# **Statistics**



| x | 4 | 7  | 10 | 13 | 16 | 19 |
|---|---|----|----|----|----|----|
| f | 7 | 10 | 15 | 20 | 25 | 30 |

**Reason (R):** 
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

(2) Assertion (A): To find mean of a grouped data, we use  $\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$  where *a* is the assumed mean and  $d_i$  the deviation.

**Reason (R):** To find deviation, we use  $d_i = a - x_i$  where *a* is the assumed mean and  $x_i$  is the class mark.

#### **3.** Answers the following:

- (1) Find the class-mark of class 25-35.
- (2) Find the mean of first ten odd natural numbers.
- (3) If the mean of the first *n* natural number is 15, then find *n*.
- (4) Find the class-marks of the classes 10-25 and 35-55.

#### II. Short Answer Type Questions -I

4. If the mean of the following data is 20.6, find the value of p.

| x | 10 | 15 | р  | 25 | 35 |
|---|----|----|----|----|----|
| f | 3  | 10 | 25 | 7  | 5  |

5. Find the mean of the following distribution:

| Class     | 3-5 | 5-7 | 7–9 | 9–11 | 11-13 |
|-----------|-----|-----|-----|------|-------|
| Frequency | 5   | 10  | 10  | 7    | 8     |

6. Find the mean of the following distribution:

| Class     | 5-15 | 15–25 | 25–35 | 35–45 |
|-----------|------|-------|-------|-------|
| Frequency | 2    | 4     | 3     | 1     |

#### III. Short Answer Type Questions-II

7. The mean of the following frequency distribution is 62.8 and sum of all frequencies is 50. Find the missing frequencies  $f_1$  and  $f_2$ . [Imp.]

| Class     | 0–20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
|-----------|------|-------|-------|-------|--------|---------|
| Frequency | 5    | $f_1$ | 10    | $f_2$ | 7      | 8       |

8. The arithmetic mean of the following frequency distribution is 53. Find the value of k.

| Class     | 0–20 | 20–40 | 40–60 | 60-80 | 80–100 |
|-----------|------|-------|-------|-------|--------|
| Frequency | 12   | 15    | 32    | k     | 13     |

9. The table below shows the daily expenditure on grocery of 25 households in a locality.

| Daily expenditure (in ₹) | 100-150 | 150-200 | 200-250 | 250-300 | 300-350 |
|--------------------------|---------|---------|---------|---------|---------|
| No. of households        | 4       | 5       | 12      | 2       | 2       |

Find the mean daily expenditure on food by a suitable method.

10. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is ₹ 18. Find the missing frequency f.

| Daily pocket allowance $(in \mathbf{R})$ | 11-13 | 13-15 | 15-17 | 17–19 | 19–21 | 21-23 | 23–25 |
|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Number of children                       | 7     | 6     | 9     | 13    | f     | 5     | 4     |

11. A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent. [AI 2019]

| Number of days:     | 0–6 | 6–12 | 12-18 | 18–24 | 24–30 | 30–36 | 36–42 |
|---------------------|-----|------|-------|-------|-------|-------|-------|
| Number of students: | 10  | 11   | 7     | 4     | 4     | 3     | 1     |

#### **IV. Long Answer Type Questions**

12. The mileage (km per litre) of 50 cars of the same model was tested by a manufacturer and details are as follows:

| Mileage (km/l) | 10-12 | 12-14 | 14–16 | 16–18 |
|----------------|-------|-------|-------|-------|
| No. of Cars    | 7     | 12    | 18    | 13    |
|                |       |       |       |       |

Find the mean mileage. The manufacturer claimed that the mileage of the model was 16 km/l. Do you agree with this claim? [NCERT Exemplar] [Imp]

#### [CBSE Standard 2020] [CBSE Standard 2020]

[2 Marks]

[CBSE Standard 2020]

[3 Marks]

[Delhi 2019]

[NCERT]

#### [5 Marks]

13. An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given as follows:

| No. of seats | 100-104 | 104–108 | 108-112 | 112–116 | 116-120 |
|--------------|---------|---------|---------|---------|---------|
| Frequency    | 15      | 20      | 32      | 18      | 15      |

Determine the mean number of seats occupied over the flights.

14. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is ₹ 18.
 Find the missing frequency k.

| Daily pocket allowance (in ₹) | 11-13 | 13–15 | 15-17 | 17–19 | 19–21 | 21–23 | 23–25 |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Number of children            | 3     | 6     | 9     | 13    | k     | 5     | 4     |

**15.** Find the mean of the following data:

| Classes   | 0–20 | 20–40 | 40-60 | 60-80 | 80–100 | 100-120 |
|-----------|------|-------|-------|-------|--------|---------|
| Frequency | 20   | 35    | 52    | 44    | 38     | 31      |

### **Case Study Based Questions**

I. Student-Teacher Ratio: Student-teacher ratio expresses the relationship between the number of students enrolled in a school and the number of teachers in that school. It is important for a number of reasons. For example, it can be an indicator of the amount of individual attention any child is likely to receive, keeping in mind that not all class size are going to be the same.

The following distribution gives the state-wise student-teacher ratio in higher secondary schools of India (28 states and 7 UTs only).

| Number of students<br>per teacher | Number of States/<br>UTs | Number of students<br>per teacher | Number of States/<br>UTs |
|-----------------------------------|--------------------------|-----------------------------------|--------------------------|
| 15-20                             | 3                        | 35-40                             | 3                        |
| 20-25                             | 8                        | 40-45                             | 0                        |
| 25-30                             | 9                        | 45-50                             | 0                        |
| 30-35                             | 10                       | 50-55                             | 2                        |

1. In order to find the mean by direct method, we use the formula

(a) 
$$\frac{\sum_{i=1}^{n} f_i x_i}{n}$$
 (b)  $\frac{n}{\sum_{i=1}^{n} f_i x_i}$  (c)  $n \times \sum_{i=1}^{n} f_i x_i$  (d)  $n + \sum_{i=1}^{n} f_i x_i$ 

- 2. The mean of the above data is (a) 29.2 (b) 30.5 (c) 38.3 (d) 40.1 3. The formula for assumed mean method to find the mean is (a)  $A - \frac{\Sigma f_i d_i}{\Sigma f_i}$  (b)  $A + \frac{\Sigma f_i}{\Sigma f_i d_i}$  (c)  $A \times \frac{\Sigma f_i d_i}{\Sigma f_i}$  (d)  $A + \frac{\Sigma f_i d_i}{\Sigma f_i}$
- (a)  $A \frac{\Sigma f_i d_i}{\Sigma f_i}$  (b)  $A + \frac{\Sigma f_i}{\Sigma f_i d_i}$  (c)  $A \times \frac{\Sigma f_i d_i}{\Sigma f_i}$  (d)  $A + \frac{\Sigma f_i d_i}{\Sigma f_i}$ 4. The sum of class marks of 25-30 and 45-50 is (a) 62 (b) 70 (c) 75 (d) 85 5. The sum of the upper and lower limits of modal class is (a) 55 (b) 65 (c) 85 (d) 75

#### **Answers and Hints**

(2) 10

(3)

- **1.** (1) (*b*) centered at the class-marks of the classes (1)
  - (2) (a) 0 (1) (3) (c)  $x_i A$  (1)
  - (4) (a)  $n\bar{x} k$  (1) (5) (c) 7 (1)
  - (6) (b) 35 (1)
- 2. (1) (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (1)
  - (2) (c) Assertion (A) is true but reason (R) is false. (1) 25 + 25 = 60

3. (1) Class-mark = 
$$\frac{25+35}{2} = \frac{60}{2} = 30$$
 (1)

 $15 = \frac{1+2+3+...+n}{n}$ 

(1)

[NCERT Exemplar]

$$\Rightarrow 15 = \frac{1}{n} \left[ \frac{n}{2} (2+n-1) \right]$$
  
[:: 1+2+3+...+n is an AP  
and sum of this AP =  $\frac{n}{2} (2+n-1)$ ]  
$$\Rightarrow 15 = \frac{1}{n} \left[ \frac{n(n+1)}{2} \right] = \frac{n+1}{2}$$

 $\Rightarrow n+1=30 \Rightarrow n=29$ 

(4) Class-mark of class 10 - 25

$$=\frac{10+25}{2}=\frac{35}{2}=17.5$$

Class-mark of class 35-55

$$=\frac{35+55}{2}=\frac{90}{2}=45$$
 (1)

(1)

(1)

(1)

(1)

|    |                | -                 | 2                            |     |
|----|----------------|-------------------|------------------------------|-----|
| 4. | x <sub>i</sub> | $f_i$             | $f_i x_i$                    |     |
|    | 10             | 3                 | 30                           |     |
|    | 15             | 10                | 150                          |     |
|    | р              | 25                | 25 p                         |     |
|    | 25             | 7                 | 175                          |     |
|    | 35             | 5                 | 175                          |     |
|    | Total          | $\Sigma f_i = 50$ | $\Sigma f_i x_i = 530 + 25p$ | (1) |

$$\operatorname{Mean} \overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i}$$

$$\Rightarrow \qquad 20.6 = \frac{530 + 25p}{50} \quad \Rightarrow \quad p = 20$$

| 5. | Class | x <sub>i</sub> | $f_i$             | $f_i x_i$              |
|----|-------|----------------|-------------------|------------------------|
|    | 3-5   | 4              | 5                 | 20                     |
|    | 5-7   | 6              | 10                | 60                     |
|    | 7-9   | 8              | 10                | 80                     |
|    | 9-11  | 10             | 7                 | 70                     |
|    | 11-13 | 12             | 8                 | 96                     |
|    |       |                | $\Sigma f_i = 40$ | $\Sigma f_i x_i = 326$ |

Mean 
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{326}{40} = 8.15$$
 (1)

Class
 
$$x_i$$
 $f_i$ 
 $f_i x_i$ 

 5-15
 10
 2
 20

 15-25
 20
 4
 80

 25-35
 30
 3
 90

 35-45
 40
 1
 40

  $\Sigma f_i = 10$ 
 $\Sigma f_i x_i = 230$ 

$$\operatorname{Mean} \overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{230}{10} = 23 \tag{1}$$

| 7. | Class<br>interval | x <sub>i</sub> | $f_i$                            | $f_i x_i$                                 |
|----|-------------------|----------------|----------------------------------|-------------------------------------------|
|    | 0-20              | 10             | 5                                | 50                                        |
|    | 20-40             | 30             | $f_1$                            | $30 f_1$                                  |
|    | 40-60             | 50             | 10                               | 500                                       |
|    | 60-80             | 70             | $f_2$                            | 70 <i>f</i> <sub>2</sub>                  |
|    | 80-100            | 90             | 7                                | 630                                       |
|    | 100-120           | 110            | 8                                | 880                                       |
|    |                   |                | $\Sigma f_i = 30 \\ + f_1 + f_2$ | $\Sigma f_i x_i = 2060 + 30 f_1 + 70 f_2$ |

$$\Sigma f_i = 30 + f_1 + f_2 \text{ but } \Sigma f_i = 50 \qquad (\text{given})$$
  
So,  $50 = 30 + f_1 + f_2 \implies f_1 + f_2 = 20 \qquad \dots(i)$   
 $\Sigma f_i x_i = 2060 + 30f_1 + 70f_2 \qquad \Sigma f_i x_i$ 

(1)

Now, mean = 
$$\frac{\Sigma f_i x_i}{\Sigma f_i}$$
  
 $\Rightarrow \quad 62.8 = \frac{2060 + 30 f_1 + 70 f_2}{50}$ 

$$\Rightarrow 3f_1 + 7f_2 = 108 \qquad ...(ii) (11/2)$$
  
Solving (i) and (ii), we get  $f_1 = 8$  and  $f_2 = 12$  (<sup>1</sup>/<sub>2</sub>)

8. Calculation of mean.

| Class<br>Interval | $Frequency (f_i)$     | $Class \\ Mark (x_i)$ | $f_i x_i$                     |  |
|-------------------|-----------------------|-----------------------|-------------------------------|--|
| 0-20              | 12                    | 10                    | 120                           |  |
| 20-40             | 15                    | 30                    | 450                           |  |
| 40-60             | 32                    | 50                    | 1600                          |  |
| 60-80             | k                     | 70                    | 70 <i>k</i>                   |  |
| 80-100            | 13                    | 90                    | 1170                          |  |
|                   | $\Sigma f_i = 72 + k$ |                       | $\Sigma f_i x_i = 3340 + 70k$ |  |

$$\therefore \qquad \text{Mean } \overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i} \implies 53 = \frac{3340 + 70k}{72 + k} \tag{1}$$

$$\Rightarrow 3340 + 70k = 53 (72 + k)$$
  

$$\Rightarrow 3340 + 70k = 3816 + 53k$$
  

$$\Rightarrow 70k - 53k = 3816 - 3340$$
  

$$\Rightarrow 17k = 476 \Rightarrow k = 28$$
 (1)

9.

| Daily<br>expenditure<br>(in ₹) | x <sub>i</sub> | $f_i$ | $d_i = (x_i - a)$ | $f_i d_i$                |
|--------------------------------|----------------|-------|-------------------|--------------------------|
| 100-150                        | 125            | 4     | -100              | $4 \times (-100) = -400$ |
| 150-200                        | 175            | 5     | -50               | $5 \times (-50) = -250$  |
| 200-250                        | 225            | 12    | 0                 | $12 \times 0 = 0$        |

| 250-300 | 275                | 2                                                  | 50                                   | $50 \times 2 = 100$             |     |
|---------|--------------------|----------------------------------------------------|--------------------------------------|---------------------------------|-----|
| 300-350 | 325                | 2                                                  | 100                                  | $100 \times 2 = 200$            |     |
|         |                    | $\Sigma f_i = 25$                                  |                                      | $\Sigma f_i d_i = -350$         | (2) |
| 5       | $\overline{c} = c$ | $a + \left[\frac{\Sigma f_i d}{\Sigma f_i}\right]$ | $\left[\frac{d_i}{d_i}\right] = 225$ | $+\left[\frac{-350}{25}\right]$ |     |
|         | = 2                | 25 - 14 =                                          | = 211                                |                                 |     |

Thus, the mean daily expenditure of food is ₹ 211. (1)

10.

| Class<br>interval | x <sub>i</sub> | $f_i$ | $d_i = (x_i - a)$ | $f_i d_i$             |
|-------------------|----------------|-------|-------------------|-----------------------|
| 11-13             | 12             | 7     | -6                | $7 \times (-6) = -42$ |
| 13-15             | 14             | 6     | -4                | $6 \times (-4) = -24$ |
| 15-17             | 16             | 9     | - 2               | $9 \times (-2) = -18$ |
| 17-19             | 18             | 13    | 0                 | $13 \times 0 = 0$     |
| 19-21             | 20             | f     | 2                 | $f \times 2 = 2f$     |
| 21-23             | 22             | 5     | 4                 | $5 \times 4 = 20$     |
| 23-25             | 24             | 4     | 6                 | $4 \times 6 = 24$     |
| Σ                 | $f_i$          |       |                   | $\Sigma f_i d_i$      |
| =f+               | - 44           |       |                   | =2f-40                |

Since 
$$\overline{x} = 18, a = 18$$
  
 $\therefore \qquad \overline{x} = a + \left[\frac{\Sigma f_i d_i}{\Sigma f_i}\right]$   
 $\Rightarrow \qquad 18 = 18 + \left[\frac{2f - 40}{f + 44}\right]$  (½)  
 $\Rightarrow \qquad 0 = \left[\frac{2f - 40}{f + 44}\right]$   
 $\Rightarrow \qquad 0 = 2f - 40$ 

f = 20 $\Rightarrow$ 

2f = 40

 $\Rightarrow$ 

Thus, the missing frequency is 20.

| 11. | No. of<br>days<br>(CI) | No. of students $(f_i)$ | Class<br>Mark<br>(x <sub>i</sub> ) | $d_i = (x_i - a)$  | $f_i d_i$ |
|-----|------------------------|-------------------------|------------------------------------|--------------------|-----------|
|     | 0-6                    | 10                      | 3                                  | -18                | -180      |
|     | 6-12                   | 11                      | 9                                  | -12                | -132      |
|     | 12-18                  | 7                       | 15                                 | -6                 | -42       |
|     | 18-24                  | 4                       | 21                                 | 0                  | 0         |
|     | 24-30                  | 4                       | 27                                 | 6                  | 24        |
|     | 30-36                  | 3                       | 33                                 | 12                 | 36        |
|     | 36-42                  | 1                       | 39                                 | 18                 | 18        |
|     |                        | $\Sigma f_i = 40$       |                                    | $\Sigma f_i d_i =$ | -276      |

Let assumed mean a = 21 and class size h = 6

Mean, 
$$\bar{x} = a + \frac{\Sigma f_i d_i}{\Sigma f_i} = 21 + \frac{-276}{40}$$
  
= 21 - 6.9 = 14.1

Hence, mean number of days a student was absent is 14.1.

**12.**  $x_i$  = class-mark and a = assumed mean.

| <i>C.I.</i> | $x_i$          | $d_i = (x_i - a)$ | $f_i$             | $f_i d_i$             |        |
|-------------|----------------|-------------------|-------------------|-----------------------|--------|
| 10-12       | 11             | -2                | 7                 | -14                   |        |
| 12-14       | $\boxed{13}=a$ | 0                 | 12                | 0                     |        |
| 14-16       | 15             | 2                 | 18                | 36                    |        |
| 16-18       | 17             | 4                 | 13                | 52                    |        |
|             |                |                   | $\Sigma f_i = 50$ | $\Sigma f_i d_i = 74$ | (21/2) |
|             | A = 1          | 3                 |                   |                       |        |

$$\overline{x} = A + \frac{\Sigma f_i d_i}{\Sigma f_i} = 13 + \frac{74}{50}$$
$$= 13 + 1.48 = 14.48 \text{ km L}^{-1}$$

Hence, mean mileage of car is 14.48 km/litre. So, the manufacturer's statement is wrong that mileage is  $16 \text{ km L}^{-1}$ .  $(2\frac{1}{2})$ 

| 13. | <i>C.I.</i> | <i>xi</i> | $d_i = (x_i - a)$ | $f_i$              | $f_i d_i$             |
|-----|-------------|-----------|-------------------|--------------------|-----------------------|
|     | 100-104     | 102       | -8                | 15                 | -120                  |
|     | 104-108     | 106       | -4                | 20                 | -80                   |
|     | 108-112     | 110 = a   | 0                 | 32                 | 0                     |
|     | 112-116     | 114       | 4                 | 18                 | 72                    |
|     | 116-120     | 118       | 8                 | 15                 | 120                   |
|     |             |           |                   | $\Sigma f_i = 100$ | $\Sigma f_i d_i = -8$ |

 $(2\frac{1}{2})$ 

Here, 
$$a = 110$$

$$\overline{x} = a + \frac{\Sigma f_i d_i}{\Sigma f_i}$$
  
= 110 +  $\frac{-8}{100}$   
= 110 - 0.08  
= 109.92

but, seat cannot be in decimal.

$$\Rightarrow \qquad \overline{x} = 110.$$

Hence, the mean number of seats occupied over the flights is 110.  $(2\frac{1}{2})$ (5)

**14.** 
$$k = 8$$

(1)

(1)

**Case Study Based Questions** (2)

**I.** 1. (a) 
$$\frac{\sum_{i=1}^{n} f_i x_i}{n}$$
 **2.** (a) 29.2  
**3.** (d)  $A + \frac{\sum f_i d_i}{\sum f_i}$  **4.** (c) 75 **5.** (b) 65

## Exercise 7.2

#### I. Very Short Answer Type Questions

**1.** Multiple Choice Questions (MCQs)

#### Choose the correct answer from the given options:

(1) Consider the following frequency distribution of the heights of 60 students of a class

| Height (in cm)  | 150-155 | 155–160 | 160–165 | 165–170 | 170–175 | 175–180 |
|-----------------|---------|---------|---------|---------|---------|---------|
| No. of students | 15      | 13      | 10      | 8       | 9       | 5       |

The upper limit of the median class in the given data is

| <i>(a)</i> | 165 | ( <i>b</i> ) 155 | ( <i>c</i> ) 160 | ( <i>d</i> ) 170 |
|------------|-----|------------------|------------------|------------------|
|------------|-----|------------------|------------------|------------------|

#### [1 Mark]

#### (2) For the following distribution:

| Marks    | Number of students | Marks    | Number of students |
|----------|--------------------|----------|--------------------|
| Below 10 | 3                  | Below 40 | 57                 |
| Below 20 | 12                 | Below 50 | 75                 |
| Below 30 | 28                 | Below 60 | 80                 |

The modal class is

(*b*) 20-30 (*c*) 30-40 (d) 50-60 (*a*) 0-20

(3) The cumulative frequency of a given class is obtained by adding the frequencies of all the classes

(a) preceding it (b) succeeding it (c) Both (a) and (b)(*d*) None of these

#### 2. Assertion-Reason Type Questions

In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- (1) Assertion (A): If the number of runs scored by 11 players of a cricket team of India are 5, 19, 42, 11, 50, 30, 21, 0, 52, 36, 27, then median is 30.

**Reason (R):** Median = 
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 value, if *n* is odd.

(2) Assertion (A): If the value of mode and mean is 60 and 66 respectively, then the value of median is 64. **Reason (R):** Median = (Mode + 2 Mean)

#### **3.** Answer the following.

(1) Write the modal class of the following frequency distribution:

| Class interval | 10–20 | 20-30 | 30–40 | 40-50 | 50-60 | 60–70 |
|----------------|-------|-------|-------|-------|-------|-------|
| Frequency      | 33    | 38    | 65    | 52    | 19    | 48    |

(2) Write the median of the following data: 3, 5, 2, 9, 7, 11

#### II. Short Answer Type Questions -I

4. Find the median class of following data:

| Class interval | 0–10 | 10-20 | 20-30 | 30–40 | 40-50 | 50-60 |
|----------------|------|-------|-------|-------|-------|-------|
| Frequency      | 8    | 10    | 12    | 22    | 30    | 18    |

#### 5. Find the mode of the following data:

| Class     | 0–20 | 20–40 | 40–60 | 60-80 | 80–100 | 100–120 | 120–140 |
|-----------|------|-------|-------|-------|--------|---------|---------|
| Frequency | 6    | 8     | 10    | 12    | 6      | 5       | 3       |

6. The following distribution shows the transport expenditure of 100 employees:

| <i>Expenditure (in</i> ₹) | 200–400 | 400–600 | 600–800 | 800-1000 | 1000–1200 |
|---------------------------|---------|---------|---------|----------|-----------|
| No. of employees          | 21      | 25      | 19      | 23       | 12        |

Find the mode of the distribution.

#### III. Short Answer Type Questions-II

7. The weight of tea in 70 packets are as follows:

| Weight (in kg) | 200–201 | 201–202 | 202–203 | 203–204 | 204–205 | 205–206 |
|----------------|---------|---------|---------|---------|---------|---------|
| No. of packets | 12      | 26      | 20      | 4       | 2       | 1       |

Determine the modal weight.

#### [CBSE Standard 2020]

[3 Marks]

[2 Marks]

8. The annual rainfall record of a city of 100 days is given in the following table:

| Rainfall (in cm) | 0–10 | 10-20 | 20-30 | 30–40 | 40–50 | 50-60 | 60–70 |
|------------------|------|-------|-------|-------|-------|-------|-------|
| No. of days      | 8    | 8     | 14    | 22    | 30    | 8     | 10    |

Calculate the median rainfall.

9. The following table shows the ages of the patients admitted in a hospital during a year:

| Age (in year)   | 0–10 | 10-20 | 20-30 | 30–40 | 40-50 | 50-60 |
|-----------------|------|-------|-------|-------|-------|-------|
| No. of patients | 22   | 10    | 8     | 15    | 5     | 6     |

Find the median of the data given above.

**10.** The table below shows the salaries of 280 persons:

| Salary (In thousand ₹) | No. of Persons |
|------------------------|----------------|
| 5 - 10                 | 49             |
| 10-15                  | 133            |
| 15 - 20                | 63             |
| 20 - 25                | 15             |
| 25 - 30                | 6              |
| 30 - 35                | 7              |
| 35 - 40                | 4              |
| 40 - 45                | 2              |
| 45 - 50                | 1              |

Calculate the median salary of the data.

0-5

12

11. The following data gives the information on the observed life-times (in hours) of 25 electrical components. Determine the model life-time of the components. [Imp.]

| Life-time (in hrs) | 0–50 | 50-100 | 100-150 | 150-200 | 200–250 | 250-300 | 300-350 |
|--------------------|------|--------|---------|---------|---------|---------|---------|
| No. of components  | 2    | 3      | 5       | 6       | 5       | 3       | 1       |

12. The table shows the daily expenditure on grocery of 25 households in a locality. Find the modal daily expenditure on grocery by a suitable method. [CBSE SP 2018-19]

| Daily Expenditure (in $\mathbf{R}$ ) | 100-150 | 150-200 | 200-250 | 250-300 | 300-350 |
|--------------------------------------|---------|---------|---------|---------|---------|
| No. of households                    | 4       | 5       | 12      | 2       | 2       |

**13.** The median of the following data is 16. Find the missing frequencies *a* and *b*, if the total of the frequencies is 70.

15

|      |       |       |       |       | [ C   | CBSE Star | ndard SP | 2020- |
|------|-------|-------|-------|-------|-------|-----------|----------|-------|
| 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40     |          |       |

6

b

#### **IV. Long Answer Type Questions**

Class Frequency

14. If the median of the following frequency distribution is 32.5. Find the values of  $f_1$  and  $f_2$ .

а

12

| Class     | 0–10  | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60–70 | Total |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Frequency | $f_1$ | 5     | 9     | 12    | $f_2$ | 3     | 2     | 40    |

15. Compare the modal age of two groups of students A and B appearing for an entrance test.

| Class internal | Frequency |         |  |  |  |  |
|----------------|-----------|---------|--|--|--|--|
| Class interval | Group A   | Group B |  |  |  |  |
| 16–18          | 50        | 54      |  |  |  |  |
| 18-20          | 78        | 89      |  |  |  |  |

0-21]

4

6

[5 Marks]

[HOTS]

[Imp.]

[Imp.]

[CBSE 2018]

| 20–22 | 46 | 40 |
|-------|----|----|
| 22–24 | 28 | 25 |
| 24–26 | 23 | 17 |

16. The median of the following data is 525. Find the values of x and y if the total frequency is 100.

| Class Interval | Frequency |
|----------------|-----------|
| 0-100          | 2         |
| 100-200        | 5         |
| 200-300        | x         |
| 300-400        | 12        |
| 400-500        | 17        |
| 500-600        | 20        |
| 600-700        | У         |
| 700-800        | 9         |
| 800-900        | 7         |
| 900-1000       | 4         |

**17.** Daily wages of 110 workers, obtained in a survey, are tabulated below: [CBSE Standard SP 2019-20]

| Daily Wages (in ₹) | 100–120 | 120–140 | 140–160 | 160–180 | 180–200 | 200–220 | 220–240 |
|--------------------|---------|---------|---------|---------|---------|---------|---------|
| Number of Workers  | 10      | 15      | 20      | 22      | 18      | 12      | 13      |

Compute the mean daily wages and modal daily wages of these workers.

Class

Frequency

18. The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. Find the mean and the median of the number of wickets taken. [CBSE Standard 2020]

| Number of wickets | 20–60 | 60–100 | 100–140 | 140–180 | 180–220 | 220–260 |
|-------------------|-------|--------|---------|---------|---------|---------|
| No. of bowlers    | 7     | 5      | 16      | 12      | 2       | 3       |

**19.** The mode of the following data is 67. Find the missing frequency *x*.

[CBSE Standard SP 2020-21] 80-90 40-50 50-60 60-70 70-80 5 15 12 7 x

20. A survey regarding the heights (in cm) of 51 girls of class X of a school was conducted and the following data was obtained. Find the median height and the mean using the formulae.

| Height (in cm) | Number of Girls |
|----------------|-----------------|
| Less than 140  | 4               |
| Less than 145  | 11              |
| Less than 150  | 29              |
| Less than 155  | 40              |
| Less than 160  | 46              |
| Less than 165  | 51              |

### **Case Study Based Questions**

I. Females' Literacy: The education of women helps to remove the social stigma that surrounds it. It is the key to eliminating social evils such as female infanticide, dowry, child marriage, harassment, etc. This will not just help the women of today but of the future generations who can live in a world where gender equality exists which ultimately raises the literacy rate.

The following distribution shows the number of literate females in the age group 0 to 60 years of a particular area.

|              | Age (in years)            | 0-10               | 10-20        | 20-30              | 30-40        | 40-50              | 50-60 |
|--------------|---------------------------|--------------------|--------------|--------------------|--------------|--------------------|-------|
|              | No. of literate females   | 350                | 1100         | 900                | 750          | 600                | 500   |
| 1.           | The class marks of class  | 40-50 is           |              |                    |              |                    |       |
|              | ( <i>a</i> ) 70           | ( <i>b</i> ) 90    |              | (c) 10             |              | ( <i>d</i> ) 45    |       |
| 2.           | The number of literate fe | males whose        | ages are bet | ween 20 yea        | rs and 50 ye | ars is             |       |
|              | ( <i>a</i> ) 1350         | ( <i>b</i> ) 1650  |              | (c) 2000           |              | ( <i>d</i> ) 2250  |       |
| 3.           | The modal class of the at | ove distribu       | tion is      |                    |              |                    |       |
|              | ( <i>a</i> ) 0-10         | ( <i>b</i> ) 10-20 |              | ( <i>c</i> ) 20-30 |              | ( <i>d</i> ) 30-40 |       |
| 4.           | The number of literate fe | males whose        | ages are les | s than 40 yea      | ars is       |                    |       |
|              | (a) 1450                  | ( <i>b</i> ) 2350  |              | (c) 3100           |              | ( <i>d</i> ) 3700  |       |
| 5.           | The upper limit of modal  | class is           |              |                    |              |                    |       |
|              | ( <i>a</i> ) 10           | ( <i>b</i> ) 20    |              | (c) 30             |              | ( <i>d</i> ) 60    |       |
| <b>II.</b> 1 | 100 m Race                |                    |              |                    |              |                    |       |



1 41 ... 100 - 4 41 . . . .

|    | A stopwatch was used  | to find the time  | e that it took a g | roup of students | to run 100 m.    |                |                   |
|----|-----------------------|-------------------|--------------------|------------------|------------------|----------------|-------------------|
|    | Time (in sec.)        | 0-20              | 20-40              | 40-60            | 60-80            | 80-100         |                   |
|    | No. of students       | 8                 | 10                 | 13               | 6                | 3              |                   |
|    |                       |                   |                    |                  |                  | [CBSE Star     | ndard SP 2020-21] |
| 1. | The estimated mean    | time taken by a   | student to finish  | the race is      |                  |                |                   |
|    | ( <i>a</i> ) 54       | <i>(b)</i> 63     | (c)                | ) 43             | ( <i>d</i> ) 50  |                |                   |
| 2. | What will be the upp  | er limit of the m | odal class?        |                  |                  |                |                   |
|    | ( <i>a</i> ) 20       | ( <i>b</i> ) 40   | (c)                | ) 60             | ( <i>d</i> ) 80  |                |                   |
| 3. | The construction of c | cumulative frequ  | ency table is us   | eful in determin | ing the          |                |                   |
|    | (a) mean              | (b) median        | (c)                | ) mode           | (d) All of       | f the above    |                   |
| 4. | The sum of lower lin  | nits of median cl | lass and modal of  | class is         |                  |                |                   |
|    | ( <i>a</i> ) 60       | ( <i>b</i> ) 100  | (c)                | ) 80             | ( <i>d</i> ) 140 |                |                   |
| 5. | How many students f   | finished the race | within 1 minut     | e?               |                  |                |                   |
|    | ( <i>a</i> ) 18       | ( <i>b</i> ) 37   | (c)                | ) 31             | ( <i>d</i> ) 8   |                |                   |
|    | COVID-19 Pandemi      | e• The COVID.     | 19 nandemic a      | lso known as c   | oronavirus nand  | emic is an one | oing nandemic of  |

III. COVID-19 Pandemic: The COVID-19 pandemic, also known as coronavirus pandemic, is an ongoing pandemic of coronavirus disease caused by the transmission of severe acute respiratory syndrome coronavirus 2 among humans. The following tables shows the age distribution of case admitted during a day in two different hospitals.

| Table 1        |      |       |       |       |       |       |  |  |  |  |  |  |
|----------------|------|-------|-------|-------|-------|-------|--|--|--|--|--|--|
| Age (in years) | 5-15 | 15-25 | 25-35 | 35-45 | 45-55 | 55-65 |  |  |  |  |  |  |
| No. of cases   | 6    | 11    | 21    | 23    | 14    | 5     |  |  |  |  |  |  |
| Table 2        |      |       |       |       |       |       |  |  |  |  |  |  |
| Age (in years) | 5-15 | 15-25 | 25-35 | 35-45 | 45-55 | 55-65 |  |  |  |  |  |  |
| No. of cases   | 8    | 16    | 10    | 42    | 24    | 12    |  |  |  |  |  |  |

Table 1

#### **Refer to Table 1**

| 1. The average age f  | or which maximum cases o | occurred is       |                   |
|-----------------------|--------------------------|-------------------|-------------------|
| (a) 32.24 years       | (b) 34.36 years          | (c) 35.91 years   | (d) 42.24 years   |
| 2. The upper limit of | f modal class is         |                   |                   |
| ( <i>a</i> ) 15       | <i>(b)</i> 25            | (c) 35            | ( <i>d</i> ) 45   |
| 3. The mean of the g  | iven data is             |                   |                   |
| ( <i>a</i> ) 26.2     | <i>(b)</i> 32.4          | (c) 33.5          | ( <i>d</i> ) 35.4 |
| Refer to Table 2      |                          |                   |                   |
| 4. The mode of the g  | given data is            |                   |                   |
| ( <i>a</i> ) 41.4     | <i>(b)</i> 48.2          | ( <i>c</i> ) 55.3 | ( <i>d</i> ) 64.6 |
| 5. The median of the  | e given data is          |                   |                   |
| ( <i>a</i> ) 32.7     | <i>(b)</i> 40.2          | ( <i>c</i> ) 42.3 | ( <i>d</i> ) 48.6 |

#### **Answers and Hints**

5.

- 1. (1) (a) 165 (1) (2) (c) 30-40 (1) (3) (a) preceding it (1) 2. (1) (d) Assertion (A) is false but reason (R) is true. Arrange the terms in ascending order, 0, 5, 11, 19, 21, 27, 30, 36, 42, 50, 52 Median value =  $\left(\frac{11+1}{2}\right)^{\text{th}}$ = 6<sup>th</sup> value = 27 (1)
  - (2) (c) Assertion (A) is true but reason (R) is false.

Median = 
$$\frac{1}{3}$$
 (Mode + 2 Mean)  
=  $\frac{1}{3}$  (60 + 2 × 66) = 64 (1)

3. (1) Frequency of the class interval 30-40 is maximum, *i.e.*, 65. So, the modal class is 30-40. (1)
(2) Median

$$= \frac{1}{2} \left[ \left( \frac{6}{2} \right)^{\text{th}} \text{ observation} + \left( \frac{6}{2} + 1 \right)^{\text{th}} \text{ observation} \right]$$
  
[::  $n = 6 \text{ (even)}$ ]

$$= \frac{1}{2} [3^{rd} \text{ observation} + 4^{th} \text{ observation}]$$
$$= \frac{1}{2} [5+7] = 6 \tag{1}$$

| 4. | Class interval | f  | cf  |     |
|----|----------------|----|-----|-----|
|    | 0–10           | 8  | 8   |     |
|    | 10-20          | 10 | 18  |     |
|    | 20-30          | 12 | 30  |     |
|    | 30–40          | 22 | 52  |     |
|    | 40-50          | 30 | 82  |     |
|    | 50-60          | 18 | 100 | (1) |
|    |                |    |     |     |

$$\Rightarrow \frac{n}{2} = 50$$
  

$$\Rightarrow \text{ Median class is 30-40.}$$
(1)

Maximum frequency = 12  

$$\therefore$$
 Modal class = 60–80  
Now, Mode =  $l + h \left[ \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right]$   
=  $60 + 20 \left[ \frac{12 - 10}{2 \times 12 - 10 - 6} \right]$  (1)  
=  $60 + 20 \left[ \frac{2}{24 - 16} \right]$   
=  $60 + \frac{20 \times 2}{8}$   
=  $60 + 5 = 65$  (1)

6. Maximum frequency = 25So, Modal class = 400-600

:. Mode = 
$$l + h \left[ \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right]$$
 (1)

$$= 400 + 200 \left[ \frac{25 - 21}{50 - 21 - 19} \right]$$
$$= 400 + 200 \times \frac{4}{10}$$
$$= 400 + 80$$
$$= 480$$
(1)

7. Modal class = 201–202 as its frequency is maximum.
∴ Modal weight

$$= l + h \times \left[ \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right]$$
(1)

$$= 201 + 1 \times \left(\frac{26 - 12}{2 \times 26 - 12 - 20}\right) \tag{1}$$

$$= 201 + \frac{14}{52 - 32}$$
  
= 201 +  $\frac{14}{20}$   
= 201.7 kg. (1)  
8. 39.09 cm (3)

**9.** 21.25 years (3)

| 10. | Salary                                 | No. of Persons | cf  |
|-----|----------------------------------------|----------------|-----|
|     | (In thousand $\overline{\mathbf{x}}$ ) | (f)            | C)  |
|     | 5-10                                   | 49             | 49  |
|     | 10-15                                  | 133            | 182 |
|     | 15-20                                  | 63             | 245 |
|     | 20-25                                  | 15             | 260 |
|     | 25-30                                  | 6              | 266 |
|     | 30-35                                  | 7              | 273 |
|     | 35–40                                  | 4              | 277 |
|     | 40-45                                  | 2              | 279 |
|     | 45-50                                  | 1              | 280 |

$$\frac{N}{2} = \frac{280}{2}$$
$$= 140$$

Median class is 10-15

Median = 
$$l + \frac{h}{f} \left( \frac{N}{2} - C \right)$$
 (1)

$$= 10 + \frac{5}{133} (140 - 49) \tag{1}$$

$$= 10 + \frac{5 \times 91}{133}$$
  
= 13.42

Median salary is ₹13.42 thousand or ₹13420 (approx.)(1)

- **11.** Modal life-time = 175 hrs.
- 12. 200 250 is the modal class.

Mode = 
$$l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$
 (1)

$$= 200 + \frac{12 - 5}{24 - 5 - 2} \times 50 \tag{1}$$

(3)

(1) (½)

$$= 200 + 20.59 \\ = ₹220.59$$
(1)

| 3. | Class    | Frequency | Cumulative<br>Frequency |
|----|----------|-----------|-------------------------|
|    | 0-5      | 12        | 12                      |
|    | 5-10     | а         | 12 + a                  |
|    | 10-15    | 12        | 24 + <i>a</i>           |
|    | 15-20    | 15        | 39 + a                  |
|    | 20-25    | b         | 39 + a + b              |
|    | 25-30    | 6         | 45 + a + b              |
|    | 30-35    | 6         | 51 + a + b              |
|    | 35-40    | 4         | 55 + a + b              |
|    | Total    | N = 70    |                         |
|    | 55 + a - | + b = 70  |                         |

$$a + b = 15$$

Median = 
$$l + \frac{\frac{N}{2} - cf}{f} \times h$$
 (½)  
 $16 = 15 + \frac{35 - 24 - a}{15} \times 5$   
 $1 = \frac{(11 - a)}{3}$   
 $a = 8$  (½)  
 $55 + a + b = 70$   
 $55 + 8 + b = 70$   
 $b = 7$  (½)

**14.** Here, median = 32.5 and n = 40

Now, we have

| Class Interval | Frequency $(f_i)$ | cf               |     |
|----------------|-------------------|------------------|-----|
| 0-10           | $f_1$             | $f_1$            |     |
| 10-20          | 5                 | $f_1 + 5$        |     |
| 20–30          | 9                 | $f_1 + 14$       |     |
| 30-40          | 12                | $f_1 + 26$       |     |
| 40-50          | $f_2$             | $f_1 + f_2 + 26$ |     |
| 50-60          | 3                 | $f_1 + f_2 + 29$ |     |
| 60–70          | 2                 | $f_1 + f_2 + 31$ |     |
| Total          | $\Sigma f_i = 40$ |                  | (1) |

Since the median is given to be 32.5, thus the median class is 30-40.

Median = 
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$
 (1)

$$\Rightarrow \qquad 32.5 = 30 + \frac{20 - f_1 - 14}{12} \times 10$$

$$\Rightarrow \quad 32.5 = 30 + \frac{6 - f_1}{12} \times 10 \tag{1}$$

$$\Rightarrow \qquad 2.5 = \frac{6 - f_1}{12} \times 10$$

$$\Rightarrow 2.5 = \frac{6 - f_1}{6} \times 5$$
$$\Rightarrow \frac{15}{5} = 6 - f_1$$
$$\Rightarrow 3 = 6 - f_1 \Rightarrow f_1 = 3 \tag{1}$$

Now, 
$$f_1 + f_2 + 31 = 40$$
  
 $\Rightarrow \qquad f_2 = 9 - 3$   
 $\Rightarrow \qquad f_2 = 6$   
Thus,  $f_1 = 3$  and  $f_2 = 6$  (1)

- **15.** For group A, modal class is 18-20
  - : Mode of group A

$$= l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
(1)  
$$= 18 + \left[\frac{78 - 50}{2 \times 78 - 50 - 46}\right] \times 2$$
  
$$= 18 + \frac{28}{156 - 96} \times 2$$
  
$$= 18 + \frac{56}{60}$$
  
$$= 18.93 \text{ years}$$
(1)

For group B, modal class is 18-20

: Mode of group B

$$= l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
(1)

$$= 18 + \left[\frac{89 - 54}{2 \times 89 - 54 - 40}\right] \times 2 \tag{1}$$

$$= 18 + \frac{35}{84} \times 2 = 18.83$$
 years

Since 18.93 > 18.83

 $\therefore$  The modal age of students of group A > modal age of students of groups B. (1)

| 16. | Class Interval | Frequency | cf         |  |
|-----|----------------|-----------|------------|--|
|     | 0-100          | 2         | 2          |  |
|     | 100-200        | 5         | 7          |  |
|     | 200-300        | x         | 7 + x      |  |
|     | 300–400        | 12        | 19 + x     |  |
|     | 400-500        | 17        | 36 + x     |  |
|     | 500-600        | 20        | 56 + x     |  |
|     | 600-700        | у         | 56 + x + y |  |
|     | 700-800        | 9         | 65 + x + y |  |
|     | 800–900        | 7         | 72 + x + y |  |
|     | 900-1000       | 4         | 76 + x + y |  |

$$N = 100 \implies 76 + x + y = 100 \qquad (\frac{1}{2})$$

$$\Rightarrow \quad x + y = 24 \qquad \dots(i) \ (\frac{1}{2})$$

Median = 525

 $\Rightarrow$  500 – 600 is median class.

$$Median = l + \frac{\frac{n}{2} - cf}{f} \times h$$

$$\Rightarrow 500 + \left(\frac{50 - 36 - x}{20}\right) \times 100 = 525$$
(1)

$$\Rightarrow (14-x) \times 5 = 25$$
  
$$\Rightarrow \qquad x = 9, \text{ from } (i), y = 15$$

| 17. | Daily Wages<br>(in ₹) | Number of<br>Workers (f <sub>i</sub> ) | x <sub>i</sub> | <i>u</i> <sub>i</sub> | $f_i u_i$ |
|-----|-----------------------|----------------------------------------|----------------|-----------------------|-----------|
|     | 100-120               | 10                                     | 110            | -3                    | -30       |
|     | 120-140               | 15                                     | 130            | -2                    | -30       |
|     | 140–160               | 20                                     | 150            | -1                    | -20       |
|     | 160–180               | 22                                     | 170            | 0                     | 0         |
|     | 180-200               | 18                                     | 190            | 1                     | 18        |
|     | 200–220               | 12                                     | 210            | 2                     | 24        |
|     | 220-240               | 13                                     | 230            | 3                     | 39        |
|     | Total                 | 110                                    |                |                       | 1         |

(2)

(1)

Mean daily wages

$$= 170 + \frac{1}{110} \times 20$$
  
= ₹170.19 (approx.) (1½)

Mode = 
$$160 + \frac{22 - 20}{44 - 20 - 18} \times 20$$
  
= ₹166.67 (approx.) (1<sup>1</sup>/<sub>2</sub>)

$$= < 166.67 (approx.)$$
 (15

**18.** Mean:

| CI      | x <sub>i</sub> | $f_i$             | $f_i x_i$               |
|---------|----------------|-------------------|-------------------------|
| 20-60   | 40             | 7                 | 280                     |
| 60–100  | 80             | 5                 | 400                     |
| 100–140 | 120            | 16                | 1920                    |
| 140-180 | 160            | 12                | 1920                    |
| 180-220 | 200            | 2                 | 400                     |
| 220–260 | 240            | 3                 | 720                     |
| Total   |                | $\Sigma f_i = 45$ | $\Sigma f_i x_i = 5640$ |

$$\therefore \quad \text{Mean} \ \overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{5640}{45} = 125.33 \tag{1}$$

Median:

(2)

| Number<br>of wickets<br>(CI) | Frequency $(f_i)$ | Cumulative<br>frequency<br>(cf) |                |
|------------------------------|-------------------|---------------------------------|----------------|
| 20-60                        | 7                 | 7                               |                |
| 60–100                       | 5                 | 12                              |                |
| 100-140                      | 16                | 28                              | ( Madian alaga |
| 140-180                      | 12                | 40                              |                |
| 180-220                      | 2                 | 42                              |                |
| 220-260                      | 3                 | 45                              |                |
| Total                        | $\Sigma f = 45$   | x = 45                          | (1)            |
| ·: n                         | = 45              |                                 |                |

$$\therefore \qquad \frac{n}{2} = \frac{45}{2}$$
$$= 22.5$$

- 22.5 Since, the cumulative frequency just greater than  $\frac{n}{2}$  i.e., 22.5 is 28. (1)

So, the median class is 100-140. Now, Median

$$= l + h \left[ \frac{\frac{n}{2} - cf}{f} \right]$$
  
= 100 + 40  $\left[ \frac{22.5 - 12}{16} \right]$ 

$$= 100 + 40 \times \frac{10.5}{16} = 126.25 \tag{1}$$

19. Mode = 
$$l + \frac{f_1 - f_0}{2f_1 - f_2 - f_0} \times h$$
 (½)

$$67 = 60 + \frac{15 - x}{30 - 12 - x} \times 10 \tag{1/2}$$

$$7 = \frac{15 - x}{18 - x} \times 10 \tag{1/2}$$

$$7 \times (18 - x) = 10(15 - x) \tag{1/2}$$

$$3x = 150 - 126 \tag{11/2}$$

 $(1\frac{1}{2})$ 

$$3x = 24$$

$$x = 8$$

126 - 7x = 150 - 10x

#### **20.** Calculating Median

| Height (in cm) | f  | cf |
|----------------|----|----|
| Below 140      | 4  | 4  |
| 140 - 145      | 7  | 11 |
| 145 - 150      | 18 | 29 |
| 150 - 155      | 11 | 40 |
| 155 – 160      | 6  | 46 |
| 160 - 165      | 5  | 51 |

$$N = 51 \implies \frac{N}{2} = \frac{51}{2} = 25.5$$

As 29 is just greater than 25.5, therefore median class is 145 - 150.

Median = 
$$l + \frac{\left(\frac{N}{2} - C\right)}{f} \times h$$

Here, l = lower limit of median class = 145

$$C = C.F.$$
 of the class preceding the median class  
= 11 (<sup>1</sup>/<sub>2</sub>)

h = higher limit – lower limit

$$= 150 - 145 = 5$$

$$f =$$
 frequency of median class = 18 (<sup>1</sup>/<sub>2</sub>)

:. Median = 
$$145 + \frac{(25.5 - 11)}{18} \times 5$$
  
=  $149.03$  (1)

#### Calculating mean

| Height<br>(in cm) | f  | $x_i$ | fx <sub>i</sub> |   |
|-------------------|----|-------|-----------------|---|
| below 140         | 4  | 137.5 | 550             |   |
| 140 - 145         | 7  | 142.5 | 997.5           |   |
| 145 - 150         | 18 | 147.5 | 2655            |   |
| 150 - 155         | 11 | 152.5 | 1677.5          |   |
| 155 - 160         | 6  | 157.5 | 945             |   |
| 160 - 165         | 5  | 162.5 | 812.5           | ( |

Mean = 
$$\frac{\Sigma fx}{N}$$
  
=  $\frac{7637.5}{51}$   
= 149.75 (1)

#### **Case Study Based Questions**

1. (d) 45
 2. (d) 2250
 3. (b) 10-20
 4. (c) 3100
 5. (b) 20
 1. (c) 43
 2. (c) 60
 3. (b) median
 4. (c) 80
 5. (c) 30
 11. 1. (c) 35.91 years
 2. (d) 45
 3. (d) 35.4
 4. (a) 41.4
 5. (b) 40.2