CHAPTER – 3

METALS AND NON – METALS GIST OF THE LESSON

Elements are classified broadly into two categories on the basis of properties:

Metals: Iron, Zinc, Copper, Aluminium etc.

Non – metals: Chlorine, Nitrogen, Hydrogen, Oxygen, Sulphur etc.

Apart from metals and non-metals some elements show properties of both metals and non – metals, e.g. Silicon, Arsenic, Germanium .They are called **metalloids**

Comparison of physical and chemical properties of metals and non - metals:-

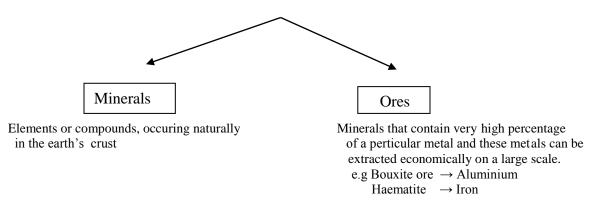
Sr.	Property	Metals	Non-Metals
No.			
1	Physical State	Metals are solid at room temperature. Except	Non-metals generally exist as solids and
	State	mercury and gallium.	gases, except Bromine.
2	Melting and boiling points	Metals generally have high m.pt and b.pt except gallium and cesium.	Non-metals have low m.pt and b.pt except diamond and graphite.
3	Density	Generally high.	Generally low.
4	Malleability and Ductility	Malleable and ductile.	Neither malleable nor ductile.
5	Electrical and thermal conductivity	Good conductors of heat and electricity.	Generally poor conductors of heat and electricity except graphite.
6	Luster	Poses shining luster.	Do not have luster except iodine.
7	Sonorous sound	Give sonorous sound when struck.	Does not give sonorous sound.
8	Hardness	Generally hard except Na, K	Solid non-metals are generally soft except diamond.

Comparison of Chemical Properties of Metals and Non-metals:-

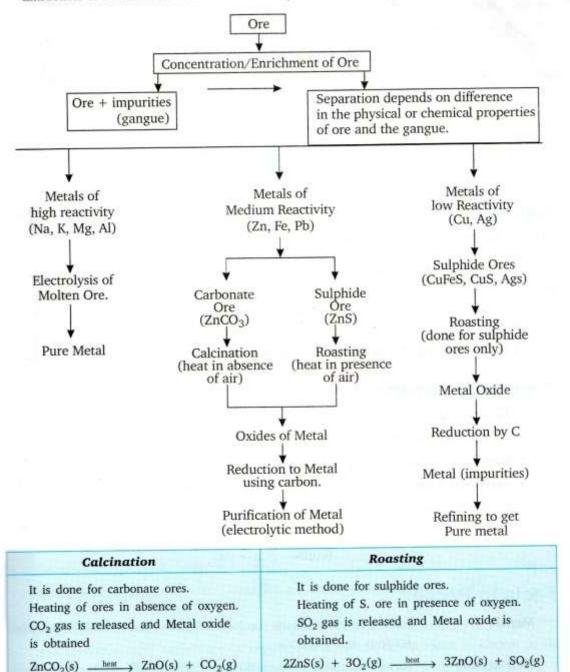
son of Chemical Properties of Metals and Non-metals:-						
1	Reaction with	Metal + Oxygen→ Metal oxide	Non-metal + Oxygen → Non-metal oxide			
	Oxygen					
	Oxygen	$4\text{Na(s)} + \text{O}_2(g) \rightarrow$	$C + O_2 \rightarrow CO_2$			
		$2Na_2O(s)$	$S + O_2 \rightarrow SO_2$			
		$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3$	Non-metals form acidic			
		Metals form basic oxides	oxides			
		Zn and Al form amphoteric	CO and H ₂ O are neutral			
		oxides (they show the	oxides(they are neither			
		properties of both acidic	acidic nor basic in			
		and basic oxides)	nature) Non-			
		Most of the metal oxides	metal oxides are soluble			
		are insoluble in water	in water			
		Some of them dissolve to	They dissolve in water to			
		form Alkali	form acids			
		$Na_2O(s) + H_2O(l) \rightarrow$	$SO_2 + H_2O \rightarrow H_2SO_3$			
		2NaOH(aq)				
2	Reaction	Metals react with water to	Non-metals do not react			
	with water	form metal oxides or metal	with water, steam to			
		hydroxide and H ₂ gas is	evolve hydrogen gas.			
		released.	Because Non-metals			
		$2Na(s) + 2H_2O(1) \rightarrow$	cannot give electrons to			
		2NaOH +	hydrogen in water so that			
		$H_2(g)$	it can be released as H ₂			
		+ heat	gas.			
3	Reaction	$Metal + Acid \rightarrow Metal salt$	Non-metals do not react			
	with dilute	+ Hydrogen	with acids to release H ₂			
	Acids		gas Reason-			
		HCl	Non-metals cannot loose			
		$Mg(s) + 2HCl(aq) \rightarrow$	electrons and give it to			
		$MgCl_2(aq) + H_2(g)$	Hydrogen ions of acids			
		H_2SO_4	so that the gas is			
		$2Na(s) + H_2SO_4 \rightarrow$	released.			
		$Na_2SO_4(aq) + H_2(g)$	$Mn + 2HNO_3 \rightarrow$			
		HNO ₃	$Mn(NO_3)_2 + H_2$			
		Metal + HNO ₃ \rightarrow H ₂ gas is	H ₂ gas from HNO ₃			
		not displaced.				
		Reason- HNO ₃ is strong				
		oxidizing agent.				
4	Reaction	When metals react with salt	When non-metals react			
	with salt	solution, more reactive	with salt solution, more			
	solutions	metal will displace a less	reactive non-metal will			
		reactive metal from its salt	displace a less reactive			
		solution. CuSO ₄ (aq)	non-metal from its salt			
		$+ Zn(s) \rightarrow ZnSO_4(aq) +$	solution.			
		Cu(s)	2 NaBr(aq) + Cl ₂ (g) \rightarrow			
			$2\text{NaCl}(aq) + \text{Br}_2(aq)$			
5	Reaction	Metal + Chlorine → Metal	Non-metal + Chlorine →			

	with	Chloride	Non-metal Chloride
	Chlorine	ionic bond is formed.	covalent bond is formed.
		Therefore Ionic compound	Therefore covalent
		is obtained. 2Na	compound is obtained.
		$+ Cl_2 \rightarrow 2NaCl$	$H_2(g) + Cl_2 \rightarrow 2HCl$
6	Reaction	Metals react with hydrogen	Non-metals react with
	with	to form metal hydride	hydrogen to form
	Hydrogen	This reaction takes place	hydrides $H_2(g) +$
		only for most reactive	$S(1) \rightarrow H_2S(g)$
		metals. 2Na(s)	
		$+ H_2(g) \rightarrow 2NaH(s)$	

Properties of ionic compounds


- 1. Physical nature:solid and hard due to strong force of attraction. (generally brittle)
- **2. Melting point and boiling point:**have high M.P and B.P, as large amount of heat energy is required to break strong ionic attraction.
- **3. Solubility:** soluble in water and insoluble in kerosene and pertrol.
- 4. Conduction of electricity:ionic compounds in solid state----does not conduct electricity.

Reason—Ions can not move due to rigid solid structure. Ionic compounds conduct electricity in molten state.


Reason-- Ions can move freely since the electrostatic forces of attraction between the oppositely charged ions are overcome due to heat.

Occurrence of metals.

It occurs in Earths crust, sea-water

Extraction of Metals based on their reactively. The various steps involved are as follows.

Refining of Metals

To obtain pure metal electrolytic refining of metals is done.

MIND MAP

METALS AND

NON - METALS

NON-

METAL

PHYSICAL PROPERTIES Solid High M .P & B. P **METALS** High density

CHEMICAL PROPERTIES

- Metal + $O_2 \rightarrow$ metal oxide
- Metal + $H_2O \rightarrow metal$ hydroxide
- Metal + dil. Acid →salt + H₂
- Metal + Cl → metal chloride
 - Matal ± H. Amatal hydrida

Malleable & ductile

Good conductor of

PHYSICAL PROPERTIES

- Solid, liquid and gas
- Not malleable & ductile
- Low M.P & B.P
- Poor conductor of heat electricity

CHEMICAL PROPERTIES

- Non-metal + $O_2 \rightarrow$ Non-
- Non-metal + steam→H₂
- Non-metal + acid → no
- Non-metal + chlorine → nonmetal chloride
- metal oxide
- reaction

METALS AND NON – METALS FORMATIVE ASSESSMENT I Q.PAPER

MARKS-30 TIME- 70 MINUTES

Instructions:

Questions: 1 to 5 – 1 Mark each
Questions: 6 to 9 – 2 Marks each
Questions: 10 to 13 – 3 Marks each

• Question 14 – 5 Marks

- 1) Which metal other than mercury is liquid at room temperature?
- 2) Why the item made of silver turns black when exposed to air?
- 3) Which non metal is lustrous?
- 4) What is an amalgam?
- 5) What is the nature of oxides of metal?
- 6) Give reasons for the following:
 - a) Na, K and Ca metals form hydrides by combination with hydrogen gas, but most other metals do not.
 - b) Metals conduct electricity.
- 7) Write the equations for the reactions of:
 - a) Iron with steam.
 - b) Calcium and potassium with water.
- 8) What is activity series? How does it help us in predicting the relative reactivities of various metals?
- 9) What is the difference between sodium atom and sodium ion?

10)

- a) Write electron dot structure for sodium and oxygen.
- b) Show the formation of Na₂O by electron transfer.
- c) What are the ions present in these compounds?
- 11) Write three properties of ionic compounds.
- 12) Explain how a metal low in the activity series can be extracted. Write suitable example.

13) Give reasons:

- a) Platinum, gold and silver are used to make jewellery.
- b) Sodium, potassium and lithium are stored under oil.
- c) Aluminium is a highly reactive metal; still it is used to make utensils for cooking.

14) Name the following:

- a) A non metal that is a good conductor of electricity.
- b) A metallic oxide which cannot be reduced by coke.
- c) A metallic oxide which is amphoteric in nature.
- d) A non metallic oxide which is neutral.
- e) Principal ore of aluminium.

HOTS QUESTIONS (SOLVED / UNSOLVED)

- Q.1 a) What are amphoteric oxides? Choose the amphoteric oxides from amongst the following: Na₂O, ZnO, Al₂O₃, CO₂, H₂O
 - b) Why is it that non metals do not displace hydrogen from dilute acid?
- Ans. a) The oxides which are acidic as well as basic in nature are called amphoteric oxides. ZnO and Al₂O₃are amphoteric oxides.
 - b) Non metals can not loose electrons so that H⁺ ions become hydrogen gas.
- Q.2. What is anodizing? What is its use?
- Ans. The process of forming thick oxide layer of aluminium oxide that makes it resistant to further corrosion.
- Q.3. What is Aqua regia? What is its use?
- Ans. It is a mixture of concentrated HCl and concentrated HNO₃ in the ratio 3:1. It can dissolve gold and platinum.
- O.4. Give reason: Aluminium is highly reactive metal, but it is used to make utensils for cooking.
- Q.5. Explain why (a) Iron articles are frequently painted. (b) Iron sheets are coated with Zinc layer.
- Q.6 On adding dilute HCl acid to copper oxide powder, the solution formed is blue green. Predict the new compound formed which imparts a blue green colour to the solution? Write its equation.
- Q.7. Name the property of metal used in the following cases- (i) Aluminium foil (ii) Meta jewellery (iii) Cable wires (iv) Bells
- Q.8. How can you prove that Zinc is more reactive than Copper?
- Q.9. Draw and explain the electrolytic refining of impure Copper.
- Q.10. Why is Aluminium extracted from Alumina by electrolytic reduction and not by reducing it with Carbon?
- Q.11 Write 3 points of difference between Calcination & Roasting?
- Q.12 Write 5 points of difference between Ionic compound and covalent compound.
- Q.13 What is thermit reaction? Give its one use.
- Q.14 What is amalgam?
- Q. 15 Magnesium when reacts with hot water, starts floating. Why?

FA II METALS AND NON – METALS

ORAL QUESTIONS

- 1. Name the metal which is a liquid.
- 2. Name the non metal which shows lustre.
- 3. Name the lightest metal.
- 4. Name the metal with highest density.
- 5. Name the property of the metals by virtue of which these can be beaten into sheets
- 6. Name the property of the metals by virtue of which these can be drawn into wires.
- 7. Name the material which is kept in water.
- 8. Name the metal used for galvanisation of iron.
- 9. Mercury is liquid and a good conductor of heat. How is this property utilized?

QUIZ – WHO AM I

- 1. I am a property of metals which appears at lower temperatures.
- 2. I am noble conductor of heat and electricity.
- 3. Though I get corroded in atmosphere but still find wide applications for making kitchen utensils.
- 4. I am a metal but very soft and cannot be kept in the open.
- 5. I am called a series and play a significant role when a metal reacts with solutions of other metal salts.
- 6. Scientists / Industrialists use me to extract metals profitably and economically.
- 7. I am a process to refine metals of high reactivity.
- 8. I am a process associated with wasting away of metals by the action of atmospheric gases and moisture
- 9. I am homogenous and not a compound though my formation least to altering the properties of metals involved.
- 10. We belong to the same category of elements but still combine to form molecules / compounds.