

Basic Level

1.	Let <i>S</i> be a finite set co	ontaining n elements. Then the	e total number of commutati	ve binary operations on S is						
	$\frac{n(n+1)}{2}$	$\frac{n(n-1)}{2}$	n^2	a^{2}						
	(a) n^{-2}	(b) $n^{-\frac{1}{2}}$	(c) n^{n^2}	(d) 2^{n^2}						
2.	If S is a finite set havi	n elements, then the total	umber of non-commutative binary operation on S is							
	(a) $n^{\frac{n(n+1)}{2}}$	(b) $n^{n^2} - n^{\frac{n(n+1)}{2}}$	(c) $n^{n^2 - \frac{n(n-1)}{2}}$	(d) $n^{\frac{n(n-1)}{2}}$						
3.	If the composition tal	ble for a binary operation *	defined on a set S is symme	etric about the leading diagonal,						
	(a) * is associative or	n <i>S</i>	(b) * is commutative of	on S						
	(c) S has the identity	element for *	(d) None of these							
4.	Subtraction of integer	rs is an operation that is		[CET 1994]						
	(a) Commutative and associative	associative	(b)	Not commutative but						
	(c) Neither commutat	tive nor associative	(d) Commutative but	not associative						
5.	The law $a+b=b+a$ is	called								
	(a) Closure law	(b) Associative law	(c) Commutative law	(d) Distributive law						
6.	If any one of the row row of the table, then	<u>-</u>	a binary operation * on a s	et <i>S</i> coincides with the top most						
	(a) S has a left identif	ty for *	(b)	${\cal S}$ has a right identity for *						
	(c) S has the identity	element for *	(d) * is commutative	and associative on S						
7.	If any one of the column of the ta	<u>-</u>	e for a binary operation * o	n a set S coincides with the left						
	(a) S has a left identif	ty for *	(b)	${\it S}$ has a right identity for *						
	(c) S has the identity	element for *	(d) $*$ is commutative and associative on S							
8.	Which of the followin	g binary operations is commu	tative							
	(a) * on R , given by a	$*b = a^2b$								
	(b) O on R, given by a	$aob = a^b$								
	(c) Δ on $P(S)$, the po	wer set of a set S given by $A\Delta$	$B = (A - B) \cup (B - A)$							
	(d) None of these	- •								

Basic Level

1.		s not subjected to any condition	s on	variables and is not re	petit	tive in na	ature.	The b	asic			
	control operation to be u (a) Sequential	(b) Selection	(c) Repetitive(c) A program			(d) None of these						
2.	A computer can execute	(b) Selection				None of	these					
۷.	(a) An algorithm	(b) A flow-chart				(d) None of these						
3.	A basic control structure		(0)	n program	(4)	ivone of	tilese					
٠.	(a) One entry and two ex	-		(b)	Two	o entry	and	one	exit			
	points			(-)		· · · · · ·						
	(c) One entry and one ex exit points	rit points	(d) Any number				er of e	entry	and			
4.	The heart and nerve cent	re of a computer is										
4.	(a) Input unit	(b) Output unit	(c)	CPU	(d)	Memory	,					
5.	An algorithm must have	_	(-)		()							
•	(a) One input	(b) One output	(c) One assignment (d) None of thes									
6.	-	re to be read in a problem. The control structure needed is										
	(a) Only sequential repetition	(b) Only selection		Selection or repetition	(d)	Sequent	ial		or			
7.	The control structure IF-	THEN-ELSE is a										
	(a) Single selection	(b) Multiple selection	(c)	Repetition structure	(d)	None of	these					
8.	The FOR-DO construct ex	ecutes the loop at least										
	(a) Once	(b) Twice	(c) Thrice (d) None of these									
9.	The control structure CAS	SE-OF is a										
	(a) Single selection	(b) Multiple selection	(c)	Repetition structure	(d)	None of	these					
10.	If $A = 15$, $B = 22$, the value	\mathbf{x} after execution of the following	low	ing pseudo code prograi	n is							
		READ A , B										
		IF $A \subset B$										
		IF $A \subset 10$										
		$X \leftarrow A + B$										
		ELSE $X \leftarrow B - A$										
		END										
	(a) 7	(b) 15	(c)			None of	these					
11.	If $A = 7$, $B = 9$, the value	of A after execution of the follo	win	g pseudo-code program	1S							
		BEGIN										
		INPUT A , B										
		IF $A > B$ TEMP $A \leftarrow B$										
		$B \leftarrow A$										
		$D \leftarrow U$										

 $A \leftarrow \text{TEMP}$ **ELSE** STOP END (a) 7 (b) 9 (c) 7 + 9 (d) 7 - 9What is the decimal equivalent of binary number 10101 12. [DCE 1999] (a) 20 (b) 21 (c) 22 (d) 23 The octal equivalent of (101001110)2 is 13. [DCE 1994] (a) 116 (b) 561 (c) 615 (d) 516 What is the decimal equivalent of the octal number 219 14. [DCE 1999] (a) 140 (b) 145 (c) 150 (d) 155 Advance Level The value of *P* by execution of the following algorithm is 15. $P \leftarrow 1$ $I \leftarrow 1$ Step I : $P \leftarrow P * I$ $I \leftarrow I + 1$ If I > 6Stop Step I else Go To Output P end (a) 6 (b) 24 (c) 120 (d) 720 16. Study the following algorithm $\mathsf{Sum} \leftarrow 0$ $I \leftarrow 0$ Repeat $Sum \leftarrow Sum + (2I + 1)$ $I \leftarrow I + 1$ until $I \ge 6$ Then the minimum value of Sum is (a) 36 (c) 140 (d) None of these (b) 49 The statement 17. For k = 1 To 10 by 20 do Sresults in (a) 2 cycles (b) 5 cycles (c) 10 cycles (d) None of these

Computing Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a	С	С	С	b	b	a	a	b	a	a	b	d	b	d	b	b

Binary Operations Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8
a	b	b	С	С	a	b	С