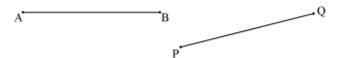
Congruency: Congruent Triangles

Difference Between Similarity and Congruence

Congruency of line segments:

"Two line segments are congruent to each other if their lengths are equal".

Consider the following line segments.



Here, the line segments AB and PQ will be congruent to each other, if they are of equal length.

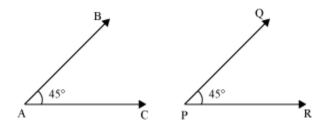
Conversely, we can say that, "Two line segments are of equal length if they are congruent to each other".

i.e. if
$$\overline{^{AB}} \cong \overline{^{PQ}}$$
 , then AB = PQ.

Congruency of angles:

"Two angles are said to be congruent to each other if they have the same measure".

The angles shown in the following figures are congruent to each other as both the angles are of the same measure 45°.



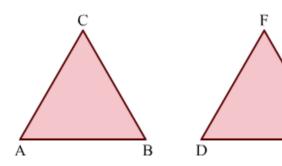
Thus, we can write $\angle BAC \cong \angle QPR$.

Its converse is also true.

"If two angles are congruent to each other, then their measures are also equal".

There is one special thing about congruent figures that their corresponding parts are always equal.

For example, if two triangles are congruent then their corresponding sides will be equal. Also, their corresponding angles will be equal. Look at the following triangles.



Here, $\triangle ABC \cong \triangle DEF$ under the correspondence $\triangle ABC \hookrightarrow \triangle DEF$. This correspondence rule represents that in given triangles, $AB \hookrightarrow DE$ (AB corresponds to DE), $BC \hookrightarrow EF$, $CA \hookrightarrow FD$, $\angle A \hookrightarrow \angle D$, $\angle B \hookrightarrow \angle E$, $\angle C \hookrightarrow \angle F$. These are **corresponding parts of congruent triangles** (CPCT), $\triangle ABC$ and $\triangle DEF$.

Since \triangle ABC and \triangle DEF are congruent, their corresponding parts are equal.

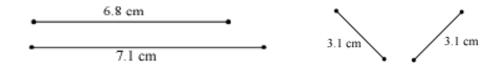
Therefore,
$$AB = DE$$
, $BC = EF$, $CA = FD$
And, $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$

Similarly, we can apply the method of CPCT on other congruent triangles also.

Let us now try and apply what we have just learnt in some examples.

Example 1:

Find which of the pairs of line segments are congruent.



(i) (ii)

Solution:

- (i) Lengths of the two line segments are not same. Therefore, they are not congruent.
- (ii) Each of the line segments is of length 3.1 cm, i.e. they are equal. Therefore, they are congruent.

Example 2:

If $\overline{AB} \cong \overline{PQ}$ and $\overline{PQ} = 9$ cm, then find the length of \overline{AB} .

Solution:

Since $\overline{^{AB}} \cong \overline{^{PQ}}$, i.e. line segment AB is congruent to line segment PQ, therefore, $\overline{^{AB}}$ and $\overline{^{PQ}}$ are of equal length.

$$\therefore \overline{AB} = 9 \text{ cm}$$

Example 3:

If $\angle ABC \cong \angle PQR$ and $\angle PQR = 75^{\circ}$, then find the measure of $\angle ABC$.

Solution:

If two angles are congruent, then their measures are equal.

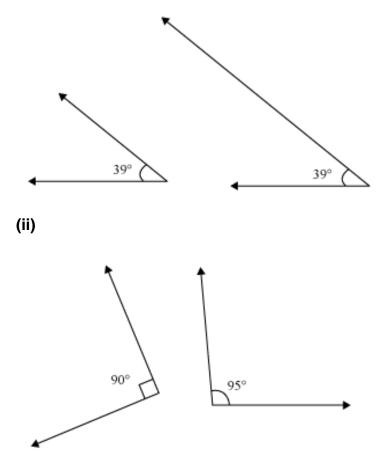
Since $\angle ABC \cong \angle PQR$,

Therefore, $\angle ABC = 75^{\circ}$

Example 4:

Which of the following pairs of angles are congruent?

(i)

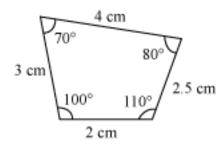


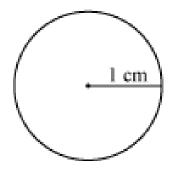
- (i) The measure of both the angles is the same. Therefore, they are congruent.
- (ii) The measures of the two angles are different. Therefore, they are not congruent.

Example 5:

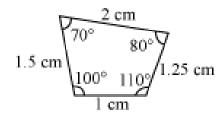
Identify the pairs of similar and congruent figures from the following.

(i)

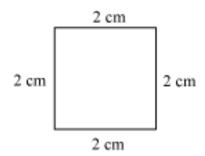




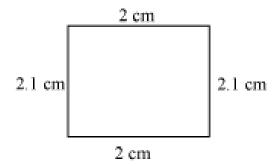
(iii)



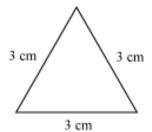
(iv)



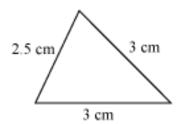
(v)



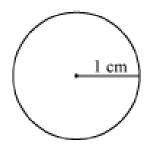
(vi)



(vii)



(viii)



Solution:

Figures (i) and (iii) are similar because their corresponding angles are equal and their corresponding sides are in the same ratio. However, these figures are not congruent as they are of different sizes.

Figures (ii) and (viii) are congruent as they are of the same shape and size (circles with radius 1 cm each).

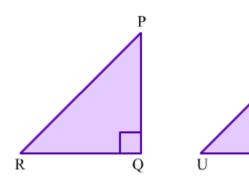
Example 6:

Are the following figures similar or congruent?

The two given figures show two one-rupee coins. As both the figures represent the same coin in two different sizes, they are similar to each other. However, the pictures are not congruent because of their different sizes.

Example 7:

In the following figure, ΔPQR and ΔSTU are congruent.



If PQ = 8 cm, QR = 6 cm then find the perimeter of Δ STU.

Solution:

In ΔPQR, we have

 $PQ = 8 \text{ cm}, QR = 6 \text{ cm} \text{ and } \angle Q = 90^{\circ}$

Applying Pythagoras theorem in $\triangle PQR$, we obtain

$$RP^2 = PQ^2 + QR^2$$

$$\Rightarrow$$
 RP² = 8² + 6²

$$\Rightarrow$$
 RP² = 64 + 36

$$\Rightarrow RP^2 = 100$$

$$\Rightarrow$$
 RP = 10 cm

Since $\triangle PQR$ and $\triangle STU$ are congruent, their corresponding parts will be equal.

Therefore,

$$PQ = 8 cm = ST$$
 (CPCT)

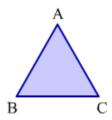
$$QR = 6 cm = TU and$$
 (CPCT)

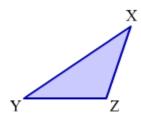
$$RP = 10 \text{ cm} = US$$
 (CPCT)

$$\therefore$$
 Perimeter of \triangle STU = ST + TU + US = 8 cm + 6 cm + 10 cm = 24 cm

Correspondence of Vertices, Angles and Sides of Triangles

Let us consider $\triangle ABC$ and $\triangle XYZ$ as shown below.





It can be seen that points A, B and C are the vertices of \triangle ABC, and points X, Y and Z are the vertices of \triangle XYZ.

If vertex X is the pair of vertex A, then we can say that vertex X corresponds to vertex A and it is symbolised as 'A \rightarrow X'. Similarly, if vertex A corresponds to vertex X, then it is symbolised as 'X \rightarrow A'.

Hence, vertices A and X correspond to each other and it is symbolised as 'A \hookrightarrow X', which is read as 'there is one to one correspondence between A and X'.

Similarly, the correspondences B $\stackrel{\longleftarrow}{\mapsto}$ Y and C $\stackrel{\longleftarrow}{\mapsto}$ Z can also be formed.

All of these correspondences can be represented together as 'ABC ↔ XYZ'.

In the same way,there may be other correspondences between the vertices of ΔABC and ΔXYZ . All the possible correspondences between ΔABC and ΔXYZ are listed below.

Correspondence between vertices

Correspondence written together

$$(1)A \rightarrow X, B \rightarrow Y, C \rightarrow Z$$

$$(2)A \rightarrow X, B \rightarrow Z, C \rightarrow Y$$

$$(3)A \, \, \stackrel{\longleftarrow}{\longmapsto} \, \, Y, \, B \, \, \stackrel{\longleftarrow}{\longmapsto} \, \, X, \, C \, \, \stackrel{\longleftarrow}{\longmapsto} \, \, Z$$

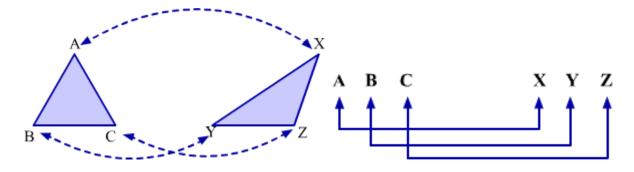
$$(4)A \, \stackrel{\longrightarrow}{\mapsto} \, Y, \, B \, \stackrel{\longleftarrow}{\mapsto} \, Z, \, C \, \stackrel{\longleftarrow}{\mapsto} \, X$$

$$(5)A \ \overrightarrow{\mapsto} \ Z, \ B \ \overrightarrow{\mapsto} \ X, \ C \ \overrightarrow{\mapsto} \ Y$$

$$(6)A \, \stackrel{\longleftarrow}{\leftarrow} \, Z, \, B \, \stackrel{\longleftarrow}{\leftarrow} \, Y, \, C \, \stackrel{\longleftarrow}{\leftarrow} \, X$$

$$\mathsf{ABC} {\ \ } {\ \ } \mathsf{ZYX}$$

Let us consider the correspondence ABC \rightarrow XYZ between the vertices of \triangle ABC and \triangle XYZ. This can be shown diagrammatically using arrows as follows:



Thus, we get the following pairs of corresponding sides and corresponding angles from the above correspondence.

Pairs of corresponding sides

Pairs of corresponding angles

(1)AB <u>→</u> XY

(1)∠A → ∠X

(2)BC → YZ

(2)∠B → ∠Y

(3)AC → XZ

(3)∠C → ∠Z

Now,let us go through an example to get more familiar with the concept.

Example:

If DEF → RQP and DEF → PRQ are the two correspondences for two triangles,then write the pairs of corresponding angles and sides for each of them.

Solution:

For DEF → RQP:

Pairs of corresponding sides

Pairs of corresponding angles

(1)DE → RQ

(2)EF → QP

(2)∠E → ∠Q

(3)DF → RP

(3)∠F → ∠P

For DEF → PRQ:

Pairs of corresponding sides

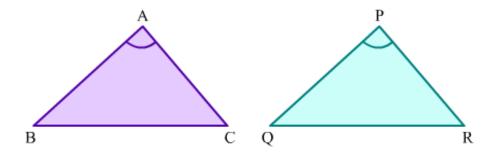
Pairs of corresponding angles

SAS Congruence Rule

Consider a triangle two of whose sides and the included angle are known. We can check for the congruency of this triangle with respect to another triangle if we know the corresponding sides and angle of that triangle. Two triangles can, thus, be termed 'congruent' or 'incongruent' by using the SAS congruence rule. This rule states that:

If two sides of a triangle and the angle between them are equal to the corresponding sides and angle of another triangle, then the two triangles are congruent.

Look at the given $\triangle ABC$ and $\triangle PQR$.



Let us consider sides AB and AC and the included \angle BAC in \triangle ABC, and the corresponding sides and angle in \triangle PQR, i.e., PQ, PR and \angle QPR.

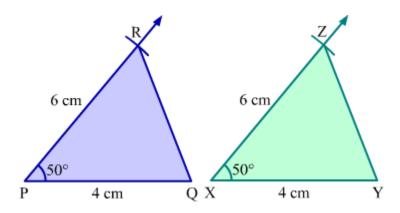
By the SAS congruence rule, the two triangles will be congruent if AB = PQ, AC = PR and $\angle BAC = \angle QPR$.

Similarly, we can check for congruency by taking other pairs of sides and included angles in these triangles.

Verification of SAS Congruence Rule

The SAS congruence rule for triangles is taken as a postulate, so there is no proof for the same but we we can verify it by doing an activity.

The steps of the activity are as follows:



- i) Construct $\triangle PQR$ such that PQ = 4 cm, PR = 6 cm and $\angle QPR = 50^{\circ}$.
- ii) Construct ΔXYZ with the same measures such that XY = 4 cm, XZ = 6 cm and $\angle YXZ = 50^{\circ}$.
- iii) Cut both the triangles along their boundaries.
- iv) Try to superpose one triangle by the other. One triangle can be placed on the other in six different ways such that vertex lie on vertex.
- v) In one of the trials, you will get P falling over X, Q falling over Y and R falling over Z. In this case, you will see that both the triangles cover each other exactly.
- vi) Thus, under the correspondence PQR → XYZ, the triangles are congruent.

This verifies the SAS congruence rule.

Applying the SAS Congruence Rule

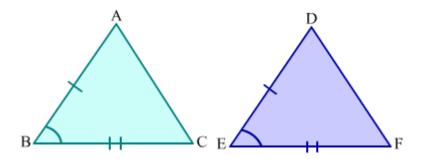
Watch this video to understand the SAS congruence rule.

Solving an Example Using the SAS Congruence Rule

CPCT

CPCT stands for 'corresponding parts of congruent triangles'. 'Corresponding parts' means corresponding sides and angles of triangles. According to CPCT, if two or more triangles are congruent to one another, then all of their corresponding parts are equal.

For example, in the given $\triangle ABC$ and $\triangle DEF$, AB = DE, $\angle B = \angle E$ and BC = EF. So, according to the SAS congruence criterion, we have $\triangle ABC \cong \triangle DEF$.



Now, by CPCT, we can say that the remaining corresponding parts of the two congruent triangles are also equal. This means that AC = DF, $\angle A = \angle D$ and $\angle C = \angle F$.

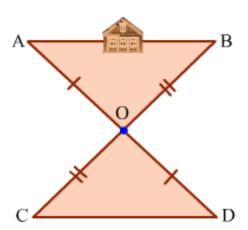
Similarly, we can apply CPCT in case of other congruent triangles.

Solved Examples

Easy

Example 1:

Observe the following figure.



Ajay wishes to determine the distance between two objects A and B, but there is a house in between. So, he devises an ingenious way to fix the problem. First, he fixes a

pole at any point O so that both A and B are visible from O. He then fixes another pole at point D which is collinear to point O and object A, and is at the same distance from O as A, i.e., DO = AO.

Similarly, he fixes a pole at point C which is collinear to point O and object B, and is at the same distance from O as B, i.e., CO = BO. Finally, he measures CD to find the distance between A and B. How can Ajay be sure that CD = AB?

Solution:

We have two triangles in the given figure, i.e., $\triangle AOB$ and $\triangle DOC$.

In these two triangles, we have:

AO = DO (Given)

 $\angle AOB = \angle DOC$ (Vertically opposite angles)

BO = CO (Given)

Therefore, by the SAS congruence rule, we can say that:

 $\triangle AOB \cong \triangle DOC$

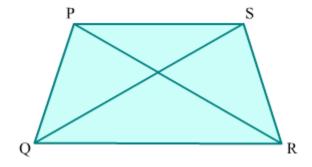
 \Rightarrow AB = CD (By CPCT)

This is the reason why Ajay measures CD to find the distance between objects A and B.

Example 2:

In the given quadrilateral PQRS, PR bisects ∠QPS and PQ = PS. Prove that:

- i) ΔPQR ≅ΔPSR
- ii) QR = SR



i) In $\triangle PQR$ and $\triangle PSR$, we have:

PQ = PS(Given)

PR = PR(Common side)

 $\angle QPR = \angle SPR(\&because PR bisects \angle QPS)$

So, by the SAS congruence rule, we obtain:

 $\Delta PQR \cong \Delta PSR$

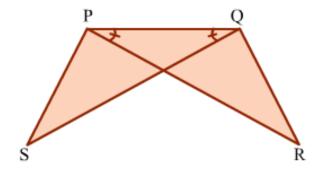
ii) We have proved that $\triangle PQR \cong \triangle PSR$.

: QR = SR (&because Corresponding parts of congruent triangles are equal)

Medium

Example 1:

In the shown figure, PR = QS and \angle QPR = \angle PQS. Prove that \triangle PQR \cong \triangle QPS. Also, show that PS = QR and \angle QPS = \angle PQR.



Solution:

In $\triangle PQR$ and $\triangle QPS$, we have:

PR = QS(Given)

 $\angle QPR = \angle PQS(Given)$

PQ = PQ(Common side)

 $\therefore \Delta PQR \cong \Delta QPS(By \text{ the SAS congruence criterion})$

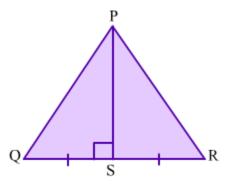
$$\Rightarrow$$
 PS = QR and \angle QPS = \angle PQR (By CPCT)

Example 2:

Prove that Δ PQR is isosceles if the altitude drawn from a vertex bisects the opposite side.

Solution:

The given figure shows the Δ PQR having PS as an altitude that bisects the opposite side QR.



In $\triangle PSQ$ and $\triangle PSR$, we have:

QS = SR (&because Altitude PS bisects QR)

PS = PS(Common side)

 $\angle PSQ = \angle PSR = 90^{\circ}$ (&because PS is the altitude to QR)

 $\therefore \Delta PSQ \cong \Delta PSR(By \text{ the SAS congruence rule})$

 \Rightarrow PQ = PR(By CPCT)

Therefore, $\triangle PQR$ is isosceles.

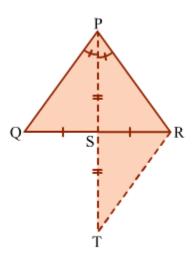
Example 3:

If the angle bisector of any angle of a triangle bisects the opposite side then show that the triangle is isosceles.

Solution:

Let $\triangle PQR$ be the given triangle and PS is the angle bisector of $\angle QPR$ such that it bisects the side QR.

Let us extend the segment PS to point T such that PS = TS.



In \triangle PQS and \triangle TRS, we have

$$QS = RS$$
 (Given)

$$\angle PSQ = \angle TSR$$
 (Vertically opposite angles)

So, by the SAS congruence criterion, we have:

 $\Delta PQS \cong \Delta TRS$

By CPCT, we obtain

$$PQ = TR$$
 ...(1)

And
$$\angle QPS = \angle RTS$$
 ...(2)

But
$$\angle QPS = \angle RPS$$
 ...(3) (PS bisects $\angle QPR$)

$$\therefore \angle RTS = \angle RPS$$
 [From (2) and (3)]

$$\Rightarrow$$
 PR = TR (Sides opposite to equal angles)

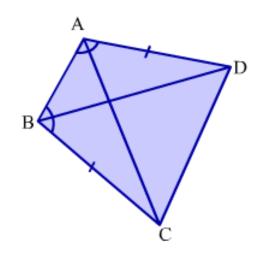
$$\therefore PQ = PR$$
 [From (1)]

Thus, $\triangle PQR$ is an isosceles triangle.

Hard

Example 1:

ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA.



Prove that:

i) $\triangle ABD \cong \triangle BAC$

ii) BD = AC

iii) ∠ABD = ∠BAC

Solution:

i) In ΔABD and $\Delta BAC,$ we have:

AD = BC (Given)

 $\angle DAB = \angle CBA$ (Given)

AB = BA (Common side)

So, by the SAS congruence criterion, we have:

 $\triangle ABD \cong \triangle BAC$

ii) We have proved that $\triangle ABD \cong \triangle BAC$.

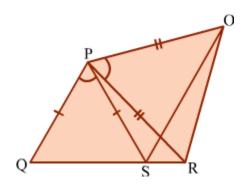
$$\therefore$$
 BD = AC (By CPCT)

iii) Since $\triangle ABD \cong \triangle BAC$, we have:

$$\angle ABD = \angle BAC(By CPCT)$$

Example 2:

In the given figure, PR = PO, PQ = PS and $\angle QPS = \angle OPR$. Show that QR = SO.



Solution:

It is given that $\angle QPS = \angle OPR$.

$$\Rightarrow \angle QPR = \angle SPO...(1)$$

In \triangle QPR and \triangle SPO, we have:

$$\angle QPR = \angle SPO$$
 (From equation 1)

So, by the SAS congruence rule, we have:

$$\Delta QPR \cong \Delta SPO$$

$$\Rightarrow$$
 QR = SO (By CPCT)

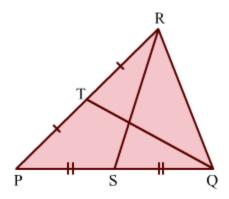
Example 3:

In an isosceles triangle, prove that the medians on the equal sides are equal.

Solution:

Let $\triangle PQR$ be an isosceles triangle such that PQ = PR.

Also, let RS and QT be the medians to the sides PQ and PR respectively.



In ΔPQR, we have

$$PS = SQ = \frac{1}{2}PQ$$
 (RS is the median)

And PT = TR =
$$\frac{1}{2}$$
PR (QT is the median)

But PQ = PR

$$\therefore$$
 PS = SQ = PT = TR ...(1)

In \triangle PRS and \triangle PQT, we have

$$PQ = PR$$
 (Given)

$$\angle RPS = \angle QPT$$
 (Common angle)

$$PS = PT$$
 [From (1)]

So, by the SAS congruence rule, we have:

 $\Delta PRS \cong \Delta PQT$

$$\therefore$$
 RS = QT (By CPCT)

Thus, the medians on the equal sides of an isosceles triangle are equal.

Proving Theorem of Right Angled Triangle

There is a theorem of right angled triangles which states that:

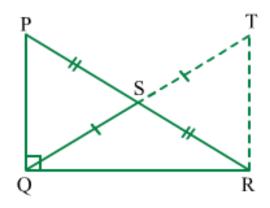
In a right angled triangle, median drawn to the hypotenuse from the opposite vertex is equal to the half of the hypotenuse.

Let us prove the theorem.

Given: Right angled $\triangle PQR$, $\angle PQR = 90^{\circ}$ and median QS to hypotenuse PR.

To prove: $QS = \frac{1}{2}PR$

Construction: Extend QS to T such that QS = ST and join T to R.



Proof:

In \triangle PSQ and \triangle RST, we have

QS = TS (By construction)

 $\angle PSQ = \angle RST$ (Vertically opposite angles)

PS = RS (Given)

So, by SAS congruence criterion, we have

 $\Delta PSQ \cong \Delta RST$

 \therefore PQ = RT ...(1) (By CPCT)

And $\angle QPS = \angle TRS$ (By CPCT)

Thus, PQ || RT (\angle QPS and \angle TRS alternate interior angles formed by transversal PR)

Now, QR is also a transversal to parallel line segments PQ and RT.

 $\angle PQR + \angle TRQ = 180^{\circ}$ (Sum of interior angles on the same side of transversal)

But $\angle PQR = 90^{\circ}$

$$\therefore \angle \mathsf{TRQ} = 90^{\circ} \tag{2}$$

In $\triangle PQR$ and $\triangle TRQ$, we have

$$PQ = RT$$
 [From (1)]

$$\angle PQR = \angle TRQ = 90^{\circ}$$

$$QR = QR$$
 (Common side)

So, by SAS congruence criterion, we have

 $\Delta PQR \cong \Delta TRQ$

$$\therefore$$
 PR = QT (By CPCT)

$$\Rightarrow \frac{1}{2}PR = \frac{1}{2}QT$$

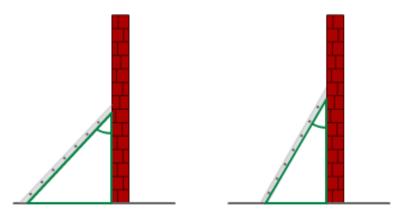
But
$$\frac{1}{2}QT = QS$$

$$\therefore QS = \frac{1}{2}PR$$

Hence, proved.

ASA Congruence Rule

Look at the given figure.



Observe how the ladder, the wall and the horizontal together make triangles in the figure. It can be seen that the angle marked between the ladder and the wall on the left is greater than the same angle marked on the right.

Clearly, the triangles are not congruent although it is the same ladder on both sides.

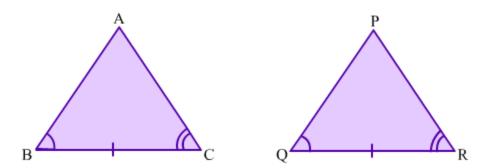
Both angles and sides play an important role in determining the congruency of triangles. In this lesson, we will discuss the ASA (Angle-Side-Angle) congruence rule and solve some problems based on it.

ASA Congruence Rule

The ASA congruence rule for triangles states that:

If two angles of a triangle and the side between them are equal to the corresponding angles and side of another triangle, then the two triangles are congruent.

Consider the given $\triangle ABC$ and $\triangle PQR$.



Observe how corresponding components of the two triangles are marked.

Now, by the ASA congruence rule, the two triangles will be congruent if these corresponding components are equal, i.e., if $\angle ABC = \angle PQR$, BC = QR and $\angle ACB = \angle PRQ$, then $\triangle ABC \cong \triangle PQR$.

Note that, under the above condition of congruence, we cannot write $\triangle ABC \cong \triangle QRP$. The order of the vertices matters in any congruency.

Did You Know?

A bright meteor was seen in the sky above Greenland on December 9, 1997. In an attempt to find the fragments of the meteorite, scientists collected data from eyewitnesses who observed the meteor passing through the sky. As is shown in the figure below, the scientists considered sightlines of observers in different towns.

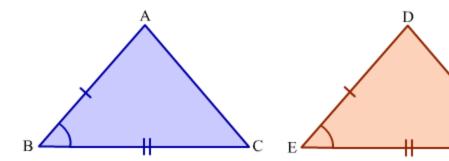
One such sightline was of observers in the town called Paamiut (Point P). Another was of observers in the town called Narsarsuaq (Point N).

Using the ASA congruence rule, the scientists were able to gather enough information to successfully locate the fragments of the meteorite (Point M).

Proof of the ASA Congruence Rule: Case 1

Let us consider \triangle ABC and \triangle DEF such that \angle ABC = \angle DEF, \angle ACB = \angle DFE and BC = EF. By the ASA congruence rule, \triangle ABC and \triangle DEF are congruent. By CPCT, we have AB = DE.

Case 1: Let us prove $\triangle ABC \cong \triangle DEF$ by taking AB = DE.



In this case, we have

AB = DE (Given)

 $\angle ABC = \angle DEF$ (Given)

BC = EF (Given)

So, by the SAS congruence rule, we have:

 $\triangle ABC \cong \triangle DEF$

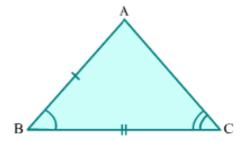
Proof of the ASA Congruence Rule: Case 2

Let us consider $\triangle ABC$ and $\triangle DEF$ such that $\angle ABC = \angle DEF$, $\angle ACB = \angle DFE$ and BC = EF. By the ASA congruence rule, $\triangle ABC$ and $\triangle DEF$ are congruent. By CPCT, we have AB = DE. Let us assume $AB \neq DE$.

Case 2: Let us prove $\triangle ABC \cong \triangle DEF$ by taking AB < DE.

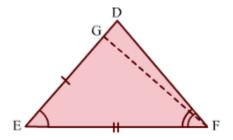
Construction: Mark a point G on DE such that GE = AB. Join G to F.

Now, in $\triangle ABC$ and $\triangle GEF$, we have:



AB = GE (By construction)

 $\angle ABC = \angle GEF \ (\because \angle ABC = \angle DEF \ and \ \angle DEF = \angle GEF)$



BC = EF (Given)

So, by the SAS congruence rule, we obtain:

 $\triangle ABC \cong \triangle GEF$

 $\Rightarrow \angle ACB = \angle GFE$ (By CPCT)

But $\angle ACB = \angle DFE$ (Given)

∴ ∠GFE = ∠DFE

This can be possible only when line segment GF coincides with line segment DF or point G coincides with point D. Therefore, AB must be equal to DE and Δ GEF must be Δ DEF.

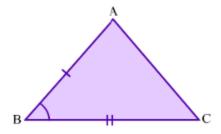
∴ ΔABC ≅ ΔDEF

Proof of the ASA Congruence Rule: Case 3

Let us consider \triangle ABC and \triangle DEF such that \angle ABC = \angle DEF, \angle ACB = \angle DFE and BC = EF. By the ASA congruence rule, \triangle ABC and \triangle DEF are congruent. By CPCT, we have AB = DE. Let us assume AB \neq DE.

Case 3: Let us prove $\triangle ABC \cong \triangle DEF$ by taking AB > DE.

Construction: Extend ED to point G such that GE = AB. Join G to F.

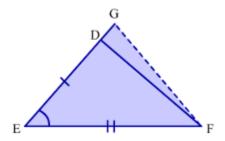


Now, in \triangle ABC and \triangle GEF, we have:

AB = GE (By construction)

 $\angle ABC = \angle DEF \ (\because \angle ABC = \angle DEF \ and \ \angle DEF = \angle GEF)$

BC = EF (Given)



So, by the SAS congruence rule, we obtain:

 $\triangle ABC \cong \triangle GEF$

 $\Rightarrow \angle ACB = \angle GFE$ (By CPCT)

But $\angle ACB = \angle DFE$ (Given)

∴ ∠GFE = ∠DFE

This can be possible only when line segment GF coincides with line segment DF or point G coincides with point D. Therefore, AB must be equal to DE and Δ GEF must be Δ DEF.

 $\therefore \triangle ABC \cong \triangle DEF$

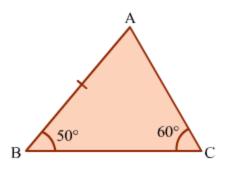
Applying the ASA Congruence Rule

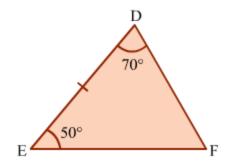
Solved Examples

Easy

Example 1:

Check whether the given triangles are congruent or not.





In ΔABC, we have:

$$\angle$$
ABC + \angle BCA + \angle BAC = 180° (By the angle sum property)

$$\Rightarrow$$
 50° + 60° + \angle BAC = 180°

$$\Rightarrow$$
 110° + \angle BAC = 180°

$$\Rightarrow \angle BAC = 70^{\circ}$$

In \triangle ABC and \triangle DEF, we have:

$$\angle BAC = \angle EDF = 70^{\circ}$$

AB = DE (Given)

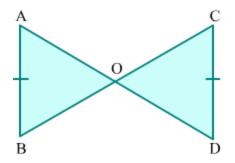
$$\angle ABC = \angle DEF = 50^{\circ}$$

Therefore, by the ASA congruence rule, we have:

 $\triangle ABC \cong \triangle DEF$

Example 2:

In the given figure, AB and CD are two equal and parallel lines. Prove that $\Delta ABO\cong \Delta CDO.$



It is given that AB||CD. AD and BC are transversals lying on lines AB and CD.

So, by the alternate angles axiom, we obtain:

$$\angle OAB = \angle ODC...(1)$$

$$\angle OBA = \angle OCD...$$
 (2)

In \triangle ABO and \triangle CDO, we have:

$$\angle OAB = \angle ODC$$
 (By equation 1)

AB = CD(Given)

$$\angle OBA = \angle OCD$$
 (By equation 2)

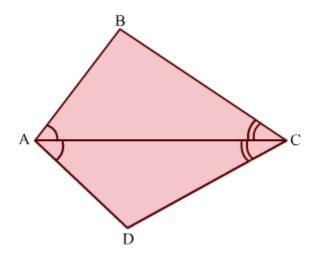
Thus, by the ASA congruence rule, we obtain:

 $\triangle ABO \cong \triangle CDO$

Medium

Example 1:

In the given quadrilateral ABCD, diagonal AC bisects \angle BAD and \angle BCD. Prove that AB = AD and CB = CD.



Since diagonal AC bisects ∠BAD and ∠CAD, we have:

 \angle BAC = \angle DAC and \angle BCA = \angle DCA

In \triangle ACB and \triangle ACD, we have:

 $\angle BAC = \angle DAC$ (Given)

 \angle BCA = \angle DCA (Given)

AC = AC (Common side)

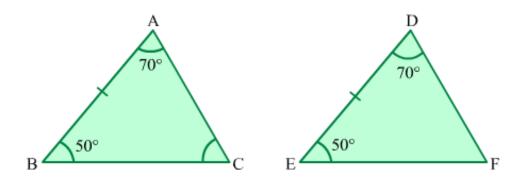
So, by the ASA congruence rule, we have:

 $\triangle ACB \cong \triangle ACD$

 \Rightarrow AB = AD and CB = CD (By CPCT)

Example 2:

Consider the two triangular parks ABC and DEF shown below.



Tina jogs around park ABC and Aliya jogs around park DEF daily. Paths AB and DE are equal in length. If both girls jog an equal number of rounds daily, then check whether or not they cover the same distance while jogging?

Solution:

In \triangle ABC and \triangle DEF, we have:

$$\angle BAC = \angle EDF = 70^{\circ}(Given)$$

AB = DE(Given)

$$\angle ABC = \angle DEF = 50^{\circ}(Given)$$

Therefore, by the ASA congruency rule, we obtain:

 $\triangle ABC \cong \triangle DEF$

$$\Rightarrow$$
 AC = DF and BC = EF(By CPCT)

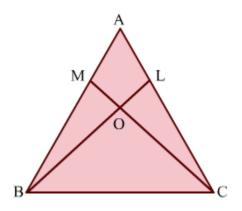
$$\therefore$$
 AB + BC + CA = DE + EF + FD

Hence, both Tina and Aliya cover the same distance daily while jogging.

Hard

Example 1:

The given $\triangle ABC$ is isosceles with AB = AC. $\angle LOC = 2\angle OBC$ and $\angle MOB = 2\angle OCB$. Prove that $\triangle BCM \cong \triangle CBL$.



It is given that:

$$\angle LOC = 2\angle OBC...$$
 (1)

$$\angle$$
MOB = 2 \angle OCB... (2)

Now, $\angle LOC = \angle MOB$ (Vertically opposite angles)

Using equations (1) and (2), we obtain:

$$\Rightarrow \angle MCB = \angle LBC...(3)$$

In \triangle BCM and \triangle CBL, we have:

 \angle MBC = \angle LCB (: \triangle ABC is isosceles with AB = AC)

BC = CB (Common side)

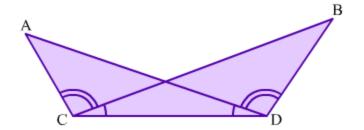
 \angle MCB = \angle LBC (Using equation 3)

Thus, by the ASA congruence rule, we obtain:

 $\Delta BCM \cong \Delta CBL$

Example 2:

In the given figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that AD = BC and $\angle CAD = \angle DBC$.



It is given that:

$$\angle BCD = \angle ADC \dots (1)$$

$$\angle ACB = \angle BDA \dots (2)$$

On adding equations (1) and (2), we get:

$$\angle$$
BCD + \angle ACB = \angle ADC + \angle BDA

$$\Rightarrow \angle ACD = \angle BDC...(3)$$

In \triangle ACD and \triangle BDC, we have:

$$\angle ADC = \angle BCD(Given)$$

CD = DC (Common side)

$$\angle ACD = \angle BDC$$
 (By equation 3)

So, by the ASA congruence rule, we have:

 $\triangle ACD \cong \triangle BDC$

$$\Rightarrow$$
 AD = BC and \angle CAD = \angle DBC (By CPCT)

AAS Congruence Rule

Consider the following triangular clocks.

In each clock, two angles on the base are marked. We can check the congruency of the clocks if we know the marked angles and the included side (i.e., the base) by using the ASA congruence rule.

Now, can we check the congruency of these clocks if instead of the base we are given any of the other two sides? Yes, we can do so and this is why we have the AAS (Angle-Angle-Side) congruence rule. In this lesson, we will discuss this rule and solve some examples related to it.

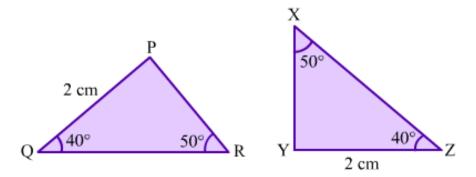
AAS Congruence Rule

The AAS congruence rule for triangles states that:

If any two angles and one side of a triangle are equal to the corresponding angles and side of another triangle, then the two triangles are congruent.

This is nothing but the generalized form of the ASA congruence rule.

Consider the given $\triangle PQR$ and $\triangle XYZ$.



In each triangle, the given side is not between the given angles. So, we cannot apply the ASA congruence rule here. Instead, we will use the AAS congruence rule.

In $\triangle PQR$ and $\triangle YZX$, we have:

$$PQ = YZ = 2 \text{ cm}$$

$$\angle PQR = \angle YZX = 40^{\circ}$$

$$\angle PRQ = \angle YXZ = 50^{\circ}$$

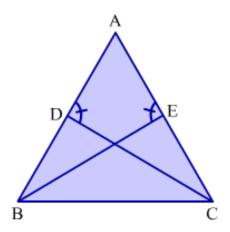
Thus, by using the AAS congruence criterion, we obtain: $\triangle PQR \cong \triangle YZX$

Solved Examples

Easy

Example 1:

The given \triangle ABC is isosceles with AB = AC and \angle ADC = \angle AEB. Prove that \triangle ABE \cong \triangle ACD.



Solution:

In \triangle ABE and \triangle ACD, we have:

AB = AC (Given)

 $\angle AEB = \angle ADC$ (Given)

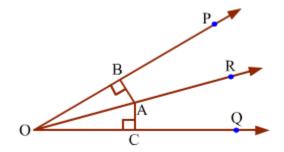
 $\angle BAE = \angle CAD$ (Common angle)

Thus, by the AAS congruence rule, we obtain:

 $\triangle ABE \cong \triangle ACD$

Example 2:

In the given figure, OR bisects \angle POQ and A is any point on OR. AB and AC are the perpendiculars drawn from A to the arms OP and OQ respectively. Prove that \triangle AOB \cong \triangle AOC.



Solution:

It is given that OR bisects ∠POQ.

$$\Rightarrow \angle BOA = \angle COA...(1)$$

In $\triangle AOB$ and $\triangle AOC$, we have:

 \angle ABO = \angle ACO = 90° (: AB and AC are perpendiculars)

 $\angle BOA = \angle COA$ (By equation 1)

AO = AO (Common side)

Thus, by the AAS congruence rule, we obtain:

 $\triangle AOB \cong \triangle AOC$

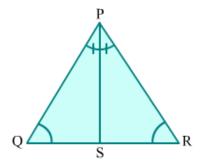
Medium

Example 1:

If two angles of a triangle are equal, then prove that the sides opposite them are also equal.

Solution:

Consider a $\triangle PQR$ with $\angle PQR = \angle PRQ$.



We have to prove that PQ = PR.

Construction: Draw the bisector of ∠QPR and let it meet side QR at point S.

In $\triangle PSQ$ and $\triangle PSR$, we have:

$$\angle PQS = \angle PRS$$
 (Given)

PS = PS (Common side)

$$\angle QPS = \angle RPS$$
 (: PS bisects $\angle QPR$)

So, by the AAS congruence rule, we obtain:

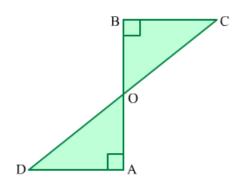
 $\Delta PSQ \cong \Delta PSR$

$$\Rightarrow$$
 PQ = PR (By CPCT)

Hence, we have proved that the sides opposite equal angles of a triangle are also equal.

Example 2:

DA and CB are equal perpendiculars to a line segment AB. Show that line segment CD bisects AB at point O.



Solution:

In $\triangle DAO$ and $\triangle CBO$, we have:

 $\angle AOD = \angle BOC$ (Vertically opposite angles)

 $\angle OAD = \angle OBC = 90^{\circ}$ (: DA and CB are perpendiculars)

DA = CB (Given)

So, by the AAS congruence rule, we obtain:

 $\Delta DAO \cong \Delta CBO$

 \Rightarrow AO = BO (By CPCT)

Now, AO + BO = AB

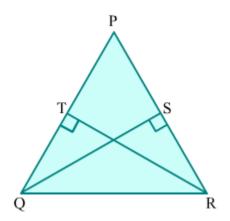
Thus, line segment CD bisects line segment AB at point O.

Example 3:

If two altitudes of a triangle are equal then show that the triangle is isosceles.

Solution:

Let us consider Δ PQR such that RT and QS are the equal altitudes drawn to the sides PQ and PR respectively.



In \triangle PTR and \triangle PSQ, we have

 $\angle PTR = \angle PSQ = 90^{\circ}$

$$\angle TPR = \angle SPQ$$
 (Common angle)

$$RT = QS$$
 (Given)

So, by the AAS congruence rule, we obtain:

 $\Delta PTR \cong \Delta PSQ$

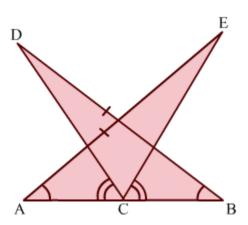
$$\therefore$$
 PR = PQ (By CPCT)

Thus, $\triangle PQR$ is an isosceles triangle.

Hard

Example 1:

In the given figure, $\angle DBC = \angle EAC$, $\angle DCA = \angle ECB$ and BD = AE. Prove that BC = AC.



Solution:

It is given that $\angle DCA = \angle ECB$.

On adding ∠ECD to both sides of the above equation, we get:

$$\angle$$
DCA + \angle ECD = \angle ECB + \angle ECD

$$\Rightarrow \angle ECA = \angle DCB...(1)$$

In \triangle BDC and \triangle AEC, we have:

$$\angle DCB = \angle ECA$$
 (From equation 1)

$$\angle DBC = \angle EAC$$
 (Given)

$$BD = AE$$
 (Given)

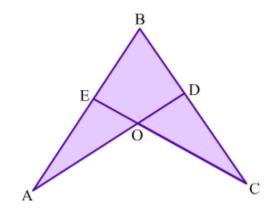
So, by the AAS congruence rule, we have:

 $\triangle BDC \cong \triangle AEC$

$$\Rightarrow$$
 BC = AC (By CPCT)

Example 2:

In the figure, $\angle BAD = \angle BCE$ and AB = CB. Prove that $\triangle ABD \cong \triangle CBE$.



Solution:

In $\triangle AOE$ and $\triangle COD$, we have:

$$\angle EAO = \angle DCO$$
 (Given)

 $\angle AOE = \angle COD$ (Vertically opposite angles)

 $\therefore \angle AEO = \angle CDO \dots (1)$ [By the angle sum property]

Now,

$$\angle AEO + \angle OEB = 180^{\circ}$$
 (Linear pair)

$$\angle$$
CDO + \angle ODB = 180° (Linear pair)

$$\therefore \angle AEO + \angle OEB = \angle CDO + \angle ODB$$

$$\Rightarrow$$
 \angle AEO + \angle OEB = \angle AEO + \angle ODB (Using equation (1))

$$\Rightarrow \angle CEB = \angle ADB \dots (2)$$

In \triangle ABD and \triangle CBE, we have:

$$\angle BAD = \angle BCE$$
 (Given)

$$\angle ADB = \angle CEB$$
 (From equation 2)

$$AB = CB$$
 (Given)

So, by the AAS congruence rule, we have:

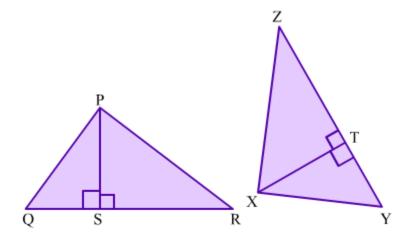
 $\triangle ABD \cong \triangle CBE$

Example 3:

Prove that if two triangles are congruent then their corresponding altitudes are equal.

Solution:

Let PS and XT be corresponding altitudes of congruent triangles ΔPQR and $\Delta XYZ.$



We have

$$\Delta PQR \cong \Delta XYZ$$

$$\therefore$$
 PQ = XY ...(1) (By CPCT)

$$\angle PQR = \angle XYZ$$
 ...(2) (By CPCT)

In \triangle PQS and \triangle XYT, we have

$$\angle PSQ = \angle XTY = 90^{\circ}$$

$$\angle PQR = \angle XYZ$$
 [From (2)]

$$PQ = XY$$
 [From (1)]

So, by the AAS congruence rule, we have:

$$\triangle PQS \cong \triangle XYT$$

$$\therefore$$
 PS = XT (By CPCT)

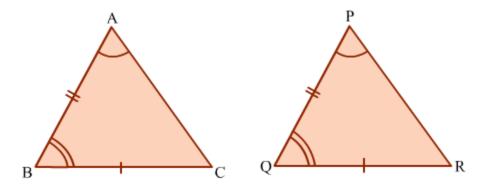
Thus, the corresponding altitudes of congruent triangles are equal.

Difference between AAS and ASA

The AAS and ASA criterions are both used for checking or proving congruency of triangles, but there is a subtle difference between the two.

- The ASA rule is applied when two interior angles of a triangle and the side between them are considered.
- The AAS rule is applied when two interior angles of a triangle and any side other than the one between them are considered.

Take, for example, the given $\triangle ABC$ and $\triangle PQR$.



To prove $\triangle ABC \cong \triangle PQR$ by the ASA rule, we need:

$$\angle BAC = \angle QPR$$
, $\angle ABC = \angle PQR$ and $AB = PQ$

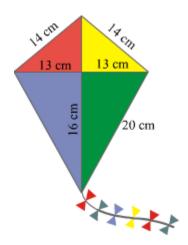
To prove $\triangle ABC \cong \triangle PQR$ by the AAS rule, we need:

 \angle BAC = \angle QPR, \angle ABC = \angle PQR and BC = QR

SSS Congruence Rule

Relation between the Congruency of Triangles and Their Sides

Consider the kite shown below.



It can be seen that the red and yellow coloured triangles have equal sides. On the basis of this information, can we say that the two triangles are congruent? Or, to rephrase the question, do the sides of triangles determine the congruency of the triangles? Yes, they do, and this is why we have the SSS (Side-Side-Side) congruence rule.

In this lesson, we will discuss the SSS congruence rule and its proof. We will also crack some problems based on it.

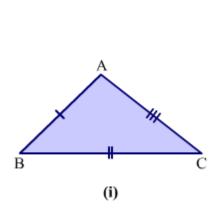
Proving the SSS Congruence Rule

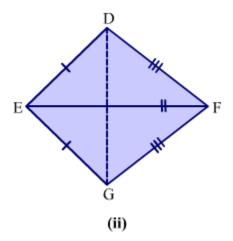
Statement: Two triangles are congruent if the three sides of one triangle are equal to the corresponding three sides of the other triangle.

Given: $\triangle ABC$ and $\triangle DEF$ such that AB = DE, BC = EF and AC = DF

To prove: $\triangle ABC \cong \triangle DEF$

Construction: Suppose BC and EF are the longest sides of the two triangles. Draw EG such that \angle GEF = \angle ABC and GE = AB. Join point G to points F and D.





Proof: In \triangle ABC and \triangle GEF, we have:

$$BC = EF (Given)$$

$$AB = GE$$
 (By construction)

$$\angle ABC = \angle GEF$$
 (By construction)

So, by the SAS congruence rule, we have:

 $\triangle ABC \cong \triangle GEF$

$$\Rightarrow$$
 \angle BAC = \angle EGF and AC = GF (By CPCT)

Now, AB = DE and AB = GE

$$\Rightarrow$$
 DE = GE ... (1)

Similarly, AC = DF and AC = GF

$$\Rightarrow$$
 DF = GF ... (2)

In \triangle DEG, we have:

DE = GE (From equation 1)

$$\Rightarrow \angle EDG = \angle EGD \dots (3)$$

In $\triangle DFG$, we have:

DF = GF (From equation 2)

$$\Rightarrow \angle FDG = \angle FGD...$$
 (4)

On adding equations 3 and 4, we get:

$$\angle$$
EDG + \angle FDG = \angle EGD + \angle FGD

$$\Rightarrow \angle EDF = \angle EGF$$

We know that $\angle EGF = \angle BAC$ (Proved above)

$$\therefore \angle BAC = \angle EDF \dots (5)$$

Thus, in $\triangle ABC$ and $\triangle DEF$, we have:

AB = DE (Given)

 $\angle BAC = \angle EDF$ (From equation 5)

$$AC = DF$$
 (Given)

So, by the SAS congruence rule, we obtain:

 $\triangle ABC \cong \triangle DEF$

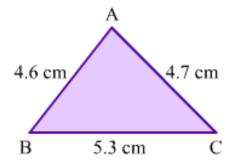
Hence, the SSS congruence rule holds true.

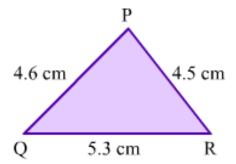
Solved Examples

Easy

Example 1:

Are the following triangles congruent?





Solution:

In \triangle ABC and \triangle PQR, we have:

AB = PQ = 4.6 cm

BC = QR = 5.3 cm

But AC ≠ PR

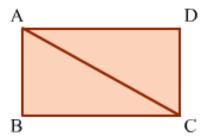
Therefore, $\triangle ABC$ and $\triangle PQR$ are not congruent.

Example 2:

ABCD is a rectangle with AC as one of its diagonals. Prove that the triangles formed on the two sides of diagonal AC are congruent.

Solution:

The required rectangle ABCD with AC as its diagonal can be drawn as is shown.



In \triangle ABC and \triangle CDA, we have:

AB = CD (: Opposite sides of a rectangle are equal)

BC = DA (: Opposite sides of a rectangle are equal)

CA = AC (Common side)

Therefore, by the SSS congruence rule, we have:

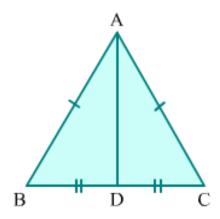
 $\triangle ABC \cong \triangle CDA$

Thus, the triangles formed on the two sides of diagonal AC are congruent.

Medium

Example 1:

The given \triangle ABC is isosceles with AB = AC. AD is a median of the triangle. Prove that AD is perpendicular to BC.



Solution:

In \triangle ABD and \triangle ACD, we have:

AB = AC (Given)

BD = DC (: D is the midpoint of BC)

AD = AD (Common side)

Therefore, by the SSS congruence rule, we obtain:

 $\triangle ABD \cong \triangle ACD$

 $\Rightarrow \angle ADB = \angle ADC$ (By CPCT)

Also, ∠ADB and ∠ADC form a linear pair.

So, $\angle ADB + \angle ADC = 180^{\circ}$

 \Rightarrow \angle ADB + \angle ADB = 180° (:: \angle ADB = \angle ADC)

⇒ 2∠ADB = 180°

 \Rightarrow \angle ADB = 90°

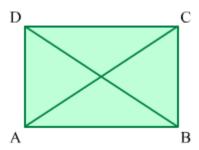
Thus, $\angle ADB = \angle ADC = 90^{\circ}$, which means that AD is perpendicular to BC.

Example 2:

ABCD is a parallelogram. If the diagonals of ABCD are equal, then find the measure of ∠ABC.

Solution:

The given parallelogram ABCD with equal diagonals AC and BD is shown below.



In parallelogram ABCD, we have:

AB = CD and AD = BC (: Opposite sides of a parallelogram are equal)

In \triangle ADB and \triangle BCA, we have:

AD = BC (Proved above)

BD = AC (Given)

BA = AB (Common side)

So, by the SSS congruence rule, we have:

 $\triangle ADB \cong \triangle BCA$

$$\Rightarrow \angle BAD = \angle ABC \dots (1) [By CPCT]$$

Now, AD is parallel to BC and the transversal AB intersects them at A and B respectively.

We know that the sum of the interior angles on the same side of a transversal is supplementary.

$$\therefore \angle BAD + \angle ABC = 180^{\circ}$$

$$\Rightarrow$$
 \angle ABC + \angle ABC = 180° (By equation 1)

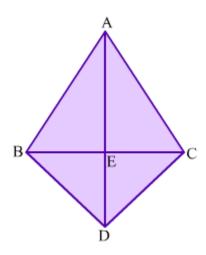
$$\Rightarrow$$
 2 \angle ABC = 180°

$$\Rightarrow \angle ABC = 90^{\circ}$$

Hard

Example 1:

In the given figure, \triangle ABC and \triangle DBC are isosceles with AB = AC and DB = DC. Prove that AD is the perpendicular bisector of BC.



Solution:

In \triangle ABD and \triangle ACD, we have:

AB = AC (Given)

DB = DC (Given)

AD = AD (Common side)

So, by the SSS congruence rule, we have:

 $\triangle ABD \cong \triangle ACD$

 $\Rightarrow \angle BAE = \angle CAE \dots (1) \quad [By CPCT]$

In $\triangle BAE$ and $\triangle CAE$, we have:

AB = AC (Given)

 $\angle BAE = \angle CAE$ (From equation 1)

AE = AE (Common side)

So, by the SAS congruence rule, we have:

 $\Delta BAE \cong \Delta CAE$

 \Rightarrow BE = CE and \angle BEA = \angle CEA (By CPCT)

We know that $\angle BEA + \angle CEA = 180^{\circ}$ as they form a linear pair.

So, $2\angle BEA = 180^{\circ}$ (Proved above that $\angle BEA = \angle CEA$)

 $\Rightarrow \angle BEA = 90^{\circ}$

Therefore, $\angle BEA = \angle CEA = 90^{\circ}$

Since BE = CE and \angle BEA = \angle CEA = 90°, AD is the perpendicular bisector of BC.

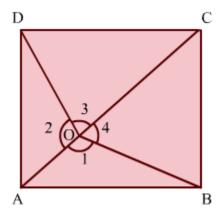
Example 2:

O is a point inside a square ABCD such that it is at an equal distance from points B and D. Prove that points A, O and C are collinear.

Solution:

The square with the given specifications is drawn as is shown.

Construction: Join point O to the vertices of the square.



In $\triangle AOD$ and $\triangle AOB$, we have:

AD = AB (Sides of a square)

AO = AO (Common side)

OD = OB (Given)

So, by the SSS congruence rule, we have:

 $\triangle AOD \cong \triangle AOB$

$$\Rightarrow \angle 1 = \angle 2...$$
 (1) [By CPCT]

Similarly, $\triangle DOC \cong \triangle BOC$

$$\Rightarrow \angle 3 = \angle 4 \dots (2)$$
 [By CPCT]

We know that:

$$\angle 1 + \angle 2 + \angle 3 + \angle 4 = 360^{\circ}$$

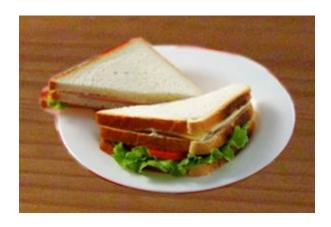
$$\Rightarrow$$
 2 \angle 2 + 2 \angle 3 = 360° (From equations 1 and 2)

$$\Rightarrow$$
 \angle 2 + \angle 3 = 180°

Thus, $\angle 2$ and $\angle 3$ form a linear pair. Therefore, AOC is a line; in other words, points A, O and C are collinear.

RHS Congruence Rule

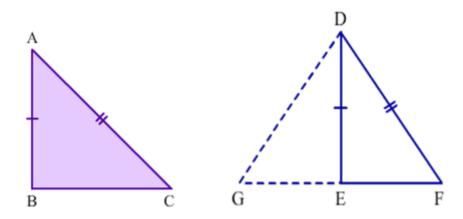
Right angles are all around us. For example, while building houses, the walls are kept at a right angle to the horizontal. Different square and rectangular figures surround us and all of them consist of right angles. The following figure also shows right angles.



In the figure, the pieces of bread resemble right-angled triangles. They also seem to be congruent. Right-angled triangles are special and their congruency is checked by a special congruence rule known as the RHS (Right-Hypotenuse-Side) rule.

We will study the RHS congruence rule in this lesson and solve some examples to familiarize ourselves with the concept.

RHS congruence theorem: Two right-angled triangles are congruent if the hypotenuse and a side of one triangle are equal to the hypotenuse and the corresponding side of the other triangle.



Given: Two right-angled triangle ABC and DEF such that $\angle B = \angle E = 90^\circ$; Hypotenuse AC = Hypotenuse DF and AB = DE.

To prove: $\triangle ABC \cong \triangle DEF$.

Construction: Produce FE to G so that EG = BC and join DG.

Proof:

In triangles ABC and DEF, AB = DE (Given)

BC = EG (By construction) \angle ABC= \angle DEF (Each equal to 90°)

Thus, by SAS congruence criterion, $\triangle ABC \cong \triangle DEG$

 \Rightarrow \angle ACB = \angle DGE and AC = DG (CPCT) Given, AC = DF

∴ DG = AC = DF In \triangle DGF, we have DG = DF $\angle G = \angle F$ (Angles opposite to equal sides are equal)

In $\triangle DEF$ and $\triangle DEG$,

 $\angle G = \angle F$ (Proved)

 $\angle DEG = \angle DEF$ (Both equal to 90°)

Thus, \angle GDE = 180° – (\angle G + \angle DEG) = 180° – (\angle F + \angle DEF) = \angle FDE In \triangle DEG and \triangle DEF,

 $\begin{array}{ll} \mathsf{DG} = \mathsf{DF} & (\mathsf{Proved}) \\ \mathsf{DE} = \mathsf{DE} & (\mathsf{Common}) \\ \angle \mathsf{GDE} = \angle \mathsf{FDE} & (\mathsf{Proved}) \end{array}$

Thus, by SAS congruence criterion $\Delta DEG \cong \Delta DEF$

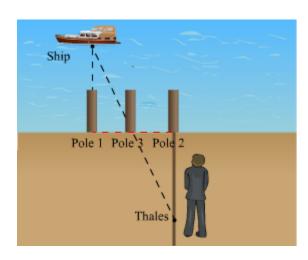
But, we have $\triangle ABC \cong \triangle DEG$ Thus, $\triangle ABC \cong \triangle DEF$

Whiz Kid

RHS congruence rule was used by the famous ancient Greek mathematician Thales to calculate the distance of a ship anchored at sea from the shore.

For this, he stuck three poles on the shore such that the first one was directly in front of the ship, the second was at some distance from the first pole and the third was exactly between the other two poles.

He then walked backward along a line from the second pole perpendicular to the shore until the middle pole and the ship were in the same line of sight. Then, he marked his position. This is shown in the following figure.



It can be seen that the triangle formed on the sea is congruent to the triangle formed on the shore by the RHS rule. So, the distance between the ship and the shore is equal to the distance between the second pole and the spot where Thales stands.

Solved Examples

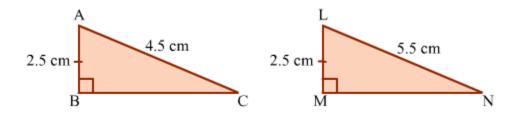
Easy

Example 1:

 \triangle ABC and \triangle LMN are right-angled at \angle ABC and \angle LMN respectively. In \triangle ABC, AB = 2.5 cm and AC = 4.5 cm. In \triangle LMN, LN = 5.5 cm and LM = 2.5 cm. Examine whether the two triangles are congruent.

Solution:

On the basis of the given information, the two triangles can be drawn as is shown.



In \triangle ABC and \triangle LMN, we have:

 $\angle ABC = \angle LMN$ (Right angles)

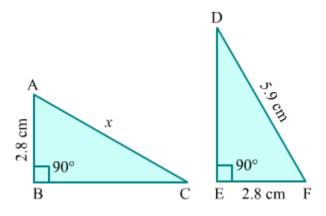
AB = LM = 2.5 cm (Given)

But AC ≠ LN

Hence, \triangle ABC and \triangle LMN are not congruent.

Example 2:

Find the value of *x* if the shown triangles ABC and DEF are congruent.



Solution:

It is given that $\triangle ABC \cong \triangle DEF$.

When two triangles are congruent, their corresponding sides are equal.

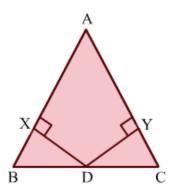
 \therefore AC = DF = 5.9 cm

Thus, the value of x is 5.9 cm.

Medium

Example 1:

In the given $\triangle ABC$, D is the midpoint of side BC. The perpendiculars DX and DY drawn from point D to sides AB and BC respectively are of the same length. Prove that DX and DY make the same angle with BC.



Solution:

On comparing ΔDXB and ΔDYC , we get:

DX = DY (Given)

 $\angle DXB = \angle DYC = 90^{\circ}$ (: DX and DY are perpendiculars)

BD = CD (: D is the midpoint of BC)

Thus, by the RHS congruence rule, we have:

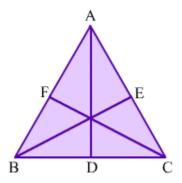
 $\Delta DXB \cong \Delta DYC$

$$\Rightarrow \angle BDX = \angle CDY$$
 (By CPCT)

Thus, the perpendiculars DX and DY make the same angle with side BC.

Example 2:

In the given \triangle ABC, AD, BE and CF are the altitudes. If the three altitudes are equal, then prove that the triangle is equilateral.



Solution:

In \triangle BEC and \triangle CFB, we have:

BC = CB (Common side)

BE = CF (Given)

 \angle BEC = \angle CFB = 90° (: BE and CF are altitudes)

So, by the RHS congruence rule, we obtain:

 $\Delta BEC \cong \Delta CFB$

 $\Rightarrow \angle BCE = \angle CBF$ (By CPCT)

 $\Rightarrow \angle CBA = \angle BCA$

 \Rightarrow AC = AB ... (1) [: Sides opposite equal angles are equal]

Similarly, we can prove that $\triangle ADB \cong \triangle BEA$.

$$\Rightarrow \angle DBA = \angle BAE$$
 (By CPCT)

$$\Rightarrow \angle CBA = \angle BAC$$

 \Rightarrow AC = BC ... (2) [: Sides opposite equal angles are equal]

From equations (1) and (2), we get:

$$AB = BC = AC$$

Hence, \triangle ABC is equilateral.

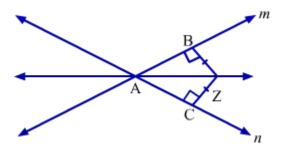
Hard

Example 1:

If Z is a point equidistant from two lines m and n intersecting at point A, then prove that AZ bisects the angle between m and n.

Solution:

The following figure can be drawn as per the given information.



Construction: ZB and ZC are perpendiculars drawn from point Z to lines m and n respectively.

Since Z is equidistant from *m* and *n*, we have:

$$ZB = ZC$$

In \triangle ZBA and \triangle ZCA, we have:

ZB = ZC (Proved above)

 \angle ZBA = \angle ZCA = 90° (: ZB and ZC are perpendiculars)

ZA = ZA (Common side)

So, by the RHS congruence rule, we have:

 $\Delta ZBA \cong \Delta ZCA$

 $\Rightarrow \angle ZAB = \angle ZAC$ (By CPCT)

Now, \angle ZAB + \angle ZAC = \angle BAC

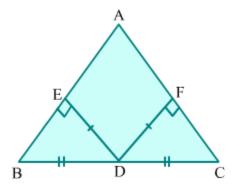
Therefore, AZ bisects the angle between lines *m* and *n*.

Example 2:

In a \triangle ABC, BD = DC. If the perpendiculars from point D to sides AB and AC are equal, then prove that AB = AC.

Solution:

The triangle with the given specifications is drawn below.



In \triangle ABC, D is the midpoint of BC. Also, DE and DF are the perpendiculars from D to AB and AC respectively.

In $\triangle DEB$ and $\triangle DFC$, we have:

 $\angle DEB = \angle DFC = 90^{\circ}$ (: DE and DF are perpendiculars)

DB = DC (Given)

$$DE = DF$$
 (Given)

So, by the RHS congruence rule, we obtain:

 $\Delta DEB \cong \Delta DFC$

$$\Rightarrow \angle DBE = \angle DCF$$
 (By CPCT)

 \Rightarrow AC = AB (As sides opposite to equal angles are equal)