
   m(r 

2
  r  

2
  r  

2
  r 

2
 ) [As M  nm ] 

1 2 3 n 

 

 k 


Hence radius of gyration of a body about a given axis is equal to root mean square distance of the 

constituent particles of the body from the given axis. 

(1) Radius of gyration (k) depends on shape and size of the body, position and configuration of the 

axis of rotation, distribution of mass of the body w.r.t. the axis of rotation. 

(2) Radius of gyration (k) does not depends on the mass of body. 
 

(3) Dimension [M 
0
 L

1
T 

0
 ] . 

(4) S.I. unit : Meter. 

(5) Significance of radius of gyration : Through this concept a real body (particularly irregular) is 
replaced by a point mass for dealing its rotational motion. 

Example : In case of a disc rotating about an axis through its centre of mass and perpendicular to 
its plane 

k    
R

 

 

So instead of disc we can assume a point mass M at a distance (R / 

dealing the rotational motion of the disc. 

2) from the axis of rotation for 

Note :  For a given body inertia is constant whereas moment of inertia is variable. 

 7.9 Theorem of Parallel Axes  

Moment of inertia of a body about a given axis I is equal to the sum of 

moment of inertia of the body about an axis parallel to given axis and passing 

through centre of mass of the body Ig and Ma 
2
 where M is the mass of the body 

and a is the perpendicular distance between the two axes. 

I  Ig  Ma
2
 

Example: Moment of inertia of a disc about an axis through its centre and 

perpendicular to the plane is 
1 

MR
2
 , so moment of inertia about an axis through its tangent and 

2 

perpendicular to the plane will be 

I  Ig  Ma
2
 

I  
1 

MR
2
  MR

2
 

2 

 I  
3 

MR
2
 

2 

 7.10 Theorem of Perpendicular Axes  

  1 2 3 n  

n 

r 
2
   r  

2
   r 

2
  r 

2
 

I IG 

R 
G 

I IG 

a G 



 

 

es x 
Z 

ID 

ID O 
X 

Y 

1 1 r 

m  m 

 

 

According to this theorem the sum of moment of inertia of a plane lamina about two mutually 

perpendicular axes lying in its plane is equal to its moment of inertia about an axis perpendicular to the 

plane of lamina and passing through the point of intersection of first two axes. 

Iz  Ix  Iy 

 

 

 
 

 

 

 

 

 

Example : Moment of inertia of a disc about an axis through its centre of mass and perpendicular to 

its plane is 
1 

MR
2
 , so if the disc is in x–y plane then by theorem of perpendicular a 

2 

i.e. 

 





I
z 
 I

x 
 I

y
 

MR
2
  2ID 

2 

I  
1 

MR
2
 

D 
4

 

[As ring is symmetrical body so Ix  Iy  ID ] 

Note :  In case of symmetrical two-dimensional bodies as moment of inertia for all axes passing 

through the centre of mass and in the plane of body will be same so the two axes in the 

plane of body need not be perpendicular to each other. 

 7.11 Moment of Inertia of Two Point Masses About Their Centre of Mass. 

Let m 1 and m 2 be two masses distant r from each-other and r1 and r2 be the distances of their 

centre of mass from m 1 and m 2 

(1)  r1    r2    r 

(2)  m1 r1    m 2 r2 

respectively, then 

 
(3) r1   

m 2 r 
m1  m 2 

 
and r2 

m1 
r
 

m1  m 2 

(4) I  m 

(5) I 

r 
2
  m 

m 1 m 2 

 
2 

2 2 

  
r 

2
   r 

2
 

 

 
[where  




m1 m 2 

 

 
is known as reduced mass   m 

 

 
and   m .] 

 
 1 2 




m1  m 2 

(6) In diatomic molecules like 

from above formula. 

H 2 , HCl etc. moment of inertia about their centre of mass is derived 

 7.12 Analogy Between Tranlatory Motion and Rotational Motion  
 

 

Translatory motion Rotatory motion 

Mass (m) Moment of Inertia (I) 

Linear 

momentum 

 P  mv 

P  2mE 

Angular 

Momentum 

 L  I

L  2IE 

Force  F  ma Torque   I

10 Rotational Motion 

Z 

 
 

X 

 
 

 
Y 

r1 r2 

m2 
Centre of mass 

m1 

1 

1 2 



 

 

P 2 

E 
2m 

L2 

E 
2I 

Kinetic energy 
E  

1 
I 2 

2 

E  
1 

mv 
2
 

2 

MR 2 

 

 

 

7.13 Moment of Inertia of Some Standard Bodies About Different Axes  
 

Body 
 

Ring 

 
 
 
 
 

Ring 

Axis of 

Rotation 

About an axis 

passing through 

C.G. and 

perpendicular to 

its plane 

About its 

diameter 

Figure Moment of 

inertia 

 

 
 

 
1  

MR 
2
 

2 

k k2/R2 

R  1 

R 1 

2 2 

Ring About a 

tangential axis in 

its own plane 

3 
MR 

2
 

2 

3 3 

2 
R 2 

 
 

 
Ring 

 
 
 

Disc 
 
 
 
 
 

Disc 

 
 

 
About a 
tangential axis 
perpendicular to 
its own plane 

About an axis 

passing through 

C.G. and 

perpendicular to 

its plane 

 
About its 

Diameter 

 
 
 

2MR 2 

 

 
1  

MR 
2
 

2 

 

 

 
 

1  
MR 

2
 

4 

2 R  2 

R 1 

2 2 

 

 

 
R 1 

2 4 

 

 

 

Disc About a 

tangential axis in 

its own plane 

5 
MR 

2
 

4 

   5 
R 

5 

2 4 

Disc About a 

tangential axis 

perpendicular to 

3 
MR 

2
 

2 

 

 
 

3 3 

2 
R 2 
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 its own plane     

Annular disc inner 

radius = R1  and 

outer radius = R2 

Passing through 

the centre and 

perpendicular to 

the plane 

 

 

 
R2 

R1 

M 
[R 2 

2 
1 

R 2 ] 
2 

– – 

Annular disc Diameter   M 
[R 

2
  R 

2
 ] 

4 
1 2 

– – 

Annular disc Tangential and 

Parallel to the 

diameter 

 

 

M 
[5 R 

2
  R 

2
 ] 

4 
1 2 

– – 

Annular disc Tangential and 

perpendicular to 

the plane 

 

 

M 
[3 R 

2
  R 

2
 ] 

2 
1 2 

– – 

Solid cylinder About its own axis   

R 
1 

MR 
2
 

2 

R 

2 

1 

2  
 

L 

Solid cylinder Tangential 

(Generator) 

  3 
MR 

2
 

2 

3 
R

 

2 

3 

2 

Solid cylinder About an axis 
 

 

 L2 

M  
12 





R 2 

4  



L2 

 
R 2 

 

 passing through 

its C.G. and 
12 4 

 perpendicular to  

 its own axis  

Solid cylinder About the   
 L2 

M  
3 




R 2 

4  



L2 

 
R 2  

 diameter of one of 

faces of the 
3 4 

 cylinder  
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Cylindrical shell  

About its own axis 

 

 

MR2 R 1 

  

Cylindrical shell Tangential 

(Generator) 

 

 

2MR2 2 R 2 

Cylindrical shell About an axis 

passing through 

its C.G. and 

perpendicular to 

its own axis 

 

 

 L2 

M  
12 





R 2 

2  



L2   

  
R 2 

12 2 

 

Cylindrical shell About the 

diameter of one of 

faces of the 

cylinder 

  
 L2 

M  
3 




R 2 

2  



L2   

  
R 2 

3 2 

 

 

Hollow cylinder with 

inner radius = R1  and 

outer radius = R2 

Axis of cylinder  

 
 

R2 

 

 
 

R1 

 M 
(R 2  R 2 ) 

2 
1 2 

  

Hollow cylinder with 

inner radius = R1  and 

outer radius = R2 

Tangential 
 

 

M 
(R 

2
  3 R 

2
 ) 

2 
1 2 
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Solid Sphere About its 

diametric axis 

2 
MR 

2
 

5 

2 2 

5 
R 5 

 

 
 

 

 

Solid sphere 

 
 
 
 
 

About a tangential 

axis 

 
 
 

7 
MR 

2
 

5 

 

 

 

 
7 7 

5 
R 5 

 

 
 
 

Spherical shell 

 
 
 
 

About its 

diametric axis 

 
 

2 
MR 

2
 

3 

 

 

 
2 2 

3 
R 3 

 

 

 
 

 
Spherical shell 

 
 
 
 

 
About a tangential 

axis 

 
 

 
5 

MR 2 
3 

 

 

 

 
5 5 

3 
R 3 

Hollow sphere of 

inner radius R1  and 

outer radius R2 

About its 

diametric axis 

 
 
 

 
Hollow sphere Tangential 

 
 
 
 
 
 

Long thin rod 

 
 
 
 

 
Long thin rod 

 
 
 
 

 
Rectangular lamina 

of length l and 

About on axis 

passing through L  

its centre of mass 

and perpendicular 

to the rod. 

About an axis 

passing through 

its edge and 

perpendicular to 

the rod 
L 

 

Passing through 

the centre of mass 

 
 b  

2  R2
5 
 R1

5 

5 
M 
 R2

3 
 R1

3 



 2M[R 
5
  R 

5
 ] 

2 1 
 MR 2 

2 

5(R 3  R 3 ) 2 1 

ML2 

12 

L 

12 

ML2 

3 

L 

3 

M 
[l 2  b 2 ] 

12 
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M 
[l2  3b 2  t2] 

12 

breadth b and perpendicular 

to the plane 

 
 

 

Rectangular lamina 
 
 
 
 

 
Rectangular lamina 

Tangential 

perpendicular to 

the plane and at 

the mid-point of 

breadth 

Tangential 

perpendicular to 

the plane and at 

the mid-point of 

length 

 

Rectangular 

parallelopiped length 

l, breadth b, 

thickness t 

Passing through 

centre of mass 

and parallel to 

(i) Length (x) 

(ii) breadth (z) 

(iii) thickness (y) 

ii 
iii 

b 

i 

t 

l 

M[b 2  t 2 ] 
(i) 

12 

 
(ii) 

 
 

(iii) 
 

Rectangular 

parallelepiped 

length l, breath b, 

thickness t 

Tangential and 

parallel to 

(i) length (x) 

(ii) breadth (y) 

 
i 

ii 

 

iii 

 
(i) 

 
 

(ii) 

M 
[3l 2  b 2  t 2 ] 

12 
 

 

 

 
Elliptical disc of 

semimajor axis = a 

and semiminor axis = 

b 

(iii) thickness(z) 

 
 

Passing through 

CM and 

perpendicular to 

the plane 

 
(iii) 

 

 

M 
[a 

2
  b 

2
 ] 

4 

 

Solid cone of radius 

R and height h 

Axis joining the 

vertex and centre 

of the base 

3 
MR 

2
 

10 

 
 

 

 

Equilateral 

triangular lamina 

with side a 

Passing through 

CM and 

perpendicular to 

the plane 

 
 
 

  a a  

Ma 
2
 

6 

 

 a  

M 
[l2  b2  3t2] 

12 

M 
[4 l 

2
  b 

2
 ] 

12 

M 
[l 2  4 b 2 ] 

12 

M[l 2  t 2 ] 

12 

M[b 2  l 2 ] 

12 
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y 


 

Right angled 

triangular lamina of 

sides a, b, c 

Along the edges  
Mb 2 

(1) 
6 

 
Ma 2 

(2) 
6 

M     a 
2
 b 

2
 

(3)  
6     a 

2
   b 

2
 

  

Sample problem based on moment of inertia 

Problem 14.    Five particles of mass = 2 kg are attached to the rim of a circular disc of radius 0.1 m and negligible 
mass.   Moment of inertia of the system about the axis passing through  the centre of the disc and 
perpendicular to its plane is 

(a)  1 kg m2 (b)  0.1 kg m2 (c)  2 kg m2 (d)  0.2 kg m2 

Solution: (b)      We will not consider the moment of inertia of disc because it doesn't have any mass so moment of 

inertia of five particle system I  5 mr 
2
  5  2 (0.1)

2
  0.1 kg-m 

2
 . 

Problem 15. A circular disc X of radius R is made from an iron plate of thickness t, and another disc Y of radius 

4R is made from an iron plate of thickness 

and IY  is [AIEEE 2003] 

t 
. Then the relation between the moment of inertia IX 

4 

(a) IY = 64IX (b)  IY = 32IX (c)   IY = 16IX (d) IY = IX 

Solution: (a) Moment of Inertia of disc I = 
1 

MR 
2
  

1 
(R 

2
 t)R 

2
  

1 
t R 

4
 

2 2 2 

 
 

Iy 
 

t  Ry 



[As M  V   = R 2 t where t  thickness,  = density] 
 

 

[If  = constant] 
Ix t x  Rx 

 
Iy 
 

1 
(4)4  64 

  

 
[Given R  4 R , t  

tx ] 
 

Ix 4 
y x y 

4
 

 Iy  64 Ix 

Problem 16. Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an 
axis perpendicular to its plane and passing through a point on its rim will be [UPSEAT 2002] 

(a)  5 I (b)  6 I (c)  3 I (d) 4 I 

Solution: (b) Moment of inertia of disc about a diameter = 
1 

MR 
2
  I (given)  MR 2  4 I 

4 

Now moment of inertia of disc about an axis perpendicular to its plane and passing through a point 
on its rim 

=  
3 

MR 
2
   

3 
(4 I)  6 I . 

2 2 

Problem 17. Four thin rods of same mass M and same length l, form a square as shown in figure. Moment of 
inertia of this system about an axis through centre O and perpendicular to its plane is 

 

(a) 
 

(b) 

 

(c) 

 
(d) 

4 
Ml 

2
 

3 

Ml 2 
 

 

3 

Ml 2 
 

 

6 

2 
Ml 

2
 

3 

4 

A 
l 

B 

P 

l 
O 

l 

D C 

l 
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Y 

1 

2 3 

Y 

A C 

C 

A B

D

D B 

z 

3 

x 
2 1 

y 

 

Solution: (a) Moment of inertia of rod AB about point P 
1 

Ml 
2
 

12 

Ml 2  l 2 1 
M.I. of rod AB about point O   M      Ml 

2
 [by the theorem of parallel axis] 

12  2  3 

and the system consists of 4 rods of similar type so by the symmetry ISystem  
4 

Ml 
2
 . 

3 

Problem 18. Three rings each of mass M and radius R are arranged as shown in the figure. The  moment of 

inertia of the system about YY will be 

(a)  3 MR2 

(b) 
3 

MR 
2
 

2 

(c)  5 MR2 

(d) 
7 

MR 
2
 

2 

Solution: (d) M.I of system about YY ' I  I1  I2  I3 

where I1  = moment of inertia of ring about diameter, I2  = I3  = M.I. of inertia of ring about a tangent 
in a plane 

 I  
1 

mR 
2
  

3 
mR 

2
  

3 
mR 

2
  

7 
mR 

2
 

2 2 2 2 

Problem 19.  Let  l  be the moment of inertia of an uniform square plate about an axis  AB  that passes through   
its centre and is parallel to two of its sides. CD is a line in the plane of the plate that  passes  

through the centre of the plate and makes an angle  with AB . The moment of inertia of the plate 
about the axis CD is then equal to 

(a) l (b) l sin2  (c) l cos 2  (d) 

[IIT-JEE 1998] 

l cos 
2
 



2 

Solution: (a) Let IZ is the moment of inertia of square plate about the axis which is passing through the centre 

and perpendicular to the plane. 

IZ  IAB  IA'B'  ICD  IC'D' [By the theorem of perpendicular axis] 

IZ  2IAB  2IA'B'  2ICD  2IC'D ' 

[As AB, A' B' and CD, C' D' are symmetric axis] 

Hence ICD  IAB  l 

Problem 20.   Three rods each of length L and mass M are placed along X, Y and Z-axes in such a way that one 

end of each of the rod is at the origin. The moment of inertia of this system about Z axis is 

 
(a) 

2ML2 

3 

 
(b) 

4 ML2 

3 

 
(c) 

5 ML2 

3 

 
(d) 

ML2 
 

 

3 

Solution: (a) Moment of inertia of the system about z-axis can be find out by calculating the moment of inertia 

of individual rod about z-axis 

ML2 
I1    I2    

3 
because z-axis is the edge of rod 1 and 2 

and I3  0 because rod in lying on z-axis 

 
 Isystem  I1  I2  I3 

ML2 

3 
 

ML2 

3 

 
 0 

2ML2 
. 

3 
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B1 B2 

B 

B 

2 

B B B 

B 

 

Problem 21.    Three point masses each of mass  m are placed at the corners of an equilateral triangle of side  a. 

Then the moment of inertia of this system about an axis passing along one side of the triangle is[AIIMS 1995 

 
(a) 

 
ma2 

 
(b) 

 
3ma2 

 
(c) 

3 
ma 

2
 

4 

 
(d) 

2 
ma 

2
 

3 

Solution: (c) The moment of inertia of system about AB side of triangle 

I  IA   IB   IC 

 0  0  mx 2 

 a   3  
2 

3 
 m  ma 

2
 

 

 

 
 

Problem 22.    Two identical rods each of mass M. and length l are joined in crossed position as shown in figure. 

The moment of inertia of this system about a bisector would be 

 
(a) 

 

(c) 

Ml 2 
 

 

6 

Ml 2 
 

 

3 

 
(b) 

 

(d) 

Ml 2 
 

 

12 

Ml 2 
 

 

4 

Solution: (b) Moment of inertia of system about an axes which is perpendicular to plane of rods and passing 

through the common centre of rods Iz  
Ml 2 

12 

 Ml 2
12  

Ml 2 

6 

 

 
Ml 2 

Again from perpendicular axes theorem Iz  I  I 
1 2 

 2I 
1 

 2I 
2 6 

[As I 
1 

 I ] 
2 

 I  I 
1 2 

Ml 2 
. 

12 

Problem 23.   The moment of inertia of a rod  of length  l  about an axis passing through its centre of mass and 

perpendicular to rod is I. The moment of inertia of hexagonal shape formed by six such rods, about 

an axis passing through its centre of mass and perpendicular to its plane will be 

(a)  16I (b)  40 I (c)  60 I (d)  80 I 

 
Solution: (c) Moment of inertia of rod AB about its centre and perpendicular to the length = 

 
ml 2  12I 

ml 2 

12 

 

= I 

Now moment of inertia of the rod about the axis which is passing through O and perpendicular to 
 

the plane of hexagon Irod= 
ml2 

12 
 mx 2

 

[From the theorem of parallel axes] 

ml 2  3  
2 5ml 2 

  m l  

12   2  6 

5ml2 2 
 

Now the moment of inertia of system  Isystem =  6  Irod  6  
6 

 5ml 

Isystem  = 5 (12 I) = 60 I [As  ml 2   12I ] 

Problem 24.   The  moment  of  inertia  of  HCl  molecule  about  an  axis  passing  through  its  centre  of  mass  and 

perpendicular to the line joining the  H   and  Cl  ions will be, if the interatomic distance is 1 Å 

(a) 0.61 10 47 kg. m 2 (b) 1.61 1047 kg. m 2 (c) 0.061 1047 kg. m 2 (d) 0 

Solution: (b) If r1 and r2 are the respective distances of particles m1 and m2 from the centre of mass then 

m1r1  m2 r2  1  x  35.5 (L  x)  x  35.5 (1  x) 

 

 

H 

m1  x 

L – x 

Cl 
C.M. 

m2 

A  l B 

l 
x 

l 

O 

C 
m 

  a    a  
x 

m m 
A a 

B 

B B 

4 


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r 

 
R 

O 

 x  0.973 Å and L  x  0.027 Å 

Moment of inertia of the system about centre of mass I  m1 x 2  m2 (L  x)2 

I  1amu (0.973 Å)
2
  35.5 amu (0.027 Å)

2
 

Substituting 1 a.m.u. = 1.67  10–27  kg and 1 Å = 10–10  m 

I   1.62 10 47 kg m 2 

Problem 25.   Four masses are joined to a light circular frame as shown in the figure. The radius of gyration of 

this system about an axis passing through the centre of the circular frame and perpendicular to its 

plane would be 

(a) a / (b) 
A 

a / 2 3 

(c) a (d) 2a 
2m O   

a 
2m 

m 

Solution: (c) Since the circular frame is massless so we will consider moment of inertia of four masses onAly. 

I  ma2  2ma2  3ma2  2ma2  8ma2 .....(i) 

Now from the definition of radius of gyration I  8mk 2 .....(ii) 

comparing (i) and (ii) radius of gyration k  a . 

Problem 26.   Four spheres, each of mass  M  and radius  r are situated at the four corners of square of side  R . 

The moment of inertia of the system about an axis perpendicular to the plane of square and passing 

through its centre will be 

(a) 
5 

M (4 r 
2
 

2 
 5 R 

2
 ) (b) 

2 
M (4 r 

2
 

5 
 5 R 

2
 ) 

(c) 
2 

M (4r 
2
  5r 

2
 ) 

5 
(d) 

5 
M (4r 

2
  5r 

2
 ) 

2 

Solution: (b) M. I. of sphere A about its diameter I  
2 

Mr 
2
 

O ' 
5

 

Now M.I. of sphere A about an axis perpendicular to the plane of square and 

passing through its centre will be 

  R  
2 

2 MR 2 
IO    IO'   M     Mr 2  [by the theorem of parallel axis] 

   2  5 2 

   
 2 2 

 
MR 

2
 




 
2   2 

 
2
 

Moment of inertia of system (i.e. four sphere)= 4 IO 4  
5 

Mr 


2   
M 4r 5 R 

5 

Problem 27.   The moment of inertia of a solid sphere of density    and radius R about its diameter is 
 

 
(a) 

105 
R5 



176 

 

(b) 
105 

R2 


176 

 

(c) 
176 

R 
5 


105 

 

(d) 
176 

R 
2 


105 

Solution: (c) Moment of inertia of sphere about it diameter I  
2 

MR 
2
  

2  4 
R 3  


R 2 

 
   

 [As 

 
M  V = 

4 
R 

3
  ] 

3 

I = 
8 

R 
5
   

8  22 
R 

5
   

176 
R 

5
 

 

 
5 5  3 

15 15  7 105 

Problem 28.   Two circular discs  A  and  B  are of equal masses and thickness but made of metals with densities 

d A   and  dB   (dA   dB ) .  If  their  moments  of  inertia  about  an  axis  passing  through  centres and 

normal to the circular faces be IA and IB , then 

2 

O
A B 

R / 

O 

D C 


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A B A B 

Rotation Rotation 

P F 

r 
O r F 

O 

(A) (B) 

(a) IA  IB (b) IA  IB (c) IA  IB (d) IA  IB 

Solution : (c) Moment of inertia of circular disc about an axis passing through centre and normal to the circular 

face 

1 2 1 
 

  

 M 




2 2 M 
 

I  MR 2  M  2  t [As M  V   R 
t  R  

 t  
]  

M 2 1 
 I  or 

2 t
I  


 If mass and thickness are constant. 

So, in the problem IA  
dB I  I [As d  d ] 

IB d A 

 7.14 Torque  
 

If a pivoted, hinged or suspended body tends to rotate under the action of a force, it is said to be acted 

upon by a torque. or The turning effect of a force about the axis of rotation is called moment of force or 

torque due to the force. 

If the particle rotating in xy plane about the origin under the effect of 

 force and at any instant the position vector of the particle is then, 
F r 

     Torque = 
 r F 

  r F sin

 

[where  is the angle between the direction of r and F ] 

(1) Torque is an axial vector. i.e., its direction is always perpendicular to the plane containing vector 
 

r and F in accordance with right hand screw rule. For a given figure the sense of rotation is anti- 
clockwise so the direction of torque is perpendicular to the plane, outward through the axis of rotation. 

(2) Rectangular components of force 


Fr  F cos   radial 

As   r F sin 

component of force , 


F  F sin   transverse component of force 

or   r F = (position vector)  (transverse component of force) 

Thus the magnitude of torque is given by the product of transverse component of force and its 
perpendicular distance from the axis of rotation i.e., Torque is due to transverse component of force 
only. 

(3) As 

or 

  r F sin 

  F(r sin )  Fd 

 
[As d  r sin 



from the figure ] 

i.e. Torque = Force  Perpendicular distance of line of action of force from the axis of rotation. 

Y 
F sin 

F 



P 


F cos 

r 




90o 
X 

d 
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Torque is also called as moment of force and d is called moment or lever arm. 
     

(4) Maximum and minimum torque : As   r  F or   r F sin 


maximum  rF When sin   max  1 i.e.,   90  

F is perpendicular to r 

minimum  0 When sin   min  0 i.e.   0 or 180  

F   is collinear to r 



(5) For a given force and angle, magnitude of torque depends on r. The more is the value of r, the 
more will be the torque and easier to rotate the body. 

Example : (i) Handles are provided near the free edge of the Planck of the door. 

(ii) The handle of screw driver is taken thick. 

(iii) In villages handle of flourmill is placed near the circumference. 

(iv) The handle of hand-pump is kept long. 

(v) The arm of wrench used for opening the tap, is kept long. 

(6) Unit : Newton-metre (M.K.S.) and Dyne-cm (C.G.S.) 

(7) Dimension : [ML
2
T 

2
] . 

(8) If a body is acted upon by more than one force, the total torque is the vector sum of each torque. 
   

   1   2   3  ........ 


(9) A body is said to be in rotational equilibrium if resultant torque acting on it is zero i.e.  

(10) In case of beam balance or see-saw the system will be in 
rotational equilibrium if, 

 0 . 

 

 1   2  0 or F1 l1  F2 l2  0  F1 l1  F2 l2 

 

However if, 
 

 1   2 , L.H.S. will move downwards and if 
  . R.H.S. will move downward. and the system will not be in 
 1  2 

rotational equilibrium. 

(11) On tilting, a body will restore its initial position due to torque of weight about the point O till 
the line of action of weight passes through its base on tilting, a body will topple due to torque of weight 
about O, if the line of action of weight does not pass through the base. 

 
 
 
 
 
 
 

 
(12) Torque is the cause of rotatory motion and in rotational motion it plays same role as force 

plays in translatory motion i.e., torque is rotational analogue of force. This all is evident from the 

following correspondences between rotatory and translatory motion. 
 

Rotatory Motion Translatory Motion 
 

  I 
  

 F  m a  

    

W     d
    

W   F ds 

 

G 
Tilt 

G 

R R 

Tilt 

Torque 

O 
O 

W W 

R 

l1 l2 

F1 F2 

T
o

rq
u

e
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  

 P   
  

 P  F v  


 dL 
 

dt 


 dP 
F 

dt 
 

7.15 Couple  
 

A special combination of forces even when the entire body is free to move can rotate it. This 

combination of forces is called a couple. 

(1) A couple is defined as combination of two equal but oppositely directed force not acting along 
  

the same line. The effect of couple is known by its moment of couple or torque by a couple τ  r  F . 
 

 
 

(2) Generally both couple and torque carry equal meaning. The basic difference between torque and 

couple is the fact that in case of couple both the forces are externally applied while in case of torque one 

force is externally applied and the other is reactionary. 

(3) Work done by torque in twisting the wire W  
1 

C 2 . 
2 

Where   C ; C is known as twisting coefficient or couple per unit twist. 

7.16 Translatory and Rotatory Equilibrium  
 

Forces are equal and act 

along the same line. 

 

F 

 

F 

 F  0 and    0  Body will remain stationary if 

initially it was at rest. 

Forces are equal and does 

not act along the  same 

line. 

 
 
 

F 

F  F  0 and    0 Rotation i.e. spinning. 

Forces are unequal and act 

along the same line. 

 
 

F2 

 
 

F1 

 F  0 and    0  Translation 

skidding. 

i.e. slipping or 

Forces are 

does not 

same line. 

unequal 

act along 

and 

the 

 
 

 
F2 

F1  F  0 and    0 Rotation and translation both i.e. 

rolling. 

Sample problems based on torque and couple 

Problem 29.   A  force  of 

torque is 

(2î  4 ĵ  2k̂) N  acts  at  a  point (3î  2 ĵ  4k̂) 
 

metre from the origin. The magnitude of 

(a)  Zero (b)  24.4 N-m (c)  0.244 N-m (d)  2.444 N-m 
 

Solution: (b) F  (2 î  4 ̂j  2k̂ ) N and  r  (3i  2  4 k̂)  meter 

F 

r 

 
 

F 
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(12)2  (14)2  (16)2 

  R   
P   Q 

5 N 3 N 

 

î 
 

   

Torque   r  F  3 

2 

24.4 N-m 

ĵ k̂ 

2     4 

 4 2 

 
   12 î  14 ̂j  16 k̂ 

 
 

and |  |  = 

Problem 30. The resultant of the system in the figure is a force of 8N parallel to the given force through R . The 

value of PR equals to 

(a) 1  4 RQ 

(b) 3  8 RQ 

(c) 3  5 RQ 

(d) 2  5 RQ 
 

Solution: (c) By taking moment of forces about point R, 5  PR  3  RQ  0  PR  
3 

RQ . 
5 

Problem 31.  A horizontal heavy uniform bar of weight  W is supported at its ends by two men. At the instant,  

one of the men lets go off his end of the rod, the other feels the force on his hand changed to 

 
(a)  W (b) 

W 
(c) 

2 

3W 
(d)  

W
 

4 4 

Solution: (d) Let the mass of the rod is M  Weight (W) = Mg 

Initially for the equilibrium F  F  Mg  F  Mg / 2 

When one man withdraws, the torque on the rod 

  I  Mg 
l
 
2 

Ml 2 l 
 Mg 

 
[As I = Ml 2/ 3] 

3 2 

 Angular acceleration     
3 g

 

2  l 

 
and linear acceleration a  l 

  
3 g 

2 4 

Now if the new normal force at A is F' then Mg  F'  Ma 

 F'  Mg  Ma  Mg  
3 Mg

 
4 

 
Mg 

4 
 

W 
. 

4 
 

7.17 Angular Momentum  
 

The turning momentum of particle about the axis of rotation is called the angular momentum of the 

particle. 

or 

The moment of linear momentum of a body with respect to any axis of rotation is known as angular 


momentum. If P is the linear momentum of particle and 

the point of rotation then angular momentum. 



r its position vector from 

 
     

L  r  P 



L  r P sin  n̂ 

L 

r P 

F F 

A B 

Mg 

F 


A B 

 
B 

Mg 
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

Angular momentum is an axial vector i.e. always directed perpendicular to the plane of rotation and 

along the axis of rotation. 

(1) S.I. Unit : kg-m2-s–1 or J-sec. 

(2) Dimension : [ML
2
 T 

-1
 ] and it is similar to Planck’s constant (h) . 


 ˆ ˆ ˆ 

 
ˆ ˆ ˆ 

(3) In cartesian co-ordinates if r  xi  yj  zk and P  Px i  Py j  Pz k 
 

 
 

  
î ĵ k̂  

ˆ ˆ ˆ 
Then  L  r  P  x 

Px 

y z 

Py Pz 

= (yPz  zPy )i (xPz  zPx ) j  (xPy  yPx )k 

 



(4) As it is clear from the figure radial component of momentum Pr  P cos 



Transverse component of momentum  P   P sin 

So magnitude of angular momentum  L  r P sin 

L  r P





 Angular momentum = Position vector × Transverse component of angular momentum 

i.e., The radial component of linear momentum has no role to play in angular momentum. 

(5) Magnitude of angular momentum L  P (r sin )  L  Pd [As d  r sin  from the figure.] 
 

 Angular momentum = (Linear momentum)  (Perpendicular distance of line of action of force from the axis 

of rotation) 

  

(6) Maximum and minimum angular momentum : We know L  r  P 
 

       

 L  m [ r  v ] m v r sin   P r sin  [As P  m v ] 

 
Lmaximum  mvr When sin   max  1 i.e.,   90  

v is perpendicular to r 

Lminimum  0 When sin   min  0 i.e.   0 or 180 

v is parallel or anti-parallel to 


r 

 

(7) A particle in translatory motion always have an angular momentum unless it is a point on the 

line of motion because L  mvr sin  and L  1 if   0 
o
 or 180 

o
 

 
         

(8) In case of circular motion, L  r  P  m(r  v ) = mvr sin 


 

 L  mvr  mr 2 [As r  v and v  r ] 

or L  I
 

[As  mr2  = I] 

In vector form L  I 

Y 
P sin 

P 

 P cos 

P 

r 

X 

  d  
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1 




  

(9) From   I 
d L 

 I 
d  

= I 
 

 





 

[As d  




 and  I ] 
L   

dt dt 
  

dt 

i.e. the rate of change of angular momentum is equal to the net torque acting on the particle. 

[Rotational analogue of Newton's second law] 

(10) If a large torque acts on a particle for a small time then 'angular impulse' of torque is given by 
   t2 

J     dt  av    t    
dt 

 
  

or Angular impulse J   av t   L 
 

 Angular impulse = Change in angular momentum 

(11) The angular momentum of a system of particles is equal to the vector sum of angular 
    

momentum of each particle i.e.,  L  L1  L2   L3  Ln . 

(12) According to Bohr theory angular momentum of an electron in nth orbit of atom can be taken 

as, 
 
 
 

orbit] 

 
L  n 

h
 

2




[where n is an integer used for number of 

 7.18 Law of Conservation of Angular Momentum  



Newton’s second law for rotational motion 
 

 
d L

 

dt 

 

So if the net external torque on a particle (or system) is zero then 

 

 


d L 
 0

 

dt 
 

   

i.e. L  L1  L2  L3 = constant. 

Angular momentum of a system (may be particle or body) remains constant if resultant torque acting 

on it zero. 



As L  I so if   0 then I  constant  I  
1
 


Since angular momentum I

vice-versa. 

remains constant so when I decreases, angular velocity  increases and 

Examples of law of conservation of angular momentum : 

(1) The angular velocity of revolution of a planet around the sun in an elliptical orbit increases when 

the planet come closer to the sun and vice-versa because when planet comes closer to the sun, it's 

moment of inertia I decreases there fore  increases. 

(2) A circus acrobat performs feats involving spin by bringing his arms and legs closer to his body 

or vice-versa. On bringing the arms and legs closer to body, his moment of inertia I decreases. Hence  

increases. 
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es. 

M 

J = Mv 

M 

L 

(3) A person-carrying heavy weight in his hands and standing on a rotating platform can change the 

speed of platform. When the person suddenly folds his arms. Its moment of inertia decreases and in 

accordance the angular speed increas 

 
 
 
 
 
 

 
(4) A diver performs somersaults by Jumping from a high diving board keeping his legs and arms 

out stretched first and then curling his body. 

(5) Effect of change in radius of earth on its time period 

Angular momentum of the earth L  I  constant 

L  
2 

MR 
2
  

2


 constant 

5 T 

 T  R 
2
 

 

[if M remains constant] 

If R becomes half then time period will become one-fourth i.e. 
24

 
4 

 

 6hrs. 

 

 

Sample problems based on angular momentum 

Problem 32.   Consider a body, shown in figure, consisting of two identical balls, each of mass M connected by a 

light rigid rod.  If an impulse J = Mv is imparted to the body at one of its ends, what would be its 

angular velocity [IIT-JEE (Screening) 2003] 

(a) v/L (b) 2v/L 

(c)  v/3L (d) v/4L 

Solution: (a) Initial angular momentum of the system about point O 

= Linear momentum × Perpendicular distance of linear momentum from the axis of rotation 
 Mv  L 

(i)
 

 
  

 2 

Final angular momentum of the system about point O 
  L  2  L  2 

 I1  I2  (I1  I2)  M  
2 
  M  2 (ii) 

      

Applying the law of conservation of angular momentum 

 L   L  2
 

v 
 Mv    2M      

 2   2  L 

Problem 33. A thin circular ring of mass M and radius R is rotating about its axis with a constant angular  

velocity . Four objects each of mass m, are kept gently to the opposite ends of two perpendicular 
diameters of the ring. The angular velocity of the ring will be 

 
(a) 

M 
(b) 

M  4 m 

(M  4 m) 

M 

 

(c) 
(M   4 m) 

(d)  
M

M   4 m 4 m 

Solution: (a) Initial angular momentum of ring  I  MR 2

L/2 L/2 

M 2 M    1 
O 
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 

If four object each of mass m, and kept gently to the opposite ends of two perpendicular diameters 

of the ring then final angular momentum = (MR 2  4mR2)' 

By the conservation of angular momentum 

Initial angular momentum = Final angular momentum 

MR 2  (MR 2  4mR 2)'   '  
 M 

 . 
 

 M   4m 

Problem 34. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its 

center. A tortoise is sitting at the edge of the platform. Now, the platform is given an angular 

velocity 0. When the tortoise moves along a chord of the platform with a constant velocity (with 

respect to the platform), the angular velocity of the platform  (t) will vary with time t as 

(t) 
 

(t) (t) 
 

(t) 

(a) O
 (b) (c) O 

O 

 

 
t t 

(d) 
O 

 

 
t t 

Solution: (b) The angular momentum (L) of the system is conserved i.e. L = I = constant 

When the tortoise walks along a chord, it first moves closer to the centre and then away from the 

centre. Hence, M.I. first decreases and then increases. As a result,  will first increase and then 

decrease. Also the change in  will be non-linear function of time. 

Problem 35. The position of a particle is given by : r 

momentum is perpendicular to 

 (̂i  2 ĵ  k̂)  and momentum  P  (3 î  4 ĵ  2k̂ ) . The angular 

(a) X-axis (b) Y-axis 

(c) Z-axis (d) Line at equal angles to all the three axes 
 

 
 Solution: (a) 

ˆi 
    1 

ĵ k̂ 

2  1 

 
 0̂ i  ĵ  2k̂    ĵ  2k̂ 

 
and the X- axis is given by  i  0 ĵ  0k̂ 

L r  p 

3 4  2 

 

Dot product of these two vectors is zero i.e. angular momentum is perpendicular to X-axis. 
 

Problem 36.   Two discs of moment of inertia I1  and I2  and angular speeds  1 and  2  are rotating along collinear 

axes passing through their centre of mass and perpendicular to their plane. If the two are made to 

rotate together along the same axis the rotational KE of system will be 

 
(a) 

I11   I2 2 

2(I1   I2 ) 

 
(b) 

(I1  I2 )(1   2 )
2 

2 

 
(c) 

(I11  I2 2 )
2 

2(I1  I2 ) 

 
(d) None of these 

 
Solution: (c) By the law of conservation of angular momentum 

 

Angular velocity of system   
I11  I22

 

I1  I2 

I11  I22  I1  I2 



1 1  I   I  
2
 (I   I  )2 

Rotational kinetic energy  I1   I2  2   I1   I2  
1
  

1
 

2
 
2
 

     1   1 2 2 . 

2 2  I1   I2  2(I1  I2 ) 
 

Problem 37. A smooth uniform rod of length L and mass M has two identical beads of negligible size, each of 

mass m , which can slide freely along the rod. Initially the two beads are at the centre of the rod 
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 
2 

 L 
   ......(ii) 

M 

v 

3 

ML 

 



 

 

 

and the system is rotating with angular velocity  0 about an axis perpendicular to the rod and 

passing through the mid point of the rod (see figure). There are no external forces. When the beads 

reach the ends of the rod, the angular velocity of the system is 

 
(a) 

 
 0 (b) 

M0 
 

 

M  12m 

 
(c) 

M0 

M  2m 

 
(d) 

M0 
 

 

M  6m 

Solution: (d) Since there are no external forces therefore the angular momentum of the system remains 

constant. 

 
Initially when the beads are at the centre of the rod angular momentum  2 

L1    0 
 

.....(i) 
 

 
When beads reach the ends of the rod then angular 

   12  

  L  2  L  2 ML2 
momentum  m      m   

 

' ..(ii) 
 

  2   2  12 

 
ML

2
  mL

2
 

 
 




ML

2
 






M o 
 

Equating (i) and (ii) 0   '  '  . 
12  2 12  M  6m 

 

Problem 38. Moment of inertia of uniform rod of mass M and length L about an axis through its centre and 

ML2 
perpendicular to its length is given by . Now consider one such rod pivoted at its centre, free 

12 

to rotate in a vertical plane. The rod is at rest in the vertical position. A bullet of mass M moving 

horizontally at a speed v strikes and embedded in one end of the rod. The angular velocity of the 

rod just after the collision will be 

(a) v L (b) 2v L (c) 3v 2L (d) 6v L 
 

Solution: (c)Initial angular momentum of the system = Angular momentum of bullet before collision  Mv 
 L 

 


.....(i) 

let the rod rotates with angular velocity  . 
 

 ML2 

 2 

Final angular momentum of the system    M 
 12   2 



L  ML
2
 ML

2
 

By equation (i) and (ii) Mv    or   3v / 2L 
2   12 4   

Problem 39.   A solid cylinder of mass 2 kg and radius  0.2 m 
 

is rotating about its own axis without friction with 

angular velocity 3 rad / s . A particle of mass 0.5 kg and moving with a velocity 5 m/s strikes the 

cylinder and sticks to it as shown in figure. The angular momentum of the cylinder before collision 

will be 

(a)  0.12 J-s (b) 12 J-s 

(c)  1.2 J-s (d) 1.12 J-s 
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 = 0 

 

v 

Solution: (a) Angular momentum of the cylinder before collision  L  I  
1  

MR 2    
1 

(2)(0.2)
2
  3  = 0.12 J-s. 

2 2 

Problem 40.   In the above problem the angular velocity of the system after the particle sticks to it will be 

(a)  0.3 rad/s (b)  5.3 rad/s (c)  10.3 rad/s (d)  89.3 rad/s 

Solution: (c) Initial angular momentum of bullet + initial angular momentum of cylinder 

= Final angular momentum of (bullet + cylinder) system 

 mvr  I1  (I1  I2 )' 

 mvr  I  = 
 1 

Mr 2  mr 2 

' 

1  

 2 

 0.5  5  0.2  0.12  
 1 

2(0.2)2  (0.5)(0.2)2 

'  

 2 

  '  10.3 rad/sec. 

7.19 Work, Energy and Power for Rotating Body  

(1) Work : If the body is initially at rest and angular displacement is d 

the body. 

 

 
due to torque then work done on 

W    d [Analogue to work in translatory motion W   F dx ] 

(2) Kinetic energy : The energy, which a body has by virtue of its rotational motion is called 

rotational kinetic energy. A body rotating about a fixed axis possesses kinetic energy because its 

constituent particles are in motion, even though the body as a whole remains in place. 
 

Rotational kinetic energy Analogue to translatory kinetic energy 

K   
1 

I 2 
R 

2
 

K   
1 

mv 
2
 

T 
2

 

K   
1 

L
R 

2
 

K   
1 

Pv 
T 

2
 

L2 

KR  
2I

 
P 2 

KT    
2m

 

(3) Power : Rate of change of kinetic energy is defined as power 

P  
d 

(K )  
d
 

 
 

 1 
I 2 

 
 I 

d 
 I  I  


 

dt 
R
 dt   2 

 dt 
    

In vector form Power     [Analogue to power in translatory motion P  F v ] 
 

7.20 Slipping, Spinning and Rolling  

(1) Slipping : When the body slides on a surface without rotation then its motion is called slipping 

motion. 

In this condition friction between the body and surface F  0 . 

 
Body possess only translatory kinetic energy KT  

1 
mv 

2
 . 

2 

Example : Motion of a ball on a frictionless surface. 
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2 K 

 

(2) Spinning : When the body rotates in such a manner that its axis of rotation does not move 

then its motion is called spinning motion. 

In this condition axis of rotation of a body is fixed. 

Example : Motion of blades of a fan. 

In spinning, body possess only rotatory kinetic energy KR  
1 

I 2 . 
2 

 
or KR  

1 
mK 

2
 
v
 2 R 

2
  

1 
mv 2 

 2 
 

R 2 

 

 K 2 
i.e., Rotatory kinetic energy =   times translatory kinetic energy.  R 2 

 

K 2 K 2 





 


K 

2
 
 

1 
 

  

 
K 

2
  
 

1 
 

Here 
R 2 

sphere) 

is a constant for different bodies. Value of 
R 2 

1 (ring), 
R 2 

(disc) and 
2 R 

2
 

(solid 
2 

(3) Rolling : If in case of rotational motion of a body about a fixed axis, the axis of rotation also 

moves, the motion is called combined translatory and rotatory. 

Example : (i) Motion of a wheel of cycle on a road. 

(ii) Motion of football rolling on a surface. 

In this condition friction between the body and surface F  0 . 

Body possesses both translational and rotational kinetic energy. 

Net kinetic energy = (Translatory + Rotatory) kinetic energy. 

1 2 1 
 

  

2 
2 
 

1 2 1 2 K 
 

KN  KT  KR  mv  I
2 2 

mv  mv 
2 2 R 

2
 

1 2 




K 2 


 KN  mv 2 1  
R 2 

 




 7.21 Rolling Without Slipping  

In case of combined translatory and rotatory motion if the object rolls across a surface in such a 
way that there is no relative motion of object and surface at the point of contact, the motion is called 
rolling without slipping. 

Friction is responsible for this type of motion but work done or dissipation of energy against 
friction is zero as there is no relative motion between body and surface at the point of contact. 

Rolling motion of a body may be treated as a pure rotation about an axis through point of contact 
with same angular velocity . 

By the law of conservation of energy 

K  
1 

mv 
2
  

1 
I 2 

  

[ As v  R ] 
N
 2 2 

 
1 

mR 
2 2  

1 
I 2 

2 2 

= 
1 
 2 [mR 

2
  I] 

2 






v 





v 

O 

 

 
P 

2 
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+ = 

B B B 
v v 2v 

v 
v 

v = 0 D 

C D C D C 

2 v 

A 

Translation 

v v v 
A 

Rotation 

v = 0 

Rolling 

= 
1 
 2 [I  mR 

2
 ]  

1 
I  2 [As I 

  

 
 I  mR 

2
 ] 

2 2  
P
 

P
 

By theorem of parallel axis, where I = moment of inertia of rolling body about its centre ‘O’ and IP = 
moment of inertia of rolling body about point of contact ‘P’. 

 

(1) Linear velocity of different points in rolling : In case of rolling, all points of a rigid body 
have same angular speed but different linear speed. 

Let A, B, C and D are four points then their velocities are shown in the following figure. 

 
 
 
 

(2) Energy distribution table for different rolling bodies : 
 

Body K 2 

R 2 

Translatory 
(KT) 

1  
mv 

2
 

2 

Rotatory 
(KR) 

1 2  K 
2
 

2 
mv 

R 2
 

Total (KN) 

1 2 
 K 2 

mv 1  
2  

R 2 
 

K T 
(%) 

K N 

K R 
(%) 

K N 

Ring 

Cylindrical shell 

 

1 
1 

mv 
2
 

2 

1 
mv 

2
 

2 
mv 2 

1 
(50%) 

2 

1 
(50%) 

2 

Disc 

solid cylinder 

1 

2 

1 
mv 

2
 

2 

1 
mv 

2
 

4 

3 
mv 

2
 

4 

2 
(66.6%) 

3 

1 
(33.3%) 

3 

 

Solid sphere 
2 

5 

1 
mv 

2
 

2 

1 
mv 

2
 

5 

7 
mv 

2
 

10 

5  
(71.5%) 

7 

2 
(28.5%) 

7 

 

Hollow sphere 
2 

3 

1 
mv 

2
 

2 

1 
mv 

2
 

3 

5 
mv 

2
 

6 

3 
(60%) 

5 

2 
(40%) 

5 

 
Sample problems based on kinetic energy, work and power 

Problem 41.    A ring of radius 0.5 m and mass 10 kg is rotating about its diameter with an angular velocity of 20 
rad/s. Its kinetic energy is 
(a)  10 J (b)  100 J (c)  500 J (d)  250 J 

Solution: (d) Rotational kinetic energy 
1 

I 
2
  

1  1 
MR 2 

 
 

2
  

1  1 
 10  (0.5)2 

 20 2 
 250 J 

 
      

2 2  2 
 

2  2 

Problem 42.   An automobile engine develops 100 kW when rotating at a speed of 1800 rev/min.   What torque 
does it deliver [CBSE PMT 2000] 

(a)  350 N-m (b)  440 N-m (c)  531 N-m (d)  628 N-m 
 

Solution: (c) P      
100  103 

 531 N- m 

2 
1800 

60 

Problem 43.   A body of moment of inertia of 3 kg-m2  rotating with an angular velocity of 2 rad/sec has the same 
kinetic energy as a mass of 12 kg moving with a velocity of 
(a)  8 m/s (b)  0.5 m/s (c)  2 m/s (d)  1 m/s 
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3 3 2 

4 

3 

17 14 



 

ˆ ˆ̂ ˆ ˆ̂ 

R 
2 

r 

Solution: (d) Rotational kinetic energy of the body = 
1 

I 2 and translatory kinetic energy  
1 

mv 
2
 

2 2 

According to problem    
1 

I 2    
1 

mv 
2
     

1 
 3  (2)

2
   

1 
 12  v 

2
  v  1 m/s . 

2 2 2 2 

Problem 44. A disc and a ring of same mass are rolling and if their kinetic energies are equal, then the ratio of 
their velocities will be 

(a) : 
1 2  k 2 


 

(b) : 
3 2 

 
 

(c) : 
 k 2 1 


 

(d) : 

Solution: (a) Kdisc  mvd  
1  

2  
 

4 
mvd 

 As 
 R 

2  2 
for disc 



1  k 2   2  k 2 
 Kring  mvr  

1 
2 

2 
  mvr 

R 

 As  1 

 R 
2
 

for ring


According to problem K  K   
3 

mv 
2
   mv 

2
    

vd   . 
  

disc ring 
4 

d 
v
 

Problem 45. A wheel is rotating with an angular speed of 20 rad / sec . It is stopped to rest by applying a 

constant torque in  4 s . If the moment of inertia of the wheel about its axis is 0.20 kg-m2, then the 
work done by the torque in two seconds will be 
(a)  10 J (b)  20 J (c)  30 J (d)  40 J 

Solution: (c) 1  20 rad/sec,  2  0, t  4 sec. So angular retardation   
1   2

 

t 
 

20 
 5rad / sec 

2
 

4 

Now angular speed after 2 sec 2  1 t  20  5  2 = 10 rad/sec 

Work done by torque in 2 sec = loss in kinetic energy = 
1 

I  2   2    
1 

(0.20)((20)
2
  (10)

2
) 

2 
1 2 

2
 

 
1 
 0.2  300 = 30 J. 

2 

Problem 46.   If  the  angular  momentum  of  a  rotating  body  is  increased  by  200%,  then  its  kinetic  energy  of 
rotation will be increased by 
(a)  400% (b)  800% (c)  200% (d)  100% 

L2 E  L 
2

  3 L  
2
 

Solution: (b) As E  


    2   2   



1
  [As L  L   200 %.L  = 3L1] 

2I E1  L1   L1 
2 1 1 

 E2  9E1  E1  800% of E1 

Problem 47. A ring, a solid sphere and a thin disc of different masses rotate with the same kinetic energy. Equal 
torques are applied to stop them. Which will make the least number of rotations before coming to 
rest 
(a) Disc (b) Ring 
(c)  Solid sphere (d) All will make same number of rotations 

Solution: (d) As W   = Energy    
Energy 

 2n


So, if energy and torque are same then all the bodies will make same number of rotation. 

Problem 48. The angular velocity of a body is 

rotational power will be 



  2i  3 j  4k and a torque 


  i  2 j  3k acts on it. The 

(a)  20 W (b)  15 W (c) W (d) W 
 

  

Solution: (a) Power (P)   .  (i  2 ĵ  3k̂) . (2 î  3 ĵ  4 k̂ )  2  6 12 = 20 W 

Problem 49.   A  flywheel  of  moment  of  inertia  0.32  kg-m2  is  rotated  steadily  at  120 rad / sec by  a 

motor. The kinetic energy of the flywheel is 

50 W electric 

(a) 4608 J (b) 1152 J (c) 2304 J (d) 6912 J 
 

Solution: (c) Kinetic energy K  
1  

I 
2
    

1 
(0.32)(120)

2
  = 2304 J. 

  

R 2 2 

7.22 Rolling on an Inclined Plane  
 

4 3 4 2 3 

r 
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1 

2gh 

k 2 

R 2 

1 

2gh 

k 2 

R 2 





   

When a body of mass m and radius R rolls down on inclined plane of height ‘h’ and angle of 
inclination  , it loses potential energy. However it acquires both linear and angular speeds and hence, 
gain kinetic energy of translation and that of rotation. 

By conservation of mechanical energy mgh 


(1) Velocity at the lowest point : v 

1 
mv 

2 


1 


k 2 

R 2 






(2) Acceleration in motion : From equation v 
2
  u 

2
  2aS 

By substituting u  0, S 
h 

sin 
and v  we get 

 
 

 

a   
g sin 

k 2 

1 
R 2 

(3) Time of descent : From equation v  u  at 

By substituting u = 0 and value of v and a from above expressions 
 

t 




From the above expressions it is clear that, 
1 

; a 
k 2 

1 
; t 

k 2 
 

1  1  
2

 

R 2 R 

 k 2 
  Here factor   is a measure of moment of inertia of a body and its value is constant for 

R 2 

 

given shape of the body and it does not depend on the mass and radius of a body. 

 Velocity, acceleration and time of descent (for a given inclined plane) all depends on 
 

k 2 

 
k 2 

R 
2 
. 

Lesser the moment of inertia of the rolling body lesser will be the value of 

will be its velocity and acceleration and lesser will be the time of descent. 

R 
2 
. So greater 

 If a solid and hollow body of same shape are allowed to roll down on inclined plane then 
 k 2    k 2 

as        , solid body will reach the bottom first with greater velocity.  R 2   R 2 

 S   H 

 If a ring, cylinder, disc and sphere runs a race by rolling on an inclined plane then as 
 k 2    k 2 
   minimum   while  


 

 maximum , the sphere will reach the bottom first 
 R 2    R 2 
 sphere  Ring 

with greatest velocity while ring at last with least velocity. 
 Angle of inclination has no effect on velocity, but time of descent and  acceleration  

depends on it. 

velocity   , time of decent   1 and acceleration   . 
 

 7.23 Rolling Sliding and Falling of a Body  

 Figure Velocity Acceleration Time 

1 

sin

2h 

g 
1 

k 2 

 R 2 



k 2 

1 
R 2 

Rotation 

 B 

Translatio 

 S  h 



C 

Note : 

2 

v 
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2gh 

K 2 

1 
R 2 

2gh 

1  
1
 

2 

4 
gh 

3 

 

 
 

Rolling 
k 2 




R 2 

 
 
0 

 
 
 



 
 

h 

 
2gh 

1  k 2 R 2 

 
g sin 

1  K 2 R2 

 
1 

sin 

 
2h 

1 
g 


 
k 2  
R 2 



 
 

Sliding 
k 2 




R 2 

 
 
0 

 
 
 



 
 

2 gh 

 

g sin

 

 

 
 

Falling 

k 2 




2 
0 

R 

 = 90o 

 
 
 
 



 
 

2 gh 

 
 

g 

 
 
 

 

 

7.24 Velocity, Acceleration and Time for Different Bodies  
 

Body k 2 

R 2 

Velocity 

2 gh 
v 2 

k 
1 

R 
2 

Acceleration 

a     
gsin θ 

k 2 

1 
R 2 

Time of descent 

 
1  2 h   k 

2
  

t    1    
sin θ g    R

2
  

Ring or 

Hollow cylinder 

1 gh 
1 

g sin 
2 

1 4 h 

sin  g 

Disc or solid 
cylinder 

1 
or 0.5 

2 

4 gh 

3 

2 
g sin 

3 

1 3h 

sin  g 

Solid sphere 2 
or 0.4 

5 

10 
gh

 

7 

5 
g sin 

7 

1 14 h 

sin  5  g 

Hollow sphere 2 
or 0.66 

3 

6 
gh 

5 

3 
g sin 

5 

1 10 h 

sin  3  g 

Sample problems based on rolling on an inclined plane 
Problem 50. A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L 

and height h. What is the speed of its centre of mass when the cylinder reaches its bottom 

(a) (b) (c) (d) 

 

Solution: (b) Velocity at the bottom (v)    . 
 

 

 

Problem 51. A sphere rolls down on an inclined plane of inclination .   What is the acceleration as the sphere reaches 
bottom [Orissa JEE 2003] 

(a) 
5 

g sin 
7 

(b) 
3 

g sin 
5 

(c) 
2 

g sin 
7 

(d) 
2 

g sin 
5 

Solution: (a) Acceleration (a) 
g sin 

K 2 
  

g sin 
1  

2
 

 
 

 
5 

g sin  . 
7 

1  
R 2 5 

Problem 52.    A ring solid sphere and a disc are rolling down from the top of the same height, then the sequence 
to reach on surface is [RPMT 1999] 

(a) Ring, disc, sphere (b)  Sphere, disc, ring (c)   Disc, ring, sphere (d) Sphere, ring, disc 

3 
gh 

4 

4 
gh 

3 
4 gh 2 gh 

1 2h 

sin  g 

 

 2h 

g 

 



 

 

15 14 


1 

k 2 

 R 2 


 sphere  


1 

k 2 

 R 2 


 disc 

1  
2
 

  5 

1  
1
 

2 

7 
 

2 

5 3 

1 

2gh 

k 2 

R2 

2  9.8  1.4  
1

 
  10 

7 / 5 

5 

7 

2 

 

 

k 2 

Solution: (b) Time of descent   moment of inertia    
R 

2
 

 k 2   k 2   k 2 
 

 R2   0.4 ,  
 R 2    0.5 ,  R 2   1  tsphere  tdisc  tring . 

 sphere   disc  ring 

Problem 53. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. 
Its linear acceleration along the inclined plane will be 
(a) g 2 (b) g 3 (c) g 4 (d) 2g 3 

 
Solution: (c) a   

g sin 

k 2 

1  
R2

 

  
g sin 30 o   

 
g 

1  1 4 
[As  

k 
 1 

R 2 
and   30o ] 

Problem 54. A solid sphere and a disc of same mass and radius starts rolling down a rough inclined plane, from 
the same height the ratio of the time taken in the two cases is 

(a)  15 : 14 (b) : (c)  14 : 15 (d) : 

 
t 

Solution: (d) Time of descent t   shpere = 
tdisc 

  






Problem 55. A solid sphere of mass 0.1 kg and radius 2 cm rolls down an inclined plane 1.4 m in length (slope 

1 in 10). Starting from rest its final velocity will be 
(a) 1.4 m / sec (b) 0.14 m / sec 

k 2 

(c) 

2 

14 m / sec 

h 

(d) 

1 

0.7 m / sec 

Solution: (a) v   [As 
R 2 

 
5 

, l  
sin 

and sin  
10 

given] 
 

 

 

 

 v   1.4 m / s. 

Problem 56.    A solid sphere rolls down an inclined plane and its velocity at the bottom is v1. Then same sphere 
slides  down  the  plane  (without  friction)  and  let  its  velocity  at  the  bottom  be  v2.  Which  of  the 
following relation is correct 

(a) v1 = v2 (b) v  
5 

v 
1 

7 
2 (c) v  

7 
v 

1 
5 

2 (d) None of these 

 

Solution: (d) When solid sphere rolls down an inclined plane the velocity at bottom v1 


but, if there is no friction then it slides on inclined plane and the velocity at bottom v2 

 
v1    . 

v 2 

7.25 Motion of Connected Mass  
A point mass is tied to one end of a string which is wound round the solid body [cylinder, pulley, 

disc]. When the mass is released, it falls vertically downwards and the solid body rotates unwinding the 
string 

m = mass of point-mass, M = mass of a rigid body 
R = radius of a rigid body, I = moment of inertia of rotating body 

(1) Downwards acceleration of point mass a  
g
 

1  
I
 

 

(2) Tension in string   T  mg 
 I 






mR 
2
 


  I  mR 

2
 


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14 15 

1 2h 

sin  g   2 
1 

k 2 


 R 

14 

15 

2  9.8  l sin 

1  
2
 

5 

10 
gh

 

7 

2gh 

T 
h 

m 



 

 

1 

2gh 

I 

mR 2 

2mgh 

I  mr 2 

 
 

M 

 
 

m 

 
 
 
 

 

2kg 






(3) Velocity of point mass  v  (4) Angular velocity of rigid body  




Sample problems based on motion of connected mass 

Problem 57. A cord is wound round the circumference of wheel of radius r. The axis of the wheel is horizontal 
and moment of inertia about it is I. A weight mg is attached to the end of the cord and falls from 
rest. After falling through a distance h, the angular velocity of the wheel will be 

(a) (b) (c) (d) 
 

Solution : (b) According to law of conservation of energy  mgh  
1 

(I  mr 
2
 ) 2      . 

2 

Problem 58. In the following figure, a body of mass m is tied at one end of a light string and this string is 
wrapped around the solid cylinder of mass M and radius R. At the moment t = 0 the system starts 
moving. If the friction is negligible, angular velocity at time t would be 

(a) 

 
(c) 

mgRt 
 

 

(M  m) 

2mgt 

R(M  2m) 

(b) 

 
(d) 

2Mgt 
 

 

(M  2m) 

2mgt 

R(M  2m) 

Solution : (d) We know the tangential acceleration a  
g 


1  

I
 

 
 

g 
1 / 2MR 2 

 
2mg 

2m  M 
[As I  

1 
MR 

2
 

2 
for 

 
cylinder] 

mR 2 
1 

mR 2 

After time t, linear velocity of mass m, v  u  at  0 
2mgt 

 

 

2m  M 

So angular velocity of the cylinder   
v 

R 

2mgt 
.
 

R(M  2 m) 

Problem 59.A block of mass 2 kg hangs from the rim of a wheel of radius 0.5 m . On releasing 

from rest the block falls through 5 m height in 2 s . The moment of inertia of the wheel will be 

 
(a)  1 kg-m2 (b)  3.2 kg-m2 

(c)  2.5 kg-m2 (d)  1.5 kg-m2 

Solution : (d) On releasing from rest the block falls through 5m height in 2 sec. 

5  0  
1 

a(2)
2
 

2 
[As S  ut  

1 
at

2
 ] 

2 
a  2.5 m / s 2 

Substituting the value of a in the formula a  
g
 

1  
I
 

and by solving we get 

 2.5  
10

 

1 
I
 

 
 I  1.5kg  m 2 

mR 2 

 

2  (0.5)2 
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2mgh 

I  mR 2 

2gh 

I  mr 

2mgh 

I  mr 2 

2mgh 

I  2mr 2 
2 gh 
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