

mode = 3 median - 2 mean

Grouped

Class of Intervals	10-25	25-40	40-55	55-70	70-85	85-100
NO. of Students	2	3	7	6	6	6

MEDIAN

Intervals	No. of students	Cummulative frequency		
10-25	2	2		
25-40	3	5		
40-55	7	12 c		
ℓ (55) 70	6 f	18		
70-85	6	24		
85-100	6	30		

Median class: Class where c.f. is just greater or equal to n/2

n = 30; n/2 = 15 55-70 is median class lower limit of the median class (ℓ) = 55 c = cum frequency of median preceeding class

Median =
$$\ell + \frac{n/2 - c}{f} \times h = 62.5$$

MODE

Modal Class: Class where frequency

is maximum

Class size (h) = 15

Max. frequency f = 7, Modal class = 40-55

Lower limit of modal class = 40

fo = 3 (Previous class f value)

f2 = 6 (next class f value)

Mode =
$$\ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 40 + 4/5 \times 15 = 52$$

MEAN

3 Methods

Direct Method

Step deviation

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = 62$$

$$\bar{x} = a + h\bar{u}$$

$$\bar{x} = a + h\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) = 62$$

$\overline{x} = \alpha + \overline{d}$ $\overline{x} = \alpha + \left(\frac{\sum f_i d_i}{\sum f_i}\right) = 62$

Assumed mean method

Class Intervel	6	x _i	f _i x _i	d _i = x _i – a	$u_i = \frac{x_i - a}{h}$	f _i u _i	f _i d _i
10-25	2	17.5	35	-30	-2	-4	-60
25-40	3	32.5	97.5	-15	-1	-3	-45
40-55	7	47.5	332.5	0	0	0	0
55-70	6	62.5	375	15	1	6	90
70-85	6	77.5	465	30	2	12	180
85-100	6	92.5	555	45	3	18	270
	30		1860			$\sum f_i u_i = 29$	$\sum f_i d_i = 435$

Ungrouped

MODE

 $x = \frac{\sum f_i x_i}{\sum f_i}$

The value of the observation having the max. frequency

n is even

MEDIAN

 $x_1, x_2, \dots, x_n \rightarrow \text{observations}$ $f_1, f_2, \dots, f_n \rightarrow \text{frequencies}$

MEAN

Average of $\left(\frac{n}{2}+1\right)^{th}$ & $\left(\frac{n}{2}\right)^{th}$ observation.

 $\left(\frac{n+1}{2}\right)^{th}$ observation.

NCERT / X / Statistics