ATOMIC STRUCTURE [JEE ADVANCE PREVIOUS YEAR SOLVED PAPER]

JEE Advanced

Single Correct Answer type

- 1. The number of neutrons in dipositive zinc ion with mass number 70 is (IIT-JEE 1979)
 - **a.** 34
- **b.** 36
- **c.** 38
- **d.** 40
- 2. Rutherford's experiment on the scattering to α-particles showed for the first time that the atom has
 - a. electrons
- **b.** protons
- c. nucleus
- d. neutrons

(IIT-JEE 1981)

- 3. Any p-orbital can accommodate up to
 - a. four electrons
 - b. six electrons
 - c. two electrons with parallel spins
 - d. two electrons with opposite spins (IIT-JEE 1983)
- 4. The principal quantum number of an atom is related to the
 - a. Size of the orbital
 - b. Spin angular momentum
 - c. Orientation of the orbital in space

	- 1.4 (1.1.4)	periment is related to the size	16.	The wavelength of a spectral line for an electronic
	of the	a alastron d noutron		transition is inversely related to: a. the number of electrons undergoing the transition
	a. nucleus b. atom	c. electron d. neutron (IIT-JEE 1983)		b. the nuclear charge of the atom
6	The increasing order (low	est first) for the values of elm		c. the difference in the energy of the energy levels
u.	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(e), proton (p) , neutron (n) , and		involved in the transition
	alpha particle (α) is	(c), proton (p), noudon (n), and		d. the velocity of the electrons undergoing the transition
	a. e, p, n, α	b. n, p, e, α		(IIT-JEE 1988)
	c. n, p, α, e	d. n , α , p , e	17.	The orbital diagram in which the Aufbau principle is
	/C\$607€C \$0/ SERV	(IIT-JEE 1984)		violated is:
7.	Correct set of four quant	um numbers for the valence		2s $2p$
	(outermost) electron of rub	pidium $(Z = 37)$ is:		a. ↑↓ ↑
	a. $5, 0, 0, +1/2$	b. 5, 1, $0 + 1/2$		
	c. 5, 1, $1 + 1/2$	d. 6, 0, $0 + 1/2$		b. \uparrow
		(IIT-JEE 1984)		c. ↑↓ ↑ ↑ ↑
8.		ald allow the hydrogen atom to		
	absorb a photon but not to			d. $\uparrow\downarrow$ (IIT-JEE 1988)
	a. 3s b. 2p		18.	The outermost electronic configuration of the most
_		(IIT-JEE 1984)		electronegative element is
9.	Bohr model can explain	san atam anlı	XX	a. $ns^2 np^3$ b. $ns^2 np^4$ c. $ns^2 np^5$ d. $ns^2 np^6$
	a. the spectrum of hydrog	or ion containing one electron		(IIT-JEE 1988)
	only	n ion containing one electron	19.	. The correct ground state electronic configuration of
	c. the spectrum of a hydro	ogen molecule		chromium atom is: a. [Ar] $3d^5 4s^1$ b. [Ar] $3d^4 4s^2$
	d. the solar spectrum	(IIT-JEE 1985)		a. $[Ar] 3d^5 4s^1$ b. $[Ar] 3d^4 4s^2$ c. $[Ar] 3d^6 4s^0$ d. $[Ar] 4d^5 4s^1$
10.	The radius of an atomic no	ucleus is of the order of:		(IIT-JEE 1989)
	a. 10 ⁻¹⁰ cm	b. 10 ⁻¹³ cm	20.	. The correct set of quantum numbers for the unpaired
	c. 10 ⁻¹⁵ cm	d. 10 ⁻⁸ cm (IIT-JEE 1985)		electron of chlorine atom is:
11.		with the maximum wavelength		$n l m_l$
	is:	h madia mana		a. 2 1 0
	a. ultraviolet c. X-ray	b. radio waved. infrared (IIT-JEE 1985)		b. 2 1 1
12.		ticle scattering experiment		c. 3 1 1
	eventually led to the concl	(AT)	21	d. 3 0 0 (IIT-JEE 1989) Which of the following does not characterise X-rays?
	a. mass and energy are re		21.	a. The radiations can ionise gases
	b. electrons occupy space	around the nucleus		b. It causes ZnS to fluorescence
	c. neutrons are buried dee		-	c. Deflected by electric and magnetic fields
		with matter can be precisely		d. Have wavelengths shorter than ultraviolet rays
12	determined	(IIT-JEE 1986) ring sets of quantum number		(IIT-JEE 1992)
13.	represents an impossible a		22.	. Which of the following relates to photons both as wave
	$n l m_l m_s$	and a second		motion and as a stream of particles? a. Interference b. $E = mc^2$
	a. 3 2 -2 1/2			a. Interference b. $E = mc^2$ c. Diffraction d. $E = hv$ (IIT-JEE 1992)
	b. 4 0 0 1/2 c. 3 2 -3 1/2		23.	. A 3p orbital has:
	c. 3 2 -3 1/2			a. two non spherical nodes
	d. 5 3 0 -1/2	(IIT-JEE 1986)		b. two spherical nodes
14.	radiation to that of 4000 Å	photon of 2000 Å wavelength		c. one spherical and one non-spherical node
	a. 1/4 b. 4	product the second		d. one spherical and two non-spherical nodes
	a. 1/4 U. 4	(IIT-JEE 1986)		(IIT-JEE 1995)
15	The triad of nuclei that are		24.	The orbital angular momentum of an electron in 2s orbital
10.		b. ¹² ₆ C, ¹⁴ ₇ N, ¹⁹ ₉ F		1S: 1 h - h
	1186, 61 (5 (VO)(170)			a. $+\frac{1}{2} \cdot \frac{h}{2\pi}$ b. Zero c. $\frac{h}{2\pi}$ d. $\sqrt{2} \cdot \frac{h}{2\pi}$
	c. ¹⁴ ₆ C, ¹⁴ ₇ N, ¹⁷ ₆ F	d. ${}_{6}^{14}$ C, ${}_{7}^{14}$ N, ${}_{9}^{19}$ F		(IIT-JEE 1996)
		(IIT-JEE 1988)		(111-322 1770)

25.	The	e first use	of quantu	m theo	ry to exp	lain the structure		
		atom was						
		Heisenbe	erg	930030	Bohr	(TTT TTT 100T)		
		Planck	Western Ag•ressessin			(IIT-JEE 1997)		
		40.00			_	mentum is		
	a.	$\sqrt{6}(h/2\pi$	t)	b.	$\sqrt{2(h/2)}$	π)		
		$(h/2\pi)$				(IIT-JEE 1997)		
27.						numbers n and l ,		
		1153	12 (17) Et			n=3, l=2, and		
			= 1 can be the lowes	0.00		rder of increasing		
						(i) < (iii)		
			2 X X X X X X X X X X X X X X X X X X X) < (iv) < (ii)		
			3 15			(IIT-JEE 1999)		
28.	Th	e number	of nodal p	olanes ir	$\mathbf{a} p_x$ orb	oital is		
	a.	one	b. two	c.	three	d. zero		
						(IIT-JEE 2000)		
29.	Th	e electron	ic configu	ration of	an elem	ent is $1s^2$, $2s^2$, $2p^6$,		
			. This repr					
		excited s	52.0		ground anionic			
	C.	cationic	101111	u.	amonic	(IIT-JEE 2000)		
30.	Th	e wavele	noth asso	ciated v	vith a go			
30. The wavelength associated with a golf ball weighing 200 g and moving at a speed of 5 m/h is of the order								
						d. 10^{-40} m		
						(IIT-JEE 2001)		
31.	Th	e quantun	n numbers	+1/2 an	d-1/2 fo	or the electron spin		
	•	present						
	a.			224	lockwise	and anticlockwise	,	
			is respecti		-tialaaku	uise and aleakuvise		
	D.	W82 988	or the elections respective		nuciocky	vise and clockwise		
	c.				ectron poi	nting up and down		
	٠.	respectiv		, and en	ou on po	and a production of	8	
	d.	•	•	hanical	spin stat	es which have no		
		classical	analogue		2	(IIT-JEE 2001)		
32.	Ru	therford's	s experim	ent, whi	ich estab	lished the nuclear		
		- W 95	e atom, us					
	a.			imping	ed on a	metal foil and got		
		absorbed	T. (1988) 1988 198	incad a	- a mate	d fail and aigstad		
	D.	γ-rays, v		inged o	n a meu	al foil and ejected		
	c		N30	nich im	oinged o	n a metal foil and		
	٠.	got scatt			omged o			
	d.	_		nich im	oinged o	n a metal foil and		
		got scatt	ered	.00		(IIT-JEE 2002)		
33.	If	the nitrog	gen atom l	has elec	tronic co	onfiguration $1s^7$, it		
						the normal ground		
	sta	ite configu	ration 1s ²	$2s^22p^3$,	because t	he electrons would		
	11000	The same of the sa	the nucle	us. Yet	s' is not	observed because		
	ıt '	violates. Heisenh	erg uncert	ainty pr	inciple			
	-	THE INCHASE	THE PARTY OF THE P		4414414414			

d. Bohr postulate of stationary orbits (IIT-JEE 2002) 34. The radius of which of the following orbit is the same as that of the first Bohr's orbit of hydrogen atom? **a.** He⁺ (n = 2) **b.** Li²⁺ (n = 2) **c.** Li²⁺ (n = 3) **d.** Be³⁺ (n = 2)(IIT-JEE 2004) 35. The numbers of radial nodes of 3s and 2p orbitals are respectively **b.** 0, 2 **c.** 1, 2 **d.** 2, 1 **a.** 2, 0 (IIT-JEE 2005) 36. Given that the abundances of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe are 5%, 90%, and 5%, respectively, the atomic mass of Fe is **b.** 55.95 **c.** 55.75 **d.** 56.05 a. 55.85 (IIT-JEE 2009) 37. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is $[a_0]$ is Bohr radius]: $64\pi^2 ma_0^2$ $32\pi^2 ma_0^2$ (IIT-JEE 2012) Multiple Correct Answers type 1. An isotone of $^{76}_{32}$ Ge is: **a.** $_{32}^{77}$ Ge **b.** $_{33}^{77}$ As **c.** $_{34}^{77}$ Se **d.** $_{34}^{78}$ Se (IIT-JEE 1984) 2. Many elements have non-integral atomic masses because: a. they have isotopes b. their isotopes have non-integral masses c. their isotopes have different masses d. the constituents, neutrons, protons and electrons, combine to given fractional masses (IIT-JEE 1984) 3. When alpha particles are sent through a thin metal foil, most of them go straight through the foil because: a. alpha articles are much heavier than electrons b. alpha particles are positively charged c. most part of the atom is empty space d. alpha particles move with high velocity (IIT-JEE 1984) 4. The sum of the number of neutrons and proton in the isotope of hydrogen is: **d.** 3 c. 4 **a.** 6 **b.** 2 (IIT-JEE 1986) 5. The energy of an electron in the first Bohr orbit of H atom is -13.6 eV. The possible energy value(s) of the excited state(s) for electrons in Bohr orbits of hydrogen is (are) a. -3.4 eV b. -4.2 eV c. -6.8 eV d. -1.5 eV

(IIT-JEE 1998)

b. Hund's rule

c. Pauli exclusion principle

- 6. Which of the following statement(s) is (are) correct?
 - a. The electronic configuration of Cr is $[Ar]3d^5 4s^1$. (Atomic Number of Cr is 24)
 - **b.** The magnetic quantum number may have a negative value.
 - c. In silver atom, 23 electrons have a spin of one type and 24 of the opposite type. (Atomic Number of Ag is 47).
 - **d.** The oxidation state of nitrogen in HN_3 is -3.

(IIT-JEE 1998)

The ground state electronic configuration of nitrogen atom can be represented by

				(IIT-JEE 199	9)
c.	$\uparrow\downarrow$	$\uparrow \boxed{\downarrow} \boxed{\downarrow}$	d.	$\uparrow\downarrow$	\downarrow \downarrow	
a.	$[\uparrow\downarrow][\uparrow\downarrow]$		b.	$\downarrow\uparrow$	\uparrow	

Linked Comprehension Type

Paragraph for Problems 1-3

The hydrogen-like species Li^{2+} is in a spherically symmetric state S_1 with one radial node. Upon absorbing light the ion undergoes transition to a state S_2 . The state S_2 has one radial node and its energy is equal to the ground state energy of the hydrogen atom. (IIT-JEE 2010)

The state S₁ is
 a. 1s
 b. 2s
 c. 2p
 d. 3s
 Energy of the state S₁ in units of the hydrogen atom ground state energy is
 a. 0.75
 b. 1.50
 c. 2.25
 d. 4.50

3. The orbital angular momentum quantum number of the state S₂ is
a. 0
b. 1
c. 2
d. 3

Matching Column Type

1. According to Bohr's theory $E_n = \text{Total energy}, K_n = \text{Kinetic energy}, V_n = \text{Potential energy}, r_n = \text{Radius of } n \text{th orbit}$ (IIT-JEE 2006)

Column I	Column II
$\mathbf{a.}\ V_n/K_n=?$	p. 0
b. If radius of n^{th} orbit $\propto E_n^x$, $x = ?$	q. –l
c. Angular momentum in lowest orbital	r. −2
$\mathbf{d.} \frac{1}{n^n} \propto Z^y, \ y = ?$	s. 1

2. Match the entries in column I with the correctly related quantum number(s) in column II. (IIT-JEE 2008)

Column I	Column II
a. Orbital angular momentum of the electron in a hydrogen- like atomic orbital	

b.	A hydrogen-like one electron wave function obeying Pauli's principle	q.	Azimuthal quantum number
c.	Shape, size and orientation of hydrogen-like atomic orbitals	r.	Magnetic quantum number
d.	Probability density of electron at the nucleus in hydrogen- like atom	s.	Electron spin quantum number

Integer Answer Type

 The work function (φ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metal is

Metal	Li	Na	K	Mg	Cu	Ag	Fe	Pt	w
φ(eV)	2.4	2.3	2.2	3.7	4.8	4.3	4.7	6.3	4.75

(HT-JEE 2011)

2. The maximum number of electrons that can have principal quantum number n = 3, and spin quantum number

$$m_s = -\frac{1}{2}$$
 is (IIT-JEE 2011)

3. The atomic masses of 'He' and 'Ne' are 4 and 20 a.m.u, respectively. The value of the de Broglie wavelength of 'He' gas at -73°C is "M" times that of the de Broglie wavelength of 'Ne' at 727°C. 'M' is

(JEE Advanced 2013)

4. In an atom, the total number of electrons having quantum numbers n = 4, $|m_{\ell}| = 1$ and $m_8 = -\frac{1}{2}$ is

(JEE Advanced 2014)

5. Not considering the electronic spin, the degeneracy of the second excited state (n = 3) of H atom is 9, while the degeneracy of the second excited state of H⁻ is

(JEE Advanced 2015)

Fill in the Blanks Type

ι.	The mass of a hydrogen atom is	kg.
		(IIT-JEE 1982)
2.	Isotopes of an element differ in the number	er of
	in their nuclei.	(IIT-JEE 1982)
3.	When there are two electrons in the sa	me orbital, they
	have spins.	(IIT-JEE 1982)
1.	Elements of the same mass number but of	f different atomic
	numbers are known as	(IIT-JEE 1983)
5.	The uncertainty principle and the concep	pt of wave nature
	of matter were proposed by	and
	respectively. (Heisenberg, Schrodinge	er, Maxwell, de
	Broglie)	(IIT-JEE 1988)
5.	The light radiations with discrete quanti	ties of energy are
	called	(IIT-JEE 1993)
7.	Wave functions of electrons in atoms as	
	called	(IIT-JEE 1993)

3. The energy of the electron in the second and third Bohr's orbits of the hydrogen atom is -5.42×10^{-12} erg and -2.41×10^{-12} erg respectively. Calculate the wavelength of the emitted radiation when the electron drops from the third to the second orbit. (IIT-JEE 1981)

Atomic weights of most of the elements are fractional.

sentences:

4. Calculate the wavelength in Angstroms of the photon that is emitted when an electron in the Bohr crbit, n = 2, returns to the orbit, n = 1, in the hydrogen atom. The ionisation potential of the ground state hydrogen atom is 2.17×10^{-11} erg per atom. (IIT-JEE 1982)

5. The electron energy in hydrogen atom is given by $E = (-21.7 \times 10^{-12})/n^2$ erg. Calculate the energy required to remove an electron completely from the n = 2 orbit. What is the longest wavelength (in cm) of light that can be used to cause this transition? (IIT-JEE 1985)

6. Give reason why the ground state outermost electronic configuration of silicon is:

3s 3p $\uparrow \uparrow$ and not 11 $\uparrow \downarrow$ (IIT-JEE 1985)

7. What is the maximum number of electrons that may be present in all the atomic orbitals with principal quantum number 3 and azimuthal quantum number 2?

(IIT-JEE 1985)

8. According to Bohr's theory, the electronic energy of hydrogen atom in the *n*th Bohr's orbit is given by $E_n = \frac{-21.76 \times 10^{-19}}{n^2} \text{ J. Calculate the longest wavelength}$ of light that will be needed to remove an electron from the third Bohr orbit of the He⁺ ion. (IIT-JEE 1990)

14. Consider the hydrogen atom to be a proton embedded in a cavity of radius a₀ (Bohr radius) whose charge is neutralised by the addition of an electron to the cavity in vacuum, infinitely slowly. Estimate the average total energy of an electron in its ground state in a hydrogen atom as the work done in the above neutralisation process. Also, if the magnitude of the average kinetic energy is half the magnitude of the average potential energy, find the average potential energy. (IIT-JEE 1996)

15. With what velocity should an α-particle travel towards the nucleus of a copper atom so as to arrive at a distance 10⁻¹³ m from the nucleus of the copper atom?

(IIT-JEE 1997)

16. An electron beam can undergo diffraction by crystals. Through what potential should a beam of electrons be accelerated so that its wavelength becomes equal to 1.54 Å?

(IIT-JEE 1997)

17. Calculate the energy required to excite one litre of hydrogen gas at 1 atm and 298 K to the first excited state of atomic hydrogen. The energy for the dissociation of H-H bond is 436 kJ mol⁻¹. (IIT-JEE 2000)

18. Wavelength of high energy transition of H-atoms is 91.2 nm. Calculate the corresponding wavelength of He⁺ atoms.

(IIT-JEE 2003)

19. a. The Schrödinger wave equation for hydrogen atom is

$$\Psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r_0}{a_0}\right) e^{-r_0/a_0}$$

where a_0 is Bohr's radius. If the radial node in 2s be at r_0 . Then, find r_0 in terms of a_0 .

b. A ball of mass 100 g is moving with 100 ms⁻¹. Find its wavelength. (IIT-JEE 2004)

20. Find the velocity (ms⁻¹) of electron in first Bohr's orbit of radius a_0 . Also find the de Broglie's wavelength (in m). Find the orbital angular momentum of 2p orbital of hydrogen atom in units of $h/2\pi$. (IIT-JEE 2005)

Answer Key

JEE Advanced

Single Correct Answer Type

1. d.	2. c.	3. d	١.	4.	a.	5.	a.
6. d.	7. a.	8. d	l.	9.	b.	10.	b.
11. b.	12. b.	13. c		14.	d.	15.	a.
16. c.	17. b.	18. c		19.	a.	20.	c.
21. c.	22. d.	23. c		24.	b.	25.	b.
26. a.	27. a.	28. a	١.	29.	b.	30.	a.
31. d.	32. d.	33. c		34.	d.	35.	a.
36. b.	37. c.						

Multiple Correct Answers Type

1.	b., d.	2.	a., c.	3.	a., c.	4.	b., d.	5.	a., d.
6.	a., b., c.	7.	a., d.						

Linked Comprehension Type

1. b. 2. c. 3. b.

Matching Column Type

1. (a)
$$\to$$
 (r); (b) \to (q); (c) \to (p); (d) \to (s)

2. (a)
$$\rightarrow$$
 (q); (b) \rightarrow (p), (q), (r), (s); (c) \rightarrow (p), (q), (r); (d) \rightarrow (p), (q), (r)

Integer Answer Type

1. (4) **2.** (9) **3.** (5) **4.** (6) **5.** (3)

Fill in the Blanks Type

- 1. 1.66×10^{-27} kg 2. neutrons 3. antiparallel 4. isobars
- 5. Heisenberg, de-Brogile 6. photons
- 7. orbitals 8. orientation in space 9. $4s^1$, $3d^5$

True/False Type

1. False

hiective Type

3. True

4. False

Subjective Type

- 1. 80% 3. 6.604 Å 4. 1220 Å 5. 3.67×10^{-5}
- 8. 2055 Å 11. 3 12. 2.105×10^{-20} J
- 13. 27419.25 cm⁻¹ 17. 98.17 kJ

2. False

18. 22.8 nm

Hints and Solutions

- 12. b. Electrons in an atom occupy the extra nuclear region.
- 13. c. If l = 2, $m \ne -3$, m will vary from -2 to +2, i.e., possible values of m are -2, -1, 0, +1 and +2.
- **14. d.** $E = \frac{hc}{\lambda}$; $\lambda_1 = 2000 \text{ Å}$; $\lambda_2 = 4000 \text{ Å}$;

so
$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{4000}{2000} = 2$$

15. a. Isotones have same number of neutrons. All atoms in triad (a) have same number of neutrons (= A - Z = 8).

i.e.
$$14-6=8$$

 $15-7=8$
 $17-9=8$

- 16. c. Difference in the energy of the energy levels involved in the transition.
- 17. b. According to Aufbau principle, the orbital of lower energy (2s) should be fully filled before the filling of orbital of higher energy starts.
- 18. c. The element having highest tendency to accept the electron will be most electronegative element.

Configuration ns^2 , np^5 means it requires only one electron to attain nearest noble gas configuration. So, it will be most electronegative element among given choices.

- 19. a. Exactly half-filled orbitals are more stable than nearly half-filled orbitals. Cr (At. no. 24) has configuration [Ar] 3d⁵, 4s¹.
- **20. c.** Electronic configuration of chlorine is [Ne] $3s^2$, $3p^5$

- 21. c. X-rays can ionize gases and cannot get deflected by electric and magnetic fields, wavelength of these rays is 150 to 0.1 Å. Thus the wave length of X-rays is shorter than that of UV rays.
- 22. d. As packet of energy equal to hv; as wave having frequency v.
- 23. c. Total nodes = n-1

No. of radial nodes = n - l - 1

No. of angular nodes = l

For 3p sub-shell, n = 3, l = 1

No. of radial nodes = n - l - 1 = 3 - 1 - 1 = 1

 \therefore No. of angular nodes = l = 1

24. b. Orbital angular momentum $(mvr) = \frac{h}{2\pi} \sqrt{l(l+1)}$ it depends only on l.

For 2s orbital, l (azimuthal quantum number) = 0

- Orbital angular momentum = 0.
- 25. b. Bohr's theory was based upon some postulates of classical physics and some postulates of the newly proposed quantum theory of Planck.
- 26. a. The expression for orbital angular momentum is

Angular momentum = $\sqrt{l(l+1)} \left(\frac{h}{2\pi} \right)$

For d orbital, l = 2.

Hence, $L = \sqrt{2(2+1)} \left(\frac{h}{2\pi}\right) = \sqrt{6} \left(\frac{h}{2\pi}\right)$

- 27. a. The two guiding rules to arrange the various orbitals in the increasing energy are:
 - i. Energy of an orbital increases with increase in the value of n+1.
 - ii. Of orbitals having the same value of n + l, the orbital with lower value of n has lower energy.

Thus for the given orbitals, we have

i.
$$n+l=4+1=5$$

ii.
$$n+l=4+0=4$$

iii.
$$n+l=3+2=5$$

iv.
$$n+l=3+1=4$$

JEE Advanced

Single Correct Answer type

- 1. d. No. of neutrons = Mass number Atomic number (Ion formation never changes neutrons) = 70 30 = 40.
- 2. c. Rutherford's scattering experiment led to the discovery of nucleus.
- 3. d. One p-orbital can accommodate up to two electrons with opposite spin while p-subshell can accommodate up to six electrons. Any one orbital can accommodate maximum of two electrons.
- **4. a.** The principal quantum number (n) is related to the size of the orbital (n = 1, 2, 3 ...)
- 5. a. According to Rutherford's experiment. "The central part consisting of whole of the positive charge and most of the mass, called nucleus, is extremely small in size compared to the size of the atom."
- 6. d. $\frac{e}{m}$ for neutron = $\frac{0}{1}$ = 0; α -particle = $\frac{2}{4}$ = 0.5; proton = $\frac{1}{1}$ = 1; electron = $\frac{1}{1/1837}$ = 1837
- 7. a. Rb has the configuration: $1s^2 2s^2p^6 3s^2p^6d^{10} 4s^2p^6 5s^1$; so n = 5, l = 0, m = 0 and $s = + \frac{1}{2}$ is correct set of quantum numbers for valence shell electron of Rb.
- 8. d. Energy is emitted when electron falls from higher energy level to lower energy level and energy is absorbed when electron moves from lower level to higher level.
 - 1s is the lowest energy level of electron in an atom.
 An electron in 1s level of hydrogen can absorb energy but cannot emit energy.
- 9. b. Bohr model can explain spectrum of atoms/ions containing one electron only.
- 10. b. The radius of nucleus is of the order of 1.5×10^{-13} to 6.5×10^{-13} cm or 1.5 to 6.5 Fermi (1 Fermi = 10^{-13} cm)
- 11. b. The following is the increasing order of wavelength or decreasing order of energy of electromagnetic radiations:

Cosmic rays
λ-rays
X-rays
UV-rays
Visible
Infrared radiation
Microwaves
Radiowaves

Among given choices radiowaves have maximum wavelength.

Hence, the order of increasing energy is

28. a. p_s orbital being dumbbell shaped, have number of nodal planes = 1, in yz plane.

- **29. b.** $3d^54s^1$ system is more stable than $3d^44s^2$, hence former is the ground state configuration.
- 30. a. According to de-Broglie's equation

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
Given, $h = 6.6 \times 10^{-34} \text{ Js}$

$$m = 200 \times 10^{-3} \text{ kg}$$

$$v = \frac{5}{60 \times 60} \text{ m/s}$$

$$\lambda = \frac{6.6 \times 10^{-34}}{200 \times 10^{-3} \times 5/(60 \times 60)} = 2.38 \times 10^{-10} \text{ m}$$

- 31. d. The term spin implies that this magnetic moment is produced by the electron charge as the electron rotates about its own axis. Although this conveys a vivid mental picture of the source of the magnetism, the electron is not an extended body and its rotation is meaningless, Electron spin has no classical counterpart; the magnetic moment is a consequence of relativistic shifts in local space and time due to the high effective velocity of the electron in the atom.
- 32. d. Rutherford's experiment was actually α-particle scattering experiment. α-Particle is doubly positively charged helium ion, i.e., He-nucleus.
- 33. c. As per Pauli's exclusion principle "no two electrons in the same atom can have all the four quantum numbers equal or an orbital cannot contain more than two electrons and it can accommodate two electrons only when their direction of spins are opposite".

34. d.
$$r_n = 0.529 \frac{n^2}{Z} \text{ Å}$$

For hydrogen, n = 1 and Z = 1; : $r_H = 0.529$ For Be³⁺, n = 2 and Z = 4

For Be, n = 2 and Z = 4

$$\therefore r_{\text{Be}^3} = \frac{0.529 \times 2^2}{4} = 0.529$$

35. a. Number of radial nodes = (n = l - 1)

For 3s: n = 3, l = 0 (Number of radial node = 2)

For 2p: n = 2, l = 1 (Number of radial node = 0)

36. b. Average atomic mass of Fe

$$=\frac{(54\times5)+(56\times90)+(57\times5)}{100}=55.95$$

37. c. As per Bohr's postulate,

$$mvr = \frac{nh}{2\pi}$$

So,
$$v = \frac{nh}{2\pi mr}$$
$$KE = \frac{1}{2}mv^2$$

So,
$$KE = \frac{1}{2}m\left(\frac{nh}{2\pi mr}\right)^2$$

Since,
$$r = \frac{a_0 \times n^2}{z}$$

So, for 2nd Bohr orbit

$$r = \frac{a_0 \times 2^2}{1} = 4a_0$$

$$KE = \frac{1}{2}m \left(\frac{2^2 h^2}{4\pi^2 m^2 \times (4a_0)^2} \right)$$

$$KE = \left(\frac{h^2}{32\pi^2 m a_0^2} \right)$$

Multiple Correct Answers Type

1. b., d.

⁷⁷₃₃ As and ⁷⁸₃₄ Se have same number of neutrons

$$= (A - Z)$$
 as $^{76}_{32}$ Ge.

2. a., c.

Because they have isotopes with different masses. The average atomic mass is the weighed mean of their presence in nature; e.g. Cl³⁵ and Cl³⁷ are present in ratio 3:1 in nature.

So,
$$A = \frac{35 \times 3 + 37 \times 1}{4} = 35.5$$

3. a., c.

α-particles pass through because most part of the atom is empty.

4. b., d.

In tritium (the isotope of hydrogen) nucleus there is one proton and 2 neutrons. $\therefore n + p = 3$. In deuterium nucleus there is one proton and one neutron $\therefore n + p = 2$.

5. a., d.

The energy of an electron on Bohr orbits of hydrogen atoms is given by the expression

$$E_n = \frac{\text{Constant}}{n^2}$$

Where *n* takes only integral values. For the first Bohr orbit, n = 1 and it is given that $E_1 = -13.6 \text{ eV}$

Hence $E_n = -\frac{13.6 \text{ eV}}{n^2}$ of the given values of energy, only -3.4

eV and -1.5 eV can be obtained by substituting n = 2 and 3 respectively in the above expression.

6. a., b., c.

a.
$$_{24}$$
Cr = $1s^2$, $2s^2$, $2p^6$, $3s^23p^63d^5$, $4s^1$ = [Ar] $3d^5$, $4s^1$

b. For magnetic quantum number (m), negative values are possible as $m_l = -l \dots 0 \dots + l$

For s-subshell, l = 0, hence m = 0

For p-subshell, l = 1, hence m = -1, 0, +1

c. $_{47}Ag = 1s^2$, $2s^2$, $2p^6$, $3s^23p^63d^{10}$, $4s^2 4p^6 4d^{10}$, $5s^1$ Hence 23 electrons have a spin of one type and 24 of the opposite type.

d. Oxidation state of N in HN_3 is -1/3.

7. a, d.

According to Hund's rule pairing of electrons starts only when each of the orbital in a subshell has one electron each of parallel spin.

.: (a) and (d) are correct ground state electronic configurations of nitrogen atom in the ground state.

Linked Comprehension Type

1. b. For, S_1 (spherically symmetrical)

$$node = 1$$

$$\Rightarrow n - 1 = 1$$

$$n = 2$$

For S_2 , radial node = 1

$$E_{S_2} = \frac{-13.6 \times z^2}{n^2} = E_{\text{H}} \text{ in ground state} = -13.6$$

$$E = \frac{-13.6 \times 9}{n^2} \Rightarrow n = 3$$

So, state S_1 is 2s and S_2 is 3p.

2. c.
$$\frac{E_{s_1}}{E_{\text{H(ground)}}} = \frac{-13.6 \times 9}{4 \times (-13.6)} = 2.25$$

3. b. Azimuthal quantum number for $S_2 = \ell = 1$.

Matching Column Type

1. (a) \to (r); (b) \to (q); (c) \to (p); (d) \to (s)

(a)
$$\frac{V_n}{K_n} = \frac{-Kze^2/r}{Kze^2/r} = -2$$
; where $K = \frac{i}{4\pi\epsilon_0}$: (a) \rightarrow (r)

(b) $r_n \propto (E_n)-1$; \therefore **(b)** \rightarrow **(q)**

(c) Angular momentum of electron in lowest (1s) orbital

$$= \sqrt{\ell(\ell+1)} \frac{h}{2\pi} \; ; \quad \therefore \quad (c) \to (p)$$

(d)
$$\frac{1}{r^n} \propto Z^1$$
; \therefore (d) \rightarrow (s)

2. (a)
$$\rightarrow$$
 (q); (b) \rightarrow (p, q, r, s); (c) \rightarrow (p, q, r); (d) \rightarrow (p, q, r)

(a) Orbital angular momentum (L) = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi}$

i.e. L depends on azimuthal quantum number only.

- (b) To describe a one electron wave function, three quantum number n, l and m are needed. Further to abide by Pauli exclusion principle, spin quantum number(s) is also needed.
- (c) For shape, size and orientation, only n, l and m are needed.
- (d) Probability density (ψ^2) can be determined if n, l and m are known.

Integer Answer Type

1. (4) $hv = \text{Energy of incident photon and } hv_0 = \text{Work function or threshold energy}$

Energy associated with incident photon = $\frac{hc}{\lambda}$

$$E = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}} J$$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9} \times 1.6 \times 10^{-19}} eV = 4.16 eV$$

If $h\nu \ge h\nu_0$ or ϕ then it will show photoelectric effect Li, Na, K, Mg have $h\nu > h\nu_0$.

2. (9) Maximum number of electrons = $2n^2$ in an orbit, out of which half have $+\frac{1}{2}$ spin and half have $-\frac{1}{2}$ spin.

Maximum number of electrons (n^2) when $n = 3 = 3^2 = 9$

:. Number of orbitals = 9

 \therefore Number of electrons with $m_S = -\frac{1}{2}$ will be 9.

3. (5) Since,

$$\lambda = \frac{h}{mV} = \frac{h}{\sqrt{2M \ K.E.}} \qquad \text{(since K.E.} \propto T\text{)}$$

$$\lambda \propto \frac{1}{\sqrt{MT}}$$

For two gases,

$$\frac{\lambda_{\text{He}}}{\lambda_{\text{Ne}}} = \sqrt{\frac{M_{\text{Ne}}T_{\text{Ne}}}{M_{\text{He}}T_{\text{He}}}} = \sqrt{\frac{20}{4} \times \frac{1000}{200}} = 5$$

4. (6) n = 4

$$|m_l| = 1 \Rightarrow \pm 1 \qquad m_s = \frac{1}{2}$$
for $l = 0$, $m_l = 0$

$$l = 1, m_l = -1, 0, +1$$

$$l = 2, m_l = -2, -1, 0, +1, +2$$

$$l = 3, m_l = -3, -2, -1, 0, +1, +2, +3$$

so, six electrons can have $|m_{\ell}| = 1$ and $m_s = -\frac{1}{2}$.

5. (3) Ground state configuration

in second excited state, electron will jump from 1s to 2p, so degeneracy of second excited state of H is 3.

Fill in the Blanks Type

1. 1.66 × 10⁻²⁷ kg Mass of Hydrogen atom

$$= \frac{\text{Atomic mass of hydrogen}}{\text{Avogadro number}} = \frac{1.008}{6.02 \times 10^{23}}$$
$$-0.166 \times 10^{-23} \text{ g} = 1.66 \times 10^{-27} \text{ kg}$$

- 2. neutrons, for example, ¹₁H, ²₁H, ³₁H have 0, 1, 2 neutrons.
- 3. antiparallel; or opposite to follow Pauli's exclusion principle.
- 4. isobars, for example, $^{40}_{19}$ K, $^{40}_{20}$ Ca
- 5. Heisenberg, de-Broglie
- 6. photons
- 7. orbitals
- 8. orientation in space
- 9. $4s^1$, $3d^5$;

The electronic configuration of Cr is: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$, $3d^5$.

 \therefore Outermost electronic configuration is $3d^5$, $4s^1$.

True / False Type

1. False:

The outer electronic configuration of the ground state chromium atom is $3d^5 4s^1$, as half-filled orbitals are more stable than nearly half-filled orbitals.

2. False:

Gamma rays are electromagnetic radiations of wavelengths 10^{-9} cm to 10^{-10} cm.

3. True:

Although energies of the s and p orbitals for the same principal quantum number are very close to each other; the energy of the corresponding d orbitals is much higher. For example, the energy of 3d orbitals is much more than

that of 3s and 3p orbitals but less than 4s orbitals in case of H atom.

4. False:

The orbital $3d_{x^2-y^2}$ lies along X- and Y-axis where electron density is maximum.

Subjective Type

- 1. Let the % of isotope with At. wt. 10.01 = x
 - .. % of isotope with At. wt. 11.01 = (100 x)

At. wt. of boron =
$$\frac{x \times 10.01 + (100 - x) \times 11.01}{100}$$

$$\Rightarrow 10.81 = \frac{x \times 10.01 + (100 - x) \times 11.01}{100}$$

$$\therefore x = 20$$

Hence % of isotope with At. wt. 10.01 = 20%

% of isotope with At. wt. 11.01 = 100 - 20 = 80%.

Elements usually have one or more isotopes and these isotopes have different atomic masses. So atomic weights are fractional number.

$$\lambda = \frac{\lambda}{\lambda} = \frac{6.626 \times 10^{-27} \times 3 \times 10^{10}}{3.01 \times 10^{-12}}$$

$$= \frac{19.878 \times 10^{-17}}{3.01 \times 10^{-12}} = 6.604 \times 10^{-5} \text{ cm} = 6.604 \text{ Å}$$

i. Energy of *n*th orbit $E_n = \frac{E_1}{n^2}$ and $E_1 = -I.E$ = -2.17×10^{-11} erg atom⁻¹

as IE = $E_{\infty} - E_1$ and $E_{\infty} = 0$

ii. Difference in energy $(\Delta E) = E_1 - E_2 = hv = \frac{hc}{\lambda}$

.. Energy of second orbit

$$E_n = \frac{E_1}{h^2}$$

$$\Rightarrow E_2 = \frac{-2.17 \times 10^{-11}}{2^2} = -0.5425 \times 10^{-11} \text{ erg}$$

$$\Delta E = E_1 - E_2$$

$$= -2.17 \times 10^{-11} - (-0.5425 \times 10^{-11})$$

$$= -1.6275 \times 10^{-11} \text{ erg}$$

 \Rightarrow Energy released is 1.6275×10^{-11} erg so wavelength of emitted radiation.

$$\lambda = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{1.6275 \times 10^{-11}} = 12.20 \times 10^{-6} \text{ cm} = 1220 \text{ Å}$$

 To calculate the energy required to remove electron from atom, means e⁻ is to be taken to ∞.

Energy of an electron in the nth orbit of hydrogen is given by

$$E = -21.7 \times 10^{-12} \times \frac{1}{n^2} \text{ ergs}$$

$$\Delta E = E_{\infty} - E_2$$

$$= \frac{-21.7 \times 10^{-12}}{\infty^2} - \frac{-21.7 \times 10^{-12}}{2^2}$$

$$= -21.7 \times 10^{-12} \left(\frac{1}{\infty^2} - \frac{1}{4}\right)$$

$$= -21.7 \times 10^{-12} \left(0 - \frac{1}{4}\right) = +5.42 \times 10^{-12} \text{ ergs}$$

 \Rightarrow Energy required is 5.42×10^{-12} ergs.

Now we know that $\Delta E = hv$

$$\Delta E = \frac{hc}{\lambda} \qquad \left(\because v = \frac{c}{\lambda}\right)$$

or $\lambda = \frac{hc}{\Delta E}$

Substituting the value, $\lambda = \frac{6.627 \times 10^{-27} \times 3 \times 10^{10}}{5.42 \times 10^{-12}}$

$$= 3.67 \times 10^{-5} \text{ cm}$$

6. Ground state electronic configuration of Si

is in accordance with Hund's rule which states that electron pairing in any orbital (s, p, d or f) cannot take place until each orbital of the same sub-level contains 1 electron each of like spin.

- 7. For n = 3 and l = 2 (i.e., 3d orbital), the values of m varies from -2 to +2, i.e. -2, -1, 0, +1, +2 and for each 'm' there are 2 values of 's', i.e., $+\frac{1}{2}$ and $-\frac{1}{2}$.
 - .. Maximum no. of electrons in all the five d-orbitals is 10.
- 8. Energy needed to remove means to bring electron to infinity.

$$\frac{1}{n=3} \Rightarrow \text{Energy required} = E_{\infty} - E_{3} = \Delta E$$

$$E_{n} \text{ of } H = \frac{-21.76 \times 10^{-19}}{n^{2}} J$$

$$E_{n} \text{ of } He^{+} = \frac{-21.76 \times 10^{-19}}{n^{2}} \times Z^{2} J$$

$$\vdots$$

$$E_{3} \text{ of } He^{+} = \frac{-21.76 \times 10^{-19} \times 4}{9} J$$

$$\Delta E = \left(\frac{-21.76 \times 10^{-19}}{\infty^{2}}\right) - \left(\frac{-21.76 \times 10^{-19}}{3^{2}}\right) \times 2^{2}$$

$$\vdots$$

$$\Delta E = \frac{21.76 \times 10^{-19}}{9} \times 4 J$$

Hence energy equivalent to E_3 must be supplied to remove the electron from 3rd orbit of He^+ . Wavelength corresponding to this energy can be determined by applying the relation.

$$\Delta E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{\Delta E} = \frac{6.625 \times 10^{-34} \times 3 \times 10^8 \times 9}{21.76 \times 10^{-19} \times 4}$$
$$= 2055 \times 10^{-10} \,\text{m} = 2055 \,\text{Å}$$

9. As
$$E_n = \frac{-21.76 \times 10^{-19}}{n^2} \times Z^2$$
 J/atom

a. To find $E_2 - E_1 = \Delta E$ for hydrogen

$$\Delta E = \frac{-21.76 \times 10^{-19}}{2^2} - \frac{-21.76 \times 10^{-10}}{1^2}$$

$$\Delta E = -21.76 \times 10^{-19} \left(\frac{1}{4} - \frac{1}{1}\right)$$

$$\Delta E = -21.76 \times 10^{-19} \times -\frac{3}{4} = 16.32 \times 10^{-19} \text{ J/atom}$$

Aim: Hydrogen

Aim: Hydrogen
$$n_2 = ?$$

$$\lambda_{He^+}$$

$$n_1 = ?$$

$$n_1 = 2$$
He⁺

$$\lambda_{He^+}$$

$$n_1 = 2$$

Given:
$$\lambda_{H} = \lambda_{He} \Rightarrow \overline{v}_{H} = \overline{v}_{He}$$
 as $\overline{v} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)^{Z^{2}} Z^{2}$

For He+

$$\overline{v}_{He}^{\cdot} = R_{H} = \left(\frac{1}{2^{2}} - \frac{1}{4^{2}}\right) 2^{2}, \ \overline{v}_{H} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right) 1^{2}$$

as
$$\overline{v}_{He} = \overline{v}_{H}$$
 so $R_{H} \left(\frac{1}{n^{2}} - \frac{1}{n^{2}} \right) = R_{H} \left(\frac{1}{1} - \frac{1}{4} \right) = \left(\frac{1}{1^{2}} - \frac{1}{2^{2}} \right)$

On comparing

 $n_1 = 1$ and $n_2 = 2$ in case of hydrogen.

11. No. of waves in one round =
$$\frac{2\pi r_3}{\lambda}$$

as
$$\lambda = \frac{h}{mv}$$

So, no. of waves in one round in 3rd orbit is =
$$\frac{2\pi r_3 m v_3}{h}$$

 r_n for $H = r_1 \times n^2$
 r_3 for $H = 0.529 \times 3^2 \times 10^{-8}$ cm
 $= 0.529 \times 9 \times 10^{-10}$ m (:: $r_1 = 0.529$ Å)

Also $u_n = Z \frac{u_1}{n}$;

$$u_3 = \frac{2.19 \times 10^8}{3} \text{ cm sec}^{-1} = \frac{2.19 \times 10^6}{3} \text{ m sec}^{-1}$$

$$(\because u_1 = 2.19 \times 10^8 \text{ cm sec}^{-1})$$

Also

No. of waves in one round

$$= \frac{2\pi r_3}{\lambda} = \frac{2\pi r_3}{h/mv_3} = \frac{2\pi r_3 \times u_3 \times m}{h}$$

$$= \frac{2 \times 22 \times 0.529 \times 9 \times 10^{-10} \times 2.19 \times 10^6 \times 9.108 \times 10^{-31}}{7 \times 3 \times 6.62 \times 10^{-34}}$$

$$= 3$$

12. Bond energy of $I_2 = 240 \text{ kJ mol}^{-1} = 240 \times 10^3 \text{ J mol}^{-1}$

$$= \frac{240 \times 10^{3}}{6.023 \times 10^{23}} \text{ J molecule}^{-1}$$
$$= 3.984 \times 10^{-19} \text{ J molecule}^{-1}$$

Energy absorbed =
$$\frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ ms}^{-1}}{4500 \times 10^{-10} \text{ m}}$$

$$= 4.417 \times 10^{-19} \text{ J}$$

Kinetic energy = Absorbed energy - Bond energy

:. Kinetic energy =
$$4.417 \times 10^{-19} - 3.984 \times 10^{-19} \text{ J}$$

= $0.433 \times 10^{-19} \text{ J/molecule}$
= $4.33 \times 10^{-20} \text{ J/molecule}$

Kinetic energy of each atom of iodine

$$= \frac{4.33 \times 10^{-20}}{2} = 2.165 \times 10^{-20} \text{ J}.$$

13. Balmer means n = 2, Z = 1

Shortest wavelength means max. frequency means max. energy means limiting line means $n_2 = \infty$.

The shortest wavelength transition in the Balmer series corresponds to the transition

$$n = 2 \rightarrow n = \infty$$
. Hence, $n_1 = 2$, $n_2 = \infty$ Balmer
$$\overline{v} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = (109677 \text{ cm}^{-1}) \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$$

$$= 27419.25 \text{ cm}^{-1}$$

14. Work done while bringing an electron infinitely slowly from infinity to proton of radius a_0 is given as follows

$$W = \frac{e^2}{4\pi\varepsilon_0 \cdot a_0}$$

This work done is equal to the total energy of an electron in its ground state in the hydrogen atom. At this statge, the electron is not moving and does not possess any KE, so this total energy is equal to the potential energy.

TE = PE + KE = PE =
$$-\frac{e^2}{4\pi\epsilon_0 \cdot a_0}$$

In order for the electron to be captured by proton to form a ground state hydrogen atom it should also attain KE $\frac{e^2}{8\pi\epsilon_0 \cdot a_0}$

(It is given that magnitude of KE is half the magnitude of PE Note that PE is -ve and KE is +ve)

$$TE = PE + KE = -\frac{e^2}{4\pi\epsilon_0 \cdot a_0} + \frac{e^2}{8\pi\epsilon_0 \cdot a_0}$$
or
$$e^2$$

or
$$TE = \frac{e^2}{8\pi\epsilon_0 \cdot a_0}$$

PE = 2 × TE = 2 ×
$$\frac{-e^2}{8\pi\epsilon_0 \cdot a_0}$$
 or PE = $\frac{-e^2}{4\pi\epsilon_0 \cdot a_0}$

15. Potential energy (PE) of α -particle = $\frac{-Z_1 \times Z_2 e^2}{(4\pi\epsilon_0)r}$ $r = \text{Distance from nucleus} = 10^{-13} \text{ m}$

 $Z_1 = 29$ for copper and $e^- = 1.6 \times 10^{-19}$ C

 $Z_2 = 4$ (Number of orbit) and $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{J}^{-1} \text{C}^2 \text{m}^{-1}$

So
$$V = \frac{29 \times 4(1.6 \times 10^{-19} C)^2}{4 \times 3.14 \times 8.85 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{m}^{-1} \times 10^{-13} \text{ m}}$$

= -2.67 × 10⁻¹³ J

Velocity of α-particle

$$(v) = \sqrt{\frac{2V}{m}}$$
 (where $m \to \text{Mass of } \alpha\text{-particle}$)
= $\sqrt{\frac{2 \times 2.67 \times 10^{-13} \text{ J}}{4 \times 10^{-13} \text{ kg mol/}6.023 \times 10^{13}}} = 8.97 \times 10^6 \text{ m sec}^{-1}$.

16.
$$\frac{1}{2}mu^2 = eV$$

where $e = 1.6 \times 10^{-19}$ C and V is potential difference

also
$$\lambda = \frac{h}{mu}$$
 or $V = \frac{h}{m\lambda}$

$$\therefore \frac{1}{2}m\frac{h^2}{m^2\lambda^2} = eV \text{ or } V = \frac{1}{2}\frac{h^2}{m\lambda^2c}$$

$$V = \frac{1 \times (6.62 \times 10^{-34})^2}{2 \times 9.108 \times 10^{-31} \times (1.54 \times 10^{-10})1.602 \times 10^{-19}} = 63.3 \text{ volt}$$

17. Step I: Determination of number of moles of hydrogen gas,

$$n = \frac{PV}{RT} = \frac{1 \times 1}{0.082 \times 298} = 0.0409$$

The concerned reaction is $H_2 \rightarrow 2H$; $\Delta H = 436 \text{ kJ mol}^{-1}$ Energy required to bring 0.0409 moles of hydrogen gas to atomic state = $436 \times 0.0409 = 17.83 \text{ kJ}$

Step II: Calculation of total number of hydrogen atoms in 0.0409 mole of H₂ gas

1 mole of H_2 gas has 6.02×10^{23} molecules

0.0409 mole of H₂ gas = $\frac{6.02 \times 10^{23}}{1} \times 0.0409$ molecules

Since 1 molecule of H₂ gas has 2 hydrogen atoms

 $6.02 \times 10^{23} \times 0.409$ molecules of H₂ gas

=
$$2 \times 6.02 \times 10^{23} \times 0.0409 = 4.92 \times 10^{22}$$

atoms of hydrogen $n = 2$

Since energy required to excite an electron from the ground state to the next excited state is given by

$$\Delta E = E_2 - E_1 = \frac{-21.7 \times 10^{-19}}{2^2} - \frac{-21.7 \times 10^{-19}}{1^2}$$

$$\Delta E = -21.7 \times 10^{-19} \left(\frac{1}{4} - \frac{1}{1}\right)$$

$$= 21.7 \times 10^{-19} \times \frac{-3}{4} = 16.3 \times 10^{-19} \text{ J}$$

$$= 1.63 \times 10^{-21} \text{ kJ}$$

Therefore energy required to excite 4.92×10^{22} electrons = $1.632 \times 10^{-21} \times 4.92 \times 10^{22}$ kJ = $8.03 \times 10 = 80.3$ kJ

Therefore total energy required = 17.83 + 80.3 = 98.17 kJ

18. For maximum energy, $n_1 = 1$ and $n_2 = \infty$

$$\overline{v} = \frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Since $R_{\rm H}$ is a constant and transition remains the same

$$\frac{1}{\lambda} \propto Z^2; \frac{\lambda_{\text{He}^*}}{\lambda_{\text{H}}} = \frac{Z_{\text{H}}^2}{Z_{\text{He}}^2} = \frac{1}{4}$$

Hence, $\lambda_{He} = \frac{1}{4} \times 91.2 = 22.8 \text{ nm}$

19. a. At radial node, ψ^2 must vanishes, i.e.

$$\psi_{2s}^2 = 0 = \left[\frac{1}{4\sqrt{2\pi}}\right]^2 \left(2 - \frac{r_0}{a_0}\right)^2 e^{-\frac{r_0}{a_0}}$$

$$\Rightarrow 2 - \frac{r_0}{a_0} = 0 \Rightarrow r_0 = 2a_0$$

b.
$$\lambda = \frac{h}{mu} = \frac{6.627 \times 10^{-34}}{0.1 \times 100}$$

or
$$\lambda = 6.627 \times 10^{-35} \text{ m} = 6.627 \times 10^{-25} \text{ Å}$$

20. Radius a_0 means Bohr's radius, i.e., radius of the first orbit For hydrogen atom, Z = 1, n = 1

$$v = 2.18 \times 10^6 \times \frac{Z}{n} \,\mathrm{ms}^{-1} = 2.18 \times 10^6 \,\mathrm{ms}^{-1}$$

de-Broglie wavelength.

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.18 \times 10^{6}}$$
$$= 3.34 \times 10^{-10} \text{ m} = 3.3 \text{ Å}$$

For 2p, l = 1

$$\therefore \quad \text{Orbital angular momentum} = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}$$