

Part - III MATHEMATICS, Paper-II(B) (English Version)

Time: 3 Hours] [Max. Marks: 75

Note: This question paper consists of three sections A. B and C.

SECTION - A

 $10 \times 2 = 20$

- I. Very short answer type questions:
 - (i) Anempt all questions.
 - (ii) Each question carries two marks
 - 1. If $x^2 + y^2 + 2gx + 2fy 12 = 0$ represents a circle with centre (2, 3) find g. f and its radius.
 - 2. Find the value of k if the points (1, 3) and (2, k) are conjugate with respect to the circle $x^2 + y^2 = 35$.
 - Find the angle between the circles

$$x^2 + y^2 - 12x - 6y + 41 = 0$$
.

$$x^2 + y^2 + 4x + 6y - 59 = 0.$$

- 4. Find the co-ordinates of the points on the parabola $y^2 = 8x$ whose focal distance is 10.
- 5. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugate hyperbola

6. Evaluate:
$$\int \frac{dx}{1 + e^x}, x \in \mathbb{R}$$

7. Evaluate:
$$\int \frac{1}{\cos hx + \sin hx} dx \text{ on } R.$$

8. Evaluate:
$$\int_{\mathbf{0}} |1-x| dx.$$

9. Evaluate:
$$\int \frac{\sin^5 x}{\sin^5 x + \cos^5 x} dx.$$

10. Find the differential equation corresponding to $xy = ae^x + be^{-a}$, a and b are parameters.

 $5\times 4=20$

- II. Short answer type questions
 - (i) Attempt any five questions.
 - (ii) Each questions carries four marks.
 - 11. Find the equation of tangent and normal at (3, 2) of the circle

$$x^2 + y^2 - x - 3y - 4 = 0$$

12. Find the radical centre of the
$$\frac{2}{x^2 + y^2 - 2x - 4y - 1} = 0$$
, $x^2 + y^2 - 6x - 2y = 0$.

- 13. Find the equation of the ellipse referred to its major and minor axes as the co-ordinate axes x, y respectively with latus rectum of length 4 and distance between foci $4\sqrt{2}$.
- 14. Find the equation of the tangents to the ellipse $2x^2 + y^2 = 8$ which are (i) parallel to x 2y 4 = 0 (ii) perpendicular to x + y + 2 = 0.
- 15. Find the centre, eccentricity foci, directrices and the length of the latus rectum of the hyperbola $4(y+3)^2 9(x-2)^2 = 1$.

16. Evaluate:
$$\int_{0}^{4} (16 - x^{2})^{\frac{5}{2}} dx$$

17. Solve
$$\frac{dy}{dx} + y \tan x = \cos^3 x$$
.

III. Long answer type questions:

- (i) Attempt any five questions.
- (ii) Each question carries seven marks.
- 18. If (2, 0), (0, 1), (4, 5) and (0, C) are concyclic, then find C
- 19. Show that the circles $x^2 + y^2 6x 2y + 1 = 0$, $x^2 + y^2 + 2x 8y + 13 = 0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.
- 20. Derive the equation of a parabola in the standard form $y^2 = 4ax$ with diagram.
- 21. Evaluate: $\int \sqrt{\frac{5-x}{x-2}} dx$ on (2, 5).
- 22. Obtain reduction formula $I_n = \int \sin^n x \cdot dx$, n be a positive integer, $n \ge 2$ and deduce the value of $\int \sin^4 x \, dx$
- 23. Find the area bounded between the curves $y^2 = 4ax$, $x^2 = 4by$ (a > 0, b > 0).
- 24. Find the equation of a curve whose gradients is $\frac{dy}{dx} = \frac{y}{x} \cos^2 \frac{y}{x}$, where x > 0. y > 0 and which passes through the point $\left(1, \frac{\pi}{4}\right)$.