

CHAPTER

INVERSE TRIGONOMETRIC FUNCTIONS

Syllabus

Definition, range, domain, principal value branch.

STAND ALONE MCQs

(1 Mark each)

- **Q. 1.** The value of $\sin^{-1}\left(\cos\frac{3\pi}{5}\right)$ is

 - $(\mathbf{A}) \ \frac{\pi}{10} \qquad \qquad (\mathbf{B}) \ \frac{3\pi}{5}$

[CBSE OD Set-I 2020]

Ans. Option (C) is correct.

Explanation: $= \sin^{-1} \left[\cos \left(\frac{3\pi}{5} \right) \right]$ $= \sin^{-1} \left[\cos \left(\frac{\pi}{2} + \frac{\pi}{10} \right) \right]$ $= \sin^{-1} \left(-\sin \frac{\pi}{10} \right) \quad \left[\because \cos \left(\frac{\pi}{2} + x \right) = -\sin x \right]$ $= -\sin^{-1} \left(\sin \frac{\pi}{10} \right) \quad \left[\because \sin^{-1} (-x) = -\sin^{-1} x \right]$ $= -\frac{\pi}{10} \quad \left[\because \sin^{-1} (\sin x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right]$

- Q. 2. The value of tan $\left[\frac{1}{2}\cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right]$ is

 (A) $\frac{3 \cdot \sqrt{5}}{2}$ (B) $\frac{3 \sqrt{5}}{2}$ (C) $\frac{-3 + \sqrt{5}}{2}$ (D) $\frac{-3 \sqrt{5}}{2}$

Ans. Option (B) is correct.

Explanation:

$$x = \tan \left[\frac{1}{2} \cos^{-1} \left(\frac{\sqrt{5}}{3} \right) \right]$$

Let
$$\cos^{-1}\frac{\sqrt{5}}{3} = \theta$$

$$\cos \theta = \frac{\sqrt{5}}{3}$$

$$x = \tan \frac{1}{2} \theta$$

$$\Rightarrow \qquad x = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}$$

$$\sin\frac{\theta}{2} = \frac{\sqrt{1-\frac{\sqrt{5}}{3}}}{\sqrt{2}}$$

$$\Rightarrow \qquad \cos\frac{\theta}{2} = \frac{\sqrt{1 + \frac{\sqrt{5}}{3}}}{\sqrt{2}}$$

$$x = \frac{\sqrt{1 - \frac{\sqrt{5}}{3}}}{\sqrt{1 + \frac{\sqrt{5}}{3}}}$$

$$= \frac{\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}}$$

$$= \frac{\sqrt{3-\sqrt{5}}}{\sqrt{3+\sqrt{5}}} \times \frac{\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}$$

$$= \frac{3-\sqrt{5}}{\sqrt{(3)^2-(\sqrt{5})^2}}$$

$$= \frac{3-\sqrt{5}}{\sqrt{9-5}}$$

$$= \frac{3-\sqrt{5}}{2}$$

- Q. 3. Which of the following is the principal value branch of $\cos^{-1}x$?
- (C) $[0, \pi]$
- **(D)** $(0,\pi) \left\{\frac{\pi}{2}\right\}$

Ans. Option (C) is correct.

Explanation: As we know that the principal value of $\cos^{-1} x$ is $[0, \pi]$.

$$y = \cos^{-1} x$$

- Q. 4. Which of the following is the principal value branch of $\csc^{-1}x$?

 - (A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (B) $\left[0, \pi\right] \left\{\frac{\pi}{2}\right\}$

 - (C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (D) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}$

Ans. Option (D) is correct.

Explanation: As we know that the principal value of $\csc^{-1}x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$. $y = \csc^{-1}x$

- **Q. 5.** The value of $\sin^{-1} \left| \cos \left(\frac{33\pi}{5} \right) \right|$ is
- (C) $\frac{\pi}{10}$

Ans. Option (D) is correct.

Explanation: Let,

$$\sin^{-1}\left[\cos\left(\frac{33\pi}{5}\right)\right] = \sin^{-1}\left[\cos\left(6\pi + \frac{3\pi}{5}\right)\right]$$

$$= \sin^{-1}\left[\cos\left(\frac{3\pi}{5}\right)\right]$$

$$[\because \cos(2n\pi + \theta) = \cos\theta]$$
And

$$= \sin^{-1} \left[\cos \left(\frac{\pi}{2} + \frac{\pi}{10} \right) \right]$$

$$= \sin^{-1} \left(-\sin \frac{\pi}{10} \right)$$

$$\left[\because \cos \left(\frac{\pi}{2} + x \right) \right] = -\sin x$$

$$= -\sin^{-1} \left(\sin \frac{\pi}{10} \right)$$

$$\left[\because \sin^{-1} (-x) = -\sin^{-1} x \right]$$

$$= -\frac{\pi}{10}$$

$$\left[\because \sin^{-1} (\sin x) = x, x \in \left(\frac{-\pi}{2}, \frac{\pi}{2} \right) \right]$$

- **Q. 6.** The domain of function $\cos^{-1}(2x-1)$ is
 - (A) [0, 1]
- (C) (-1, 1)
- (**D**) $[0, \pi]$

Ans. Option (A) is correct.

Explanation: We have $\cos^{-1}(2x-1)$ $\Rightarrow -1 \le 2x - 1 \le 1$ $[\because x \in [-1,1]]$ $\Rightarrow 0 \le 2x \le 2$ $\Rightarrow 0 \le x \le 1$

- **Q. 7.** The value of $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$ is

Ans. Option (A) is correct.

Explanation: We have,

$$\cos^{-1}\left(\cos\frac{3\pi}{2}\right) = \cos^{-1}\left[\cos\left(2\pi - \frac{\pi}{2}\right)\right]$$

$$\left[\because \cos\left(2\pi - \frac{\pi}{2}\right) = \cos\frac{\pi}{2}\right]$$

$$= \cos^{-1}\cos\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$$

$$\left[\because \cos^{-1}(\cos x) = x, x \in [0, \pi]\right]$$

- **Q. 8.** The value of expression $2\sec^{-1}2 + \sin^{-1}\left(\frac{1}{2}\right)$ is

- **(D)** 1

Ans. Option (B) is correct.

Explanation: We have,

$$2\sec^{-1}2 + \sin^{-1}\left(\frac{1}{2}\right)$$

$$= 2\sec^{-1}\sec\frac{\pi}{3} + \sin^{-1}\sin\frac{\pi}{6}$$

$$= 2 \times \frac{\pi}{3} + \frac{\pi}{6}$$

$$\left[\because \sec^{-1}(\sec x) = x \text{ and } \sin^{-1}(\sin x) = x\right]$$

$$= \frac{4\pi + \pi}{6}$$

$$= \frac{5\pi}{6}$$

- Q. 9. What is the value of sec² (tan⁻¹2)
 - (A) 1
- (B) 4
- **(C)** 5
- **(D)** 3

Ans. Option (C) is correct.

Explanation:

$$\sec^{2}(\tan^{-1} 2) = \sec^{2}(\sec^{-1} \sqrt{1 + 2^{2}})$$

= $\sec^{2}(\sec^{-1} \sqrt{5})$
= $(\sqrt{5})^{2}$
= 5

Q. 10. The principal value of

$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) + 4\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 is

- (A) $\frac{\pi}{3}$

Ans. Option (C) is correct.

Explanation:

$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) + 4\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$= \cos^{-1}\left(\cos\frac{\pi}{3}\right) + 2\sin^{-1}\left(\sin\frac{\pi}{6}\right) + 4\tan^{-1}\left(\tan\frac{\pi}{6}\right)$$

$$= \frac{\pi}{3} + 2 \times \frac{\pi}{6} + 4 \times \frac{\pi}{6}$$

$$= \frac{2\pi + 2\pi + 4\pi}{6}$$

$$= \frac{8\pi}{6}$$

$$= \frac{4\pi}{3}$$

- **Q. 11.** The principal value of $\cot^{-1}(-\sqrt{3})$ is

(C)
$$\frac{\pi}{4}$$

Ans. Option (A) is correct.

Explanation:

Let
$$\cot^{-1}(-\sqrt{3}) = \theta$$

 $\Rightarrow \cot \theta = -\sqrt{3}$
 $\Rightarrow \cot \theta = -\cot \frac{\pi}{6}$
 $= \cot \left(\pi - \frac{\pi}{6}\right)$
 $\Rightarrow \cot \theta = \cot \frac{5\pi}{6}$
 $\Rightarrow \theta = \frac{5\pi}{6} \in (0, \pi)$
 \therefore Principal value of $\cot^{-1}(-\sqrt{3})$ is $\frac{5\pi}{6}$

- **Q. 12.** Domain of $\sin^{-1}x$ is:
 - $(\mathbf{A}) [-1, \infty)$
- **(B)** [-1, 1]
- (C) (-1, 1)
- **(D)** None of these.

Ans. Option (B) is correct.

Explanation: Domain of $\sin^{-1} x$ is [-1, 1]

- **Q. 13.** Range of $\cos^{-1}x$ is:

 - (A) $\left[0, \frac{\pi}{2}\right]$ (B) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - (C) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
- (D) $[0, \pi]$

Ans. Option (D) is correct.

Explanation: The branch with range $[0, \pi)$ is called the principal value branch of the function $\cos^{-1}x$.

- **Q. 14.** Domain of $\sec^{-1}x$ is:
 - (A) R (-1, 1)
- **(B)** R
- (C) [-1, 1]
- **(D)** R (0, 1)

Ans. Option (A) is correct.

- **Q.** 15. The value of $\tan^{-1}(\sqrt{3}) \sec^{-1}(-2)$ is:
 - $(A) \pi$

Ans. Option (B) is correct.

Explanation:
$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$$

$$= \frac{\pi}{3} - \frac{2\pi}{3}$$

$$= -\frac{\pi}{3}$$

ASSERTION AND REASON BASED MCQs

(1 Mark each)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false and R is True
- Q. 1. Assertion (A): $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \frac{2\pi}{3}$

Reason (R): $\sin^{-1}(\sin \theta) = \theta$, if $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Ans. Option (D) is correct.

Explanation:

The principal value branch of $\sin^{-1}x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Let $x = \sin \theta \Rightarrow \theta = \sin^{-1} x$

 $\sin^{-1}(\sin\theta) = \sin^{-1}x = \theta$

 $\sin^{-1}(\sin \theta) = \theta$, if $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Hence R is true.

 $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)\neq\frac{2\pi}{3}$, since $\frac{2\pi}{3}\notin\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$

Hence A is false

Q. 2. Assertion (A): Range of $\tan^{-1}x$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Reason (R): Domain of $tan^{-1}x$ is R.

Ans. Option (B) is correct.

Explanation: Domain of tan x is the set $\{x : x \in R\}$

and $x \neq (2n + 1) \frac{\pi}{2}$, $n \in \mathbb{Z}$ and Range is \mathbb{R} .

 \Rightarrow tan x is not defined for odd multiples of $\frac{\pi}{2}$.

If we restrict the domain of tangent function to

 $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, then it is one-one and onto with its

range as R. Actually tan x restricted to any of the

intervals $\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right), \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ etc., is bijective and its range is R.

Thus $tan^{-1}x$ can be defined as a function whose domain is R and range could be any of the

intervals $\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right), \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ and soon.

∴ Both A and R are true but R is not correct explanation of A.

Q. 3. Assertion (A): Principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is $\frac{\pi}{4}$

Reason (R): Principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$ is $\frac{\pi}{3}$

Ans. Option (C) is correct.

Explanation:

$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \sin^{-1}\left(\sin\frac{\pi}{4}\right)$$

$$\cot^{-1}\left(\frac{-1}{\sqrt{2}}\right) = y$$

$$\cot y = \frac{-1}{\sqrt{3}}$$

$$=-\cot\left(\frac{\pi}{3}\right)$$

$$= \cot \left(\frac{\pi - \pi}{3} \right)$$

$$\cot^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{2\pi}{2}$$

Hence Assertion is correct and Reason is incorrect.

Q. 4. Assertion (A): Range of $\cot^{-1} x$ is $(0, \pi)$

Reason (R): Domain of $\tan^{-1} x$ is R.

Ans. Option (B) is correct.

Q. 5. Assertion (A): Principal value of $\cos^{-1}(1)$ is π

Reason (R): Value of cos 0° is 1

Ans. Option (D) is correct.

Explanation: In case of Assertion:

$$\cos^{-1}(1) = y$$

$$\cos y = 1$$

$$[\because \cos 0^{\circ} = 1]$$

$$\cos y = \cos 0^{\circ}$$
$$y = 0$$

 \Rightarrow Principal value of $\cos^{-1}(1)$ is 0

Hence Assertion is in correct.

Reason is correct.

CASE-BASED MCQs

Attempt any four sub-parts from each question. Each sub-part carries 1 mark.

I. Read the following text and answer the following questions on the basis of the same:

Two men on either side of a temple of 30 metres high observe its top at the angles of elevation α and β respectively. (as shown in the figure above). The distance between the two men is $40\sqrt{3}$ metres and the distance between the first person A and the temple is $30\sqrt{3}$ meters. [CBSE QB-2021]

Q. 1. $\angle CAB = \alpha =$

(A)
$$\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

$$\mathbf{(B)} \quad \sin^{-1}\left(\frac{1}{2}\right)$$

$$(\mathbf{D}) \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

Ans. Option (B) is correct.

Explanation: In \triangle BDA

$$\sin\alpha = \frac{BD}{AB}$$

$$AB^{2} = AD^{2} + BD^{2}$$
$$= (30\sqrt{3})^{2} + (30)^{2}$$
$$= (60)^{2}$$

$$AB = 60 \,\mathrm{m}$$

Now,

$$\sin\alpha = \frac{30}{60}$$

$$\sin \alpha = \frac{1}{2}$$

$$\angle CAB = \alpha = \sin^{-1}\left(\frac{1}{2}\right)$$

Q. 2. $\angle CAB = \alpha =$

$$(\mathbf{A}) \cos^{-1} \left(\frac{1}{5} \right)$$

$$(B) cos-1 \left(\frac{2}{5}\right)$$

(C)
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(D)
$$\cos^{-1}\left(\frac{4}{5}\right)$$

Ans. Option (C) is correct.

Explanation: In \triangle BDA

$$\cos\alpha = \frac{AD}{AB}$$

$$\cos \alpha = \frac{30\sqrt{3}}{60}$$

$$\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

$$\angle CAB = \alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

Q. 3. $\angle BCA = \beta =$

(A)
$$\tan^{-1}\left(\frac{1}{2}\right)$$

(B)
$$tan^{-1}(2)$$

(C)
$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(D)
$$\tan^{-1}\left(\sqrt{3}\right)$$

Ans. Option (D) is correct.

Explanation:

$$DC = AC - AD$$
$$= 40\sqrt{3} - 30\sqrt{3}$$
$$= 10\sqrt{3} \text{ m}$$

In $\triangle BDC$

$$\tan \beta = \frac{BD}{DC} = \frac{30}{10\sqrt{3}} = \sqrt{3}$$

$$\angle BCA = \beta = \tan^{-1}(\sqrt{3})$$

Q. 4. $\angle ABC =$

(A)
$$\frac{\pi}{4}$$

(B)
$$\frac{\tau}{a}$$

(C)
$$\frac{\pi}{2}$$

(D)
$$\frac{\tau}{3}$$

Ans. Option (C) is correct.

Explanation: Since,

$$\sin \alpha = \frac{1}{2}$$

$$\sin \alpha = \sin 30^{\circ}$$

$$\left[\because \sin 30^{\circ} = \frac{1}{2}\right]$$

$$\alpha = 30^{\circ}$$

we, have
$$\tan \beta = \sqrt{3}$$

 $\tan \beta = \tan 60^{\circ}$
 $\therefore \beta = 60^{\circ}$

Now, In
$$\triangle ABC$$

$$\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$$

$$\angle ABC + 60^{\circ} + 30^{\circ} = 180^{\circ}$$

$$\angle ABC = 90^{\circ}$$

$$\therefore \angle ABC = \frac{\pi}{2}$$

Q. 5. Domain and Range of $\cos^{-1} x =$

- (A) $(-1, 1), (0, \pi)$ (B) $[-1, 1], (0, \pi)$ (C) $[-1, 1], [0, \pi]$ (D) $(-1, 1), \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Ans. Option (C) is correct.

II. Read the following text and answer the following questions on the basis of the same:

In the school project Sheetal was asked to construct a triangle and name it as ABC. Two angles A and

B were given to be equal to $\tan^{-1}\frac{1}{2}$ and $\tan^{-1}\frac{1}{3}$ respectively.

Q. 1. The value of $\sin A$ is

- (A)
- (C) -

Ans. Option (C) is correct.

Q. 2. $\cos(A + B + C) =$

- **(A)** 1
- **(C)** −1

Ans. Option (C) is correct.

Explanation: Since ABC is a triangle,

$$A + B + C = 180^{\circ}$$

$$\cos (A + B + C) = \cos 180^{\circ}$$

$$= -1$$

Q. 3. If B $-\cos^{-1} x$, then x =____. (A) $\frac{1}{\sqrt{5}}$ (B) $\frac{3}{\sqrt{10}}$

(C)
$$\frac{1}{\sqrt{10}}$$

(D) $\frac{2}{\sqrt{5}}$

Ans. Option (B) is correct.

Explanation:

Given

$$\Rightarrow \qquad x = \frac{3}{\sqrt{10}}$$

Q. 4. If $A = \sin^{-1}x$; then the value of x is:

- (C) $\sqrt{10}$

Ans. Option (A) is correct.

Explanation:

 $A = \tan^{-1}\frac{1}{2}$ $\tan A = \frac{1}{2}$

Q. 5. The third angle, $\angle C =$

Ans. Option (D) is correct.

Explanation:

$$\angle C = \pi - (A + B)$$

$$= \pi - \frac{\pi}{4}$$

$$= \frac{3\pi}{4}$$

III. Read the following text and answer the following questions on the basis of the same:

The value of an inverse trigonometric functions which lies in the range of Principal branch is called the principal value of that inverse trigonometric functions.

- **Q. 1.** Principal value of $\sin^{-1}\left(\frac{1}{2}\right)$ is

Ans. Option (A) is correct.

$$\sin^{-1}\left(\frac{1}{2}\right) = y$$

$$\sin y = \frac{1}{2}$$

Explanation: $\sin^{-1}\left(\frac{1}{2}\right) = y$ $\sin y = \frac{1}{2}$ Principal value branch of \sin^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ $\Rightarrow \text{ Principal value of } \sin^{-1}\left(\frac{1}{2}\right)$ is $\frac{\pi}{6}$

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

- Q. 2. Principal value of tan⁻¹ (1)
 - (A) $\frac{\pi}{4}$
- (C) π

Ans. Option (A) is correct.

Explanation:

$$\tan^{-1}(1) = \tan^{-1}\left(\tan\frac{\pi}{4}\right)$$
$$= \frac{\pi}{4}$$

- **Q. 1.** Principal value of $\cot^{-1}(\sqrt{3})$ is:
 - (A) $\frac{\pi}{3}$

Ans. Option (C) is correct.

Explanation:

$$\cot^{-1}(\sqrt{3}) = \cot^{-1}\left(\cot\frac{\pi}{6}\right)$$

$$= \frac{\pi}{6}$$

- Q. 4. Principal value of $\sin^{-1}(1) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is

 (A) 2π (B) π

Ans. Option (C) is correct.

Explanation:

$$\sin^{-1}(1) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{2} + \frac{\pi}{4}$$
$$= \frac{3\pi}{4}$$

- **Q. 5.** Principal value of $2\cos^{-1}(1) + 5\tan^{-1}(1)$ is:
 - (A) $\frac{3\pi}{4}$
- (C) $\frac{\pi}{2}$

Ans. Option (D) is correct.

Explanation:

$$2\cos^{-1}(1) + 5\tan^{-1}(1)$$
$$= 2 \times 0 + 5 \times \frac{\pi}{4}$$
$$= \frac{5\pi}{4}$$