<u>Class IX Chapter 12 – Heron's</u> <u>Formula Maths</u>

Exercise 12.1 Question

1:

A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm, what will be the area of the signal board?

Answer:

Side of traffic signal board = a

Perimeter of traffic signal board = $3 \times a$

$$2s = 3a \Rightarrow s = \frac{3}{2}a$$

By Heron's formula,

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

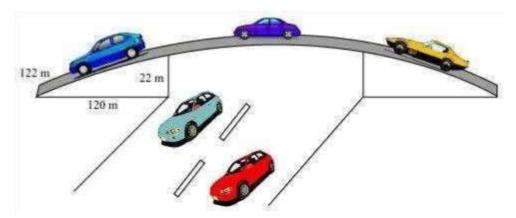
Area of given triangle = $\sqrt{\frac{3}{2}a\left(\frac{3}{2}a-a\right)\left(\frac{3}{2}a-a\right)\left(\frac{3}{2}a-a\right)}$
= $\sqrt{\left(\frac{3}{2}a\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)}$
= $\frac{\sqrt{3}}{4}a^2$... (1)

Perimeter of traffic signal board = 180 cm

$$(a) = \left(\frac{180}{3}\right) \text{cm} = 60 \text{ cm}$$

Side of traffic signal board

$$=\frac{\sqrt{3}}{4}(60 \text{ cm})^2$$


Using equation (1), area of traffic signal board

$$= \left(\frac{3600}{4}\sqrt{3}\right) \text{cm}^2 = 900\sqrt{3} \text{ cm}^2$$

Ouestion 2:

The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122m, 22m, and 120m (see the given figure). The advertisements yield an earning of Rs 5000 per m² per year. A company hired one of its walls for 3 months.

How much rent did it pay?

Answer:

The sides of the triangle (i.e., a, b, c) are of 122 m, 22 m, and 120 m respectively.

Perimeter of triangle = (122 + 22 + 120) m

$$2s = 264 \text{ m s} =$$

132 m

By Heron's formula,

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Area of given triangle = $\left[\sqrt{132(132-122)(132-22)(132-120)}\right]$ m²
= $\left[\sqrt{132(10)(110)(12)}\right]$ m² = 1320 m²

Rent of 1 m² area per year = Rs 5000

Rent of 1 m² area per month = Rs
$$\frac{5000}{12}$$

Rent of 1 m^2 area per month = Rs

$$Rs\left(\frac{5000}{12} \times 3 \times 1320\right)$$

Rent of 1320 m² area for 3 months =

$$= Rs (5000 \times 330) = Rs 1650000$$

Therefore, the company had to pay Rs 1650000.

Question 3:

The floor of a rectangular hall has a perimeter 250 m. If the cost of panting the four walls at the rate of Rs.10 per m^2 is Rs.15000, find the height of the hall.

[Hint: Area of the four walls = Lateral surface area.] Answer:

Let length, breadth, and height of the rectangular hall be I m, b m, and h m respectively.

Area of four walls = 2lh + 2bh

$$= 2(1 + b) h$$

Perimeter of the floor of hall = 2(1 + b) = 250

m

 \therefore Area of four walls = 2(I + b) h = 250h m²

Cost of painting per m^2 area = Rs 10

Cost of painting 250h m² area = Rs (250h \times 10) = Rs 2500h

However, it is given that the cost of paining the walls is Rs 15000.

6

Therefore, the height of the hall is 6 m.

Question 4:

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm.

Let the third side of the triangle be x.

Perimeter of the given triangle = 42 cm

$$18 \text{ cm} + 10 \text{ cm} + x = 42 \text{ x} = 14 \text{ cm}$$

$$s = \frac{\text{Perimeter}}{2} = \frac{42 \text{ cm}}{2} = 21 \text{ cm}$$

By Heron's formula,

Area of a triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Area of the given triangle = $(\sqrt{21(21-18)(21-10)(21-14)})$ cm²
= $(\sqrt{21(3)(11)(7)})$ cm²
= $21\sqrt{11}$ cm²

Question 5:

Sides of a triangle are in the ratio of 12: 17: 25 and its perimeter is 540 cm. Find its area.

Answer:

Let the common ratio between the sides of the given triangle be x.

Therefore, the side of the triangle will be 12x, 17x, and 25x.

Perimeter of this triangle = 540 cm

$$12x + 17x + 25x = 540$$
 cm

$$54x = 540 \text{ cm } x =$$

10 cm

Sides of the triangle will be 120 cm, 170 cm, and 250 cm.

$$s = \frac{\text{Perimeter of triangle}}{2} = \frac{540 \text{ cm}}{2} = 270 \text{ cm}$$

By Heron's formula,

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\left[\sqrt{270(270-120)(270-170)(270-250)}\right]$ cm²
= $\left[\sqrt{270\times150\times100\times20}\right]$ cm²
= 9000 cm²

Therefore, the area of this triangle is 9000 cm².

Question 6:

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

Answer:

Let the third side of this triangle be x.

Perimeter of triangle =
$$30 \text{ cm}$$

12 cm + 12 cm + x = 30 cm

$$x = 6 \text{ cm}$$

$$s = \frac{\text{Perimeter of triangle}}{2} = \frac{30 \text{ cm}}{2} = 15 \text{ cm}$$

By Heron's formula,

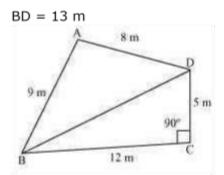
Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\left[\sqrt{15(15-12)(15-12)(15-6)}\right]$ cm²
= $\left[\sqrt{15(3)(3)(9)}\right]$ cm²
= $9\sqrt{15}$ cm²

A park, in the shape of a quadrilateral ABCD, has $\angle C = 90^{\circ}$, AB = 9 m, BC = 12 m,

CD = 5 m and AD = 8 m. How much area does it occupy?

Answer:


Let us join BD.

In ΔBCD , applying Pythagoras theorem,

$$BD^2 = BC^2 + CD^2$$

$$= (12)^2 + (5)^2$$

$$BD^2 = 169$$

$$= \frac{1}{2} \times BC \times CD = \left(\frac{1}{2} \times 12 \times 5\right) m^2 = 30 m^2$$

Area of ABCD

For $\triangle ABD$,

$$s = \frac{\text{Perimeter}}{2} = \frac{(9+8+13)\text{m}}{2} = 15 \text{ m}$$

By Heron's formula,

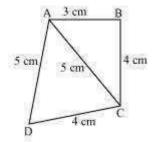
$$= \sqrt{s(s-a)(s-b)(s-c)}$$

Area of triangle

$$= \left[\sqrt{15(15-9)(15-8)(15-13)} \right] m^2$$

Area of $\triangle ABD$ = $(\sqrt{15 \times 6 \times 7 \times 2})$ m²

$$=6\sqrt{35} \text{ m}^2$$


$$=(6\times5.916)$$
m²

 $= 35.496 \text{ m}^2$

Area of the park = Area of $\triangle ABD$ + Area of $\triangle BCD$ = 35.496

+ 30 m^2 = 65.496 m^2 = 65.5 m^2 (approximately) Question 2:

Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.

For ΔABC,

$$AC^2 = AB^2 + BC^2$$

$$(5)^2 = (3)^2 + (4)^2$$

Therefore, \triangle ABC is a right-angled triangle, right-angled at point B.

Area of
$$\triangle ABC$$
 = $\frac{1}{2} \times AB \times BC$ = $\frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^2$

For ΔADC,

Perimeter =
$$2s = AC + CD + DA = (5 + 4 + 5) cm = 14 cm s =$$

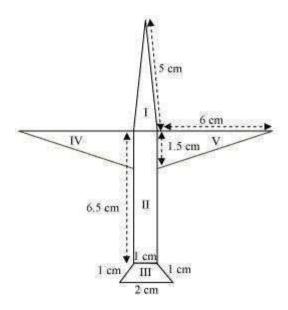
7 cm

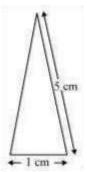
By Heron's formula,

Area of triangle
$$= \sqrt{s(s-a)(s-b)(s-c)}$$
Area of $\triangle ADC = \left[\sqrt{7(7-5)(7-5)(7-4)}\right] cm^2$

$$= \left(\sqrt{7 \times 2 \times 2 \times 3}\right) cm^2$$

$$= 2\sqrt{21} cm^2$$


$$= (2 \times 4.583) cm^2$$


$$= 9.166 cm^2$$

Area of ABCD = Area of \triangle ABC + Area of \triangle ACD

$$= (6 + 9.166) \text{ cm}^2 = 15.166 \text{ cm}^2 = 15.2 \text{ cm}^2 \text{ (approximately) Question}$$

Radha made a picture of an aeroplane with coloured papers as shown in the given figure. Find the total area of the paper used.

For triangle I

This triangle is an isosceles triangle.

Perimeter = 2s = (5 + 5 + 1) cm = 11cm

$$s = \frac{11 \text{ cm}}{2} = 5.5 \text{ cm}$$

Area of the triangle
$$= \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \left[\sqrt{5.5(5.5-5)(5.5-5)(5.5-1)} \right] \text{cm}^2$$

$$= \left[\sqrt{(5.5)(0.5)(0.5)(4.5)} \right] \text{cm}^2$$

$$= 0.75\sqrt{11} \text{ cm}^2$$

$$= (0.75 \times 3.317) \text{cm}^2$$

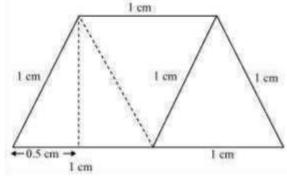
$$= 2.488 \text{ cm}^2 \text{ (approximately)}$$

For quadrilateral II

This quadrilateral is a rectangle.

Area =
$$I \times b = (6.5 \times 1) \text{ cm}^2 = 6.5 \text{ cm}^2$$

For quadrilateral III


This quadrilateral is a trapezium.

$$= \left(\sqrt{1^2 - (0.5)^2}\right) cm$$
 Perpendicular height of parallelogram

$$=\sqrt{0.75}$$
 cm $=0.866$ cm

Area = Area of parallelogram + Area of equilateral triangle

=
$$(0.866)1 + \frac{\sqrt{3}}{4}(1)^2$$

= $0.866 + 0.433 = 1.299 \text{ cm}^2$

Area of triangle (IV) = Area of triangle in (V)

$$=\left(\frac{1}{2}\times1.5\times6\right)$$
cm² = 4.5 cm²

Total area of the paper used = $2.488 + 6.5 + 1.299 + 4.5 \times 2$ = $19.287 \text{ cm}^2 \text{ Question}$

4:

A triangle and a parallelogram have the same base and the same area. If the sides of triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.

Answer:

For triangle

Perimeter of triangle = (26 + 28 + 30) cm = 84 cm

2s = 84 cm s =

42 cm

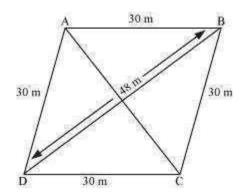
By Heron's formula, Area of triangle

$$= \left[\sqrt{42(42-26)(42-28)(42-30)} \right]$$
cm

Area of triangle =
$$\sqrt{42(16)(14)(12)}$$
 cm² = 336 cm²

Let the height of the parallelogram be h.

Area of parallelogram = Area of triangle h


$$\times$$
 28 cm = 336 cm² h = 12 cm

Therefore, the height of the parallelogram is 12 cm.

Question 5:

A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?

Answer:

Let ABCD be a rhombus-shaped field.

For ΔBCD ,

$$s = \frac{(48 + 30 + 30) \text{ cm}}{2}$$

Semi-perimeter,

By Heron's formula,

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

Area of triangle

$$= \left[\sqrt{54(54-48)(54-30)(54-30)} \right] \text{ m}^2$$

Therefore, area of ΔBCD

$$=\sqrt{54(6)(24)(24)}=3\times6\times24=432 \text{ m}^2$$

Area of field = $2 \times Area$ of $\triangle BCD$

$$= (2 \times 432) \text{ m}^2 = 864 \text{ m}^2$$

Area for grazing for 1 cow $=\frac{804}{18} = 48 \text{ m}^2$ Each cow will get 48 m² area of grass field.

Question 6:

An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see the given figure), each piece measuring 20 cm, 50 cm and 50 cm. How much cloth

of each colour is required for the umbrella?

For each triangular piece,

$$s = \frac{(20+50+50) \text{ cm}}{2} = 60 \text{ cm}$$

Semi-perimeter,

By Heron's formula,

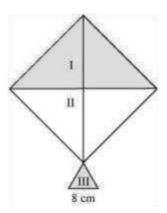
By Heron's formula,
$$= \sqrt{s(s-a)(s-b)(s-c)}$$
Area of triangle

Area of each triangular piece =
$$\left[\sqrt{60(60-50)(60-50)(60-20)}\right]$$
 cm²
= $\left[\sqrt{60(10)(10)(40)}\right]$ cm² = $200\sqrt{6}$ cm²

Since there are 5 triangular pieces made of two different coloured cloths, $= (5 \times 200 \sqrt{6}) \text{cm}^2$

Area of each cloth required

Answer:


 $=1000\sqrt{6} \text{ cm}^2$

Question 7:

A kite in the shape of a square with a diagonal 32 cm and an isosceles triangles of base 8 cm and sides 6 cm each is to be made of three different shades as shown in

the given

figure. How much paper of each shade has been used in it?

Answer:

We know that

Area of square
$$= \frac{1}{2}$$
Area of square
$$= \frac{1}{2}(32 \text{ cm})^2 = 512 \text{ cm}^2$$
Area of the given kite

Area of 1st shade = Area of 2nd shade

Area of 1st shade = Area of 2nd shade

$$= \frac{512 \text{ cm}^2}{2} = 256 \text{ cm}^2$$

Therefore, the area of paper required in each shape is 256 cm².

For IIIrd triangle

$$s = \frac{(6+6+8) \text{ cm}}{2} = 10 \text{ cm}$$

Semi-perimeter,

By Heron's formula,

By Heron's formula,

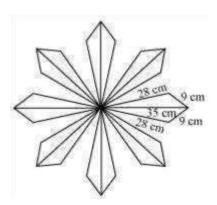
$$= \sqrt{s(s-a)(s-b)(s-c)}$$
Area of triangle

Area of IIIrd triangle
$$= \sqrt{10(10-6)(10-6)(10-8)}$$
Area of IIIrd triangle

$$=(\sqrt{10\times4\times4\times2})$$
cm²

$$=(4\times2\sqrt{5})$$
cm²

$$= 8\sqrt{5} \text{ cm}^2$$


$$=(8\times2.24)$$
cm²

$$=17.92 \text{ cm}^2$$

Area of paper required for IIIrd shade = 17.92 cm²

Question 8:

A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being 9 cm, 28 cm and 35 cm (see the given figure). Find the cost of polishing the tiles at the rate of 50p per cm².

Answer:

It can be observed that

$$s = \frac{(35+28+9)\text{cm}}{2} = 36 \text{ cm}$$

Semi-perimeter of each triangular-shaped tile,

By Heron's formula,

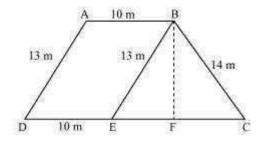
Area of triangle
$$= \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \left[\sqrt{36(36-35)(36-28)(36-9)}\right] \text{cm}^2$$
Area of each tile
$$= \left[\sqrt{36\times1\times8\times27}\right] \text{cm}^2$$

$$= 36\sqrt{6} \text{ cm}^2$$

$$= (36 \times 2.45) \text{ cm}^2$$

$$= 88.2 \text{ cm}^2$$


Area of 16 tiles = (16×88.2) cm²= 1411.2 cm²

Cost of polishing per cm^2 area = 50 p

Cost of polishing 1411.2 cm² area = Rs (1411.2×0.50) = Rs 705.60 Therefore, it will cost Rs 705.60 while polishing all the tiles.

Question 9:

A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The nonparallel sides are 14 m and 13 m. Find the area of the field.

Draw a line BE parallel to AD and draw a perpendicular BF on CD. It can be observed that ABED is a parallelogram.

$$BE = AD = 13 \text{ m}$$

$$ED = AB = 10 \text{ m}$$

$$EC = 25 - ED = 15 \text{ m}$$

For Δ BEC,

$$s = \frac{(13+14+15) \text{ m}}{2} = 21 \text{ m}$$

Semi-perimeter,

By Heron's formula.

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

Area of triangle

Area of triangle
$$= \left[\sqrt{21(21-13)(21-14)(21-15)} \right] m^{2}$$
 Area of $\triangle BEC$

$$= \left[\sqrt{21(8)(7)(6)} \right]_{\text{m}^2 = 84 \text{ m}^2}$$
$$= \frac{1}{2} \times \text{CE} \times \text{BF}$$

Area of ΔBEC

$$84 \text{ cm}^2 = \frac{1}{2} \times 15 \text{ cm} \times \text{BF}$$

 $BF = \left(\frac{168}{15}\right) \text{ cm} = 11.2 \text{ cm}$

Area of ABED = BF \times DE = 11.2 \times 10 = 112 m² Area of the field = 84 + 112 = 196 m²