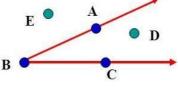
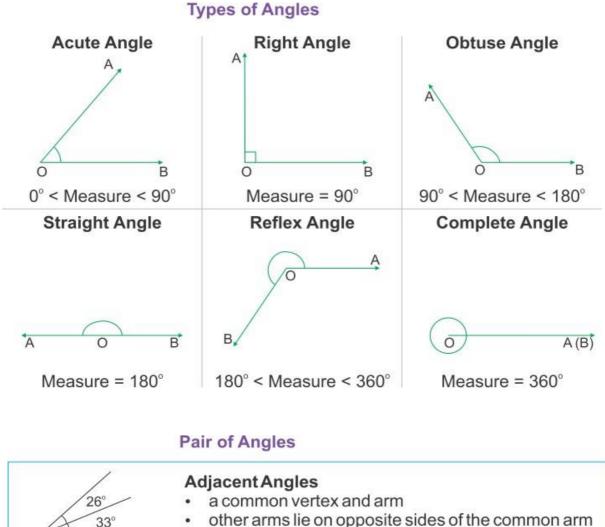

Lines and Angles

Recap Geometrical Terms

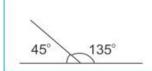

Point	•	An exact location on a plane is called a point.	
Line		A straight path on a plane, extending in both directions with no endpoints, is called a line.	
Line segment	••	A part of a line that has two endpoints and thus has a definite length is called a line segment.	
Ray	•>	A line segment extended indefinitely in one direction is called a ray.	

Angle and Points


• An Angle is a figure formed by two rays with a common endpoint, called the **vertex**.

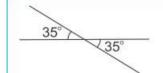
Angles can have points in the interior, in the exterior or on the angle.

Points A, B and C are on the angle. D is in the interior and E is in the exterior. B is the vertex.



other arms lie on opposite sides of the common arm ٠

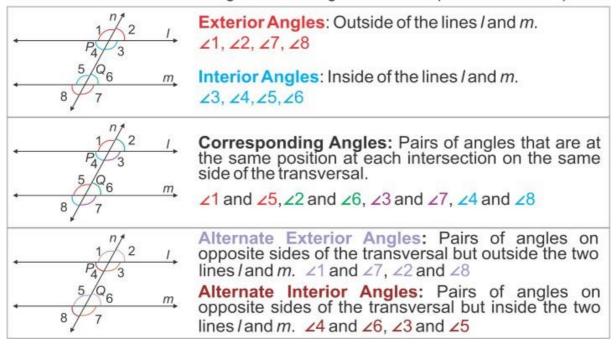
25°	/	
/	65°	
4		


Complementary Angles

- sum of measures of two angles is 90°
- each angle is called a complement of the other

Supplementary Angles

- sum of measures of two angles is 180°
- each angle is called a supplement of the other ٠



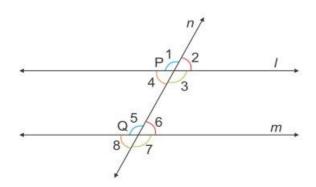
Vertically Opposite Angles

angles formed by two intersecting lines having no common arm

Angles Made by Transversal

Transversal: A line intersecting two or more given lines in a plane at different points.

Conditions for Parallel Lines


Lines *I* and *m* are parallel if any of the following is true:

- Pairs of alternate angles are equal.
 ∠3 = ∠5, ∠1 = ∠7
- Pairs of corresponding angles are equal.

∠2 = ∠6, ∠4 = ∠8

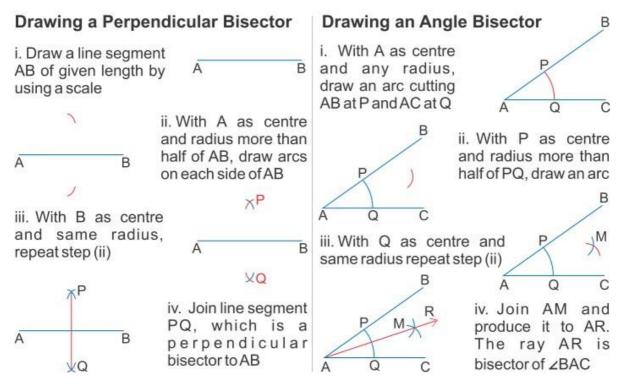
 The sum of the interior (or exterior) angles on the same side of the transversal is 180°.

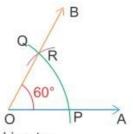
 $\angle 3 + \angle 6 = 180^{\circ} \text{ or}$ $\angle 1 + \angle 8 = 180^{\circ}$

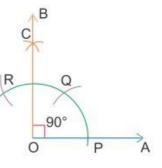
Constructions of Specific Angles

- i Draw a ray OA
- Using a compass, with O as centre and any radius draw an arc PQ which cuts OA at P
- With P as centre and same radius draw an arc to cut the arc PQ at R
- iv Join OR and produce it to form the ray OB
- v The ∠AOB thus formed measures 60°

Note: To get angle of 30°, follow the above steps and then draw a angle bisector.


i Draw a ray OA


- ii With O as centre and any radius draw an arc which cuts OA at P
- With P as centre and same radius draw an arc to cut the arc in step (ii) at Q
- iv With Q as centre and same radius as in step (ii) draw an arc to cut the arc in step (ii) at R
- v With Q as centre and same radius draw an arc
- vi With R as centre and same radius draw an arc, to cut the arc in Step (v) at C
- vii Join OC and produce it to B


viii The ∠AOB thus formed measures 90°

Note: To get angle of 45°, follow the above steps and then draw a angle bisector To get angle 120°, follow steps (i) to (iv) above, and join OR and produce it to B.

Constructions

