Verify the Algebraic Identity $a^3-b^3 = (a-b)(a^2+ab+b^2)$

OBJECTIVE

To verify the algebraic identity $a^3-b^3 = (a-b)(a^2+ab+b^2)$.

Materials Required

- 1. Acrylic sheet
- 2. Geometry box
- 3. Scissors
- 4. Adhesive/Adhesive tape
- 5. Cutter

Prerequisite Knowledge

- 1. Concept cuboid and its volume.
- 2. Concept of cube and its volume.

Theory

- 1. For concept of cuboid and its volume refer to Activity 7.
- 2. For concept of cube and its volume refer to Activity 7.

Procedure

 Using acrylic sheet, make a cuboid of dimensions (a – b) x a x a, where b < a. (see Fig. 10.1)

2. Using acrylic sheet, make another cuboid of dimensions (a-b) x a x b, where b < a. (see Fig. 10.2).

Volume = (a - b)ab cu units

Fig. 10.2

3. Now, make one more cuboid of dimensions (a-b) x b x b. (see Fig. 10.3)

Volume = $(a - b)b^2$ cu units Fig. 10.3

4. Now, make a cube of dimensions b x b x b. (see Fig. 10.4)

Fig. 10.4

5. Arrange the cube and cuboids obtained in Fig. 10.1 to 10.4 to form a solid as shown in Fig. 10.5, which is a cube of side a units.

Fig. 10.5

6. Now, remove a cube of side b units from the solid obtained in Fig. 10.5, thus we obtain solid as shown in Fig. 10.6.

Demonstration

For Fig. 10.1, volume of cuboid = (a-b) x a x a = (a-b)a² For Fig. 10.2, volume of cuboid = (a-b) x a x b = (a-b)ab For Fig. 10.3, volume of cuboid = (a - b) x b x b = (a - b)b² For Fig. 10.4, volume of cube =b³ For Fig. 10.5, volume of cube = Sum of volume of all cubes and cuboids = (a - b)a² + (a - b)ab + (a - b)b² + b³(i) The cube obtained in Fig. 10.5 has its each side a. Its volume = (side)³ = a³(ii) From Eqs. (i) and (ii), we get a³ = (a - b)a² + (a - b)ab + (a - b)b² + b³(iii) For Fig. 10.6, volume of solid obtained = a³ - b³ = (a - b)a² + (a - b)ab + (a - b)b² + b³ - b³ [from Eq.(iii)] = (a - b)a² + (a - b)ab + (a - b)b² = (a-b) (a² + ab + b²) Therefore, $a^3-b^3 = (a-b)(a^2+ab+b^2)$ Here, volume is in cubic units.

Observation

On actual measurement, we get $a = \dots, b = \dots,$ So, $a^2 = \dots, b^2 = \dots,$ $(a - b) = \dots, ab = \dots,$ $a^3 = \dots, b^3 = \dots,$ Hence, $a^3 - b^3 = (a - b) (a^2 + ab + b^2).$

Result

The algebraic identity $a^3-b^3 = (a-b)(a^2+ab+b^2)$ has been verified.

Application

The identity can be used in simplification and factorisation of algebraic expressions.

Viva Voce

Question 1: What is the expanded form of $a^3 - b^3$? Answer: Expanded form of $a^3-b^3 = (a-b) (a^2+ab+b^2)$.

Question 2: If $(a^2 + ab + b^2) = 0$, then what will be the value of $a^3 - b^3$? Answer: $a^3-b^3 = (a-b) (a^2+ab+b^2)$ $a^3-b^3=0$

Question 3: If x = y, then what will be the value of $x^3 - y^3$? Answer: Now, $x^3 - y^3 = x^3 - x^3 = 0$

Question 4: What is degree of the expression y³ – x³? Answer: The degree of given expression is 3. Question 5: If we replace a by -a and b by -b, then what is the expansion of $a^3 - b^3$? Answer: $a^3 + b^3 = (-a^3) - (-b^3)$ $= -a^3 + b^3$ $b^3 - a^3 = (b-a)(b^2 + a^2 + ab)$

Suggested Activity

Verify the algebraic identity $x^3 - y^3 = (x - y) (x^2 + xy + y^2)$ by using x = 7, y = 5.