PARABOLA

CONIC SECTION

SYNOPSIS

• **CONIC:** The set of points in a plane whose distances from a fixed point (focus) and a fixed straight line (directrix) are in a constant ratio 'e' is called a conic.

The constant ratio 'e' is called the eccentricity of the conic. The conic is known as Parabola, Ellipse, Hyperbola according as the value of e is equal to 1, less than 1, greater than 1 respectively.

• Equation of a conic with (x_1, y_1) focus lx+my+n=0directrix and eccentricity e is

$$(l^{2} + m^{2})[(x - x_{1})^{2} + (y - y_{1})^{2}] = e^{2}(lx + my + n)^{2}.$$

- The general equation of a conic is of the form $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.
- **AXIS OF A CONIC:** The line which is perpendicular to directrix and passing through the focus is called the axis.
- **VERTICES:** The points of intersection of the conic and its axis are called the vertices of the conic.
- **CENTRE:** The point c is called the centre of the conic, if every chord of the conic passing through c is bisected at c.
- **FOCAL CHORD:** Any chord of the conic through the focus is called a focal chord.
- **DOUBLE ORDINATE:** A chord of a conic perpendicular to axis.
- LATUSRECTUM: A focal chord of a conic perpendicular to its axis is called the latusrectum.
- **FOCAL DISTANCE:** The distance from focus to any point on a conic is called focal distance.
- For any conic, if semilatusrectum is *1* and the perpendicular from the focus to directrix is d then

 $\frac{l}{d} = e$

PARABOLA

- **DEFINITION:** A parabola is the locus of a point which moves such that its distance from a fixed point is always equal to its distance from a fixed straight line.
- When $\Delta \neq 0$ and $h^2 = ab$ the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a parabola.
- The standard equation of a parabola is $y^2 = 4ax$.

FOUR TYPES OF PARABOLAS:

Parabola	y ² =4ax	y ² =-4ax	x ² =4ay	$x^2 = -4ay$
Vertex	(0, 0)	(0,0)	(0, 0)	(0, 0)
Focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)
Directrix	x+a=0	x-a=0	y+a=0	y-a=0
Eqa. of				
L.R.	x-a=0	x+a=0	y-a=0	y+a=0
Tangent at				
the vertex	x=0	x=0	y=0	y=0
Eqa. of				
Axis	y=0	y=0	x=0	x=0
Lenth of	-			
the L.R.	4a	4a	4a	4a
Ends of				
L.R	$(a,\pm 2a)$	$(-a,\pm 2a)$	$(\pm 2a, a)$	$(\pm 2a, -a)$

NOTE: Origin is vertex and 4a is length of latusrectum for all these four parabolas.

• If $P(x_1, y_1)$ is a point on $y^2 = 4ax$ the focal distance of p is $x_1 + a$.

If $P(x_1, y_1)$ is a point on $x^2 = 4ay$ the focal distance of P is $y_1 + a$.

EQUATIONS OF PARABOLAS:

The equation $(y-k)^2 = 4a(x-h)$ represents a parabola with axis y-k=0, vertex (h, k), focus (h+a,k), directrix x=h-a and length of latusrectum 4a.

The equation $(x-h)^2 = 4a(y-k)$ represents a parabola with axis x - h = 0, vertex (h, k), focus (h, k+a), directrix y = k - a and length of latusrectum 4a. If the axis is parallel to x axis then the equation of the parabola is of the form $x=ay^2+by+c$ or $y^2 + Dy + Ex + F = 0.$ If the axis is parallel to y axis then the equation of the parabola is of the form $y = ax^2 + bx + c$ or $x^2 + Dx + Ey + F = 0$. **NOTATIONS:** $S = y^2 - 4ax$ $S_1 = yy_1 - 2a(x + x_1)$ $S_{12} = y_1 y_2 - 2a(x_1 + x_2)$ $S_{11} = y_1^2 - 4ax_1$ The point (x_1, y_1) lies inside or on or outside the parabola S=0 according as $S_{11} \leq 0$. TANGENT, NORMAL, CONDITIONS OF TANGENCY: Equation of the tangent to $y^2 = 4ax$ at (x_1, y_1) is $yy_1 = 2a(x+x_1)$. Equation of the normal to $y^2 = 4ax$ at (x_1, y_1) is $y - y_1 = \frac{-y_1}{2a} (x - x_1).$ • The condition for lx + my + n = 0 to touch $y^2 = 4ax$ is $am^2 = ln$ and the point of contact is $\left(\frac{n}{l}, \frac{-2am}{l}\right)$ The condition for lx + my + n = 0 to touch $x^2 = 4ay$ is $al^2 = mn$ and the point of contact is $\left(\frac{-2al}{m},\frac{n}{m}\right)$ The condition for lx + my + n = 0 to be a normal to $y^2 = 4ax$ is $al^3 + 2alm^2 + m^2n = 0$. The condition for the line y = mx + c to touch $y^2 = 4ax$ is $c = \frac{a}{m}$ and the point of contact is SR. MATHEMATICS

 $\left(\frac{a}{m^2},\frac{2a}{m}\right).$

- Equation of the tangent to $y^2 = 4ax$ having slope m is $y = mx + \frac{a}{m}$.
- Equation of the tangent to $y^2 = 4a(x+a)$ having slope m is $y = m(x+a) + \frac{a}{m}$.
- i) Equation of the normal to $y^2 = 4ax$ having slope m is $y = mx - 2am - am^3$ and the foot of the normal is $(am^2, -2am)$.
 - ii) y = mx + c is a normal to the parabola $y^2 = 4ax$ then $c = -2am - am^3$
- The condition for y=mx+c to touch $x^2 = 4ay$ is $c = -am^2$.
- Equation of common tangent to the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is $xa^{\frac{1}{3}} + yb^{\frac{1}{3}} + a^{\frac{2}{3}}b^{\frac{2}{3}} = 0$.

POINT ON PARABOLA:

- The equations $x = at^2$, y = 2at are called the parametric equations of the parabola $y^2 = 4ax$. The point on $y^2 = 4ax$ is taken as $(at^2, 2at)$ and this is denoted by p(t) point.
- Equation of the chord joining t_1 and t_2 on $y^2 = 4ax$ is $y(t_1 + t_2) = 2(x + at_1t_2)$
- If t_1 and t_2 are the extremities of a focal chord of a parabola then $t_1t_2 = -1$.
- Equation of the tangent to $y^2 = 4ax$ at the point 't' is $yt = x + at^2$.

• Equation of the normal to $y^2 = 4ax$ at the point 't' is $tx + y = 2at + at^3$., $\sum t_1 = 0$,

$$\sum t_1 t_2 = \frac{2a - x_1}{a} \quad , \ t_1 t_2 t_3 = \frac{y_1}{a}$$

- Slope of the tangent and normal at the point 't' to $y^2 = 4ax$ are $\frac{1}{t}$, -t.
- The point of intersection of the tangents at t_1, t_2 on

the parabola $y^2 = 4ax$ is $\begin{bmatrix} at_1t_2, a(t_1 + t_2) \end{bmatrix}$. contact is $\frac{\left(y_1^2 - 4ax_1\right)^{\frac{3}{2}}}{2}$ The point of intersection of normals drawn at t_1 and t_2 to $y^2 = 4ax$ is The length of chord of contact of tangents drawn $\left[2a+a\left\{\left(t_{1}+t_{2}\right)^{2}-t_{1}t_{2}\right\},-at_{1}t_{2}\left(t_{1}+t_{2}\right)\right].$ from (x_1, y_1) to the parabola $y^2 = 4ax$ is $\sqrt{(y_1^2 - 4ax_1)(y_1^2 + 4a^2)}$ If the normal at $(at_1^2, 2at_1)$ cuts the parabola again at $(at_2^2, 2at_2)$ then $t_2 = -t_1 - \frac{2}{t_1}$. **STANDARD RESULTS:** If the normals at the points t_1 and t_2 on the parabola intersect on the parabola at t_3 then The locus of the foot of the perpendicular from (1) $t_1 t_2 = 2$, (2) $t_1 + t_2 = -t_3$. the focus to the tangent of a parabola is the tangent The tangents at the ends of a focal chord of the parabola meet on the directrix at right angles. at the vertex. The tangent at one end of a focal chord of a The circle drawn on focal chord of a parabola as parabola is parallel to the normal at the other end. diameter touches the directrix. If $(at^2, 2at)$ is one end of a focal chord of the pa-The circle drawn on focal radius of a parabola as rabola then the other end is $\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$. diameter touches the tangent at the vertex. **SLOPE, ANGLE BETWEEN THE** The length of the focal chord at t is $a\left(t+\frac{1}{t}\right)^2$. TANGENTS DRAWN FROM AN If PSQ is a focal chord of the parabola $y^2 = 4ax$ **EXTERNAL POINT:** with focus S then $\frac{1}{SP} + \frac{1}{SO} = \frac{1}{a}$. From an external point two tangents can be drawn The least length of a focal chord of a parabola is to a parabola. The slopes of the two tangents to its length of latusrectum. $y^2 = 4ax$ passing through (x_1, y_1) are given by the Length of the focal chord of $y^2 = 4ax$ making an angle θ with its axis is $4a \cos ec^2 \theta$. equation $m^2 x_1 - m y_1 + a = 0$. Length of the chord of the parabola $y^2 = 4ax$ If m_1, m_2 be the slopes of the two tangents drawn passing through the vertex and making an angle θ from (x_1, y_1) to $y^2 = 4ax$ then $m_1 + m_2 = \frac{y_1}{x_1}$, with its axis is $4a\cos\theta\cos ec^2\theta$. • If $(x_1, y_1), (x_2, y_2)$ are the extremities of a focal chord of the parabola $y^2 = 4ax$ then (1) $x_1x_2 = a^2$, (2) $m_1 m_2 = \frac{a}{x_1}.$ $y_1 y_2 = -4a^2$. The orthocentre of the triangle formed by the If θ is the angle between the pair of tangents drawn tangents at t_1, t_2, t_3 to the parabola $y^2 = 4ax$ is from (x_1, y_1) to $y^2 = 4ax$ then $\tan \theta = \frac{\sqrt{y_1^2 - 4ax_1}}{x_1 + a}$ $\left[-a, a(t_1+t_2+t_3+t_1t_2t_3)\right]$. Orthocentre of the triangle formed by any three tangents to the parabola lies on the directrix of the or $\frac{\sqrt{S_{11}}}{x_1 + a}$. parabola. **CHORD OF CONTACT:** The locus of point of intersection of the two tangents to $y^2 = 4ax$ included at a constant angle Equation of the chord of contact of (x_1, y_1) with respect to $y^2 = 4ax$ is $yy_1 = 2a(x+x_1)$. α is $(x+\alpha)^2 \tan^2 \alpha = y^2 - 4\alpha x$. Area of the triangle formed by the tangents from Locus of point of intersection of perpendicular (x_1, y_1) to the parabola $y^2 = 4ax$ and its chord of tangents to a parabola is its directrix.

NORMALS:

- From a point which lies inside the parabola three normals can be drawn to the parabola. The sum of the ordinates of the feet of the three normals is zero.
- The centroid of the triangle formed by the feet of the three normals of the parabola lies on the axis of the parabola.

POLE-POLAR:

- Polar of (x_1, y_1) w.r.to the parabola $y^2 = 4ax$ is $yy_1 = 2a(x + x_1)$.
- Pole of the line lx + my + n = 0 w.r.to $y^2 = 4ax$ is

$$\left(\frac{n}{l}, \frac{-2am}{l}\right).$$

- The condition for $l_1x + m_1y + n_1 = 0$, $l_2x + m_2y + n_2 = 0$ to be conjugate lines w.r.to $y^2 = 4ax$ is $l_1n_2 + l_2n_1 = 2am_1m_2$.
- i) If a line lx + my + n = 0 intersect the parabola $y^2 = 4ax$ in the points A and B then the point of intersection of the tangents at A and B is $\left(\frac{n}{l}, \frac{-2am}{l}\right)$.

ii) Pole of line lx + my + n = 0 w.r. to parabola

$$x^2 = 4ay$$
 is $\left(\frac{-2al}{m}, \frac{n}{m}\right)$

- The polar of the focus of a parabola w.r.to the parabola is its directrix.
- The pole of the directrix of a parabola w.r.to the parabola is its focus.
- The locus of poles of focal chords of a parabola is its directrix.
- The polar of any point on the directrix of a parabola w.r.to the parabola passes through its focus.

CHORD WITH MID POINT:

If the lines y=mx+c intersect the parabola y² = 4ax in the points A and B then:

 (1) The length of the chord AB is
 ⁴/_{m²}√a(a-mc)(1+m²)
 (2) The mid point of the chord AB is (^{2a-mc}/_{m²}, ^{2a}/_m).

 Equation of the chord of the parabola y² = 4ax with mid point (x₁, y₁) is yy₁ - 2ax = y₁² - 2ax₁.

Locus of mid points of a system of parallel chords of a parabola is a straight line parallel to the axis of the parabola.

STANDARD RESULTS:

- The length of sub tangent at any point $P(x_1, y_1)$ on $v^2 = 4ax$ is $2x_1$.
- The length of sub normal at any point on a parabola is constant and is equal to semilatusrectum.
- The semilatus rectum of a parabola is the harmonic mean between the segments of a focal chord.
- P is a point on the parabola $y^2 = 4ax$ with focus S. If the tangent and normal at P meets the axis at T and N then ST=SP=SN.
- The ordinate of the point of intersection of the two tangents to a parabola is the arithmetic mean between the ordinates of the points of contact.

Area of triangle inscribed in parabola $y^2 = 4ax$

is
$$\frac{1}{8a}|(y_1-y_2)(y_2-y_3)(y_3-y_1)|$$
 where

 $y_1, y_2 \& y_3$ are ordinates of angular points.

CONCEPTUAL QUESTIONS

1.	The point on the parabola which is nearest to directrix is				
	1) End of latusrectum	2) Focus			
	3) Vertex	4) Centre			
r	Number offered about	i) Contro.	- 1- ² 0		
Ζ.		s of the parat	$y^2 = 9x$		
	whose length is less than	191S			
2	1) 2 2) 5	3) 1	4)0		
3.	The locus of the centre o	t a circle pass	sing through		
	a point and touching a lir	ne is			
	1) a straight line	2) an ellipse			
	3) a parabola	4) a hyperb	ola		
4.	Locus of the point equid	istant from (0	(, -1) and the		
	line y=1 is				
	1) a parabola with verte	x(0,0)			
	2) a parabola with focus	s(0,1)			
	3) a parabola with direct	trix y=-1			
	4) a parabola with axis y	/=0			
5.	The foci of the para	bolas $y^2 = x^2$	$4x, x^2 = 4y,$		
	$y^2 + 4x = 0, x^2 + 4y = 0$ to	iken in ord	ler are the		
	vertices of a	a) 11.1			
	1) rectangle	2) parallelog	gram		
r.	3) rhombus	4) square			
6.	When a circle with centr	re lying on th	ne focus of a		
	parabola touches its dir	ectrix then t	he radius of		
	the circle is				
	1) $\frac{1}{4}$ (length of latusrect	um of the pai	rabola)		
	4	1	,		

1) y+8=02) y+6=03) y+5=0 4) y+4=02) $\frac{1}{2}$ (length of latus rectum of the parabola) 6. The focus and directrix of a parabola are (0, 0)and y=2x+1. The equation of its axis is 3) $\frac{3}{4}$ (length of latusrectum of the parabola) 1) 2x-y=02) x+2y=03) x+2y=54) x+2y-7=04) $\frac{2}{3}$ (length of latusrectum of the parabola) 7. The vertex and focus of a parabola are (-2, 2), (-6, 6). Then its length of latusrectum is 7. If the normal at t_1 and t_2 on the parabola 1) $8\sqrt{2}$ 2) $4\sqrt{2}$ 3) $16\sqrt{2}$ 4) $12\sqrt{2}$ $y^2 = 4ax$ meet again on parabola then $t_1t_2 =$ If the vertex and focus of a parabola are (3, 6)8. 2) 2 3) 3 4)4a) 1 and (4, 5) then the equation of its directrix is 8. If the normal chord at 't' on $y^2 = 4ax$ subtends a 1) x-y+7=02) x-y+9=03) x-y+5=04) x-y+3=0right angle at vertex then $t^2 =$ 9. If the focus and directrix of a parabola are (3,-4)4) 3 1)0 2)1 3) 2 and x+y+7=0 then its length of latusrectum is 9. If the normal at "t" on $y^2 = 4ax$ subtends a right 1) $3\sqrt{2}$ 3) $10\sqrt{2}$ 4) $6\sqrt{2}$ 2) $8\sqrt{2}$ angle at focus then $t^2 =$ 10. The vertex and focus of a parabola are (2, 1), 1)1 2)2 4)4 3) 3 (1, -1). Then the equation of the tangent at the 10. Locus of the foot of the perpendicular from focus vertex is on any tangent to a parabola is 2) x+2y-4=01) x+2y-6=02) directrix 1) axis 3) x+2y-9=04) x+2y-7=03) tangent at the vertex The focus and directrix of a parabola are (1, 2)11. 4) latus rectum and 2x-3y+1=0. Then the equation of the tangent at the vertex is KEY 1) 4x-6y+5=02) 4x-6y+9=01.3 2.4 3.3 4.1 5.4 4) 4x-6y+7=03)4x-6y+11=06.2 7.2 8.3 9.4 10.3 12. The focus and directrix of a parabola are (1, -1)**LEVEL-1** and x+y+3=0. Its vertex is 1) $\left(\frac{7}{4}, \frac{1}{4}\right)$ 2) $\left(\frac{1}{2}, \frac{-7}{4}\right)$ 3) $\left(\frac{1}{4}, \frac{-7}{4}\right)$ 4) $\left(\frac{1}{2}, \frac{5}{2}\right)$ 1. Equation of a parabola whose focus is (1, 2) and 13. Equation of the parabola whose vertex is the origin, directrix x + 1 = 0 is axis along the x axis and which passes through the 1) $v^2 - 4v - 4x + 4 = 0$ 2) $v^2 - 2v - 4x + 8 = 0$ point (-2, 4) is 3) $y^2 - 2y - 6x + 9 = 0$ 4) $y^2 - 2y + 4x - 8 = 0$ 1) $y^2 = -8x$ 2) $v^2 = -12x$ 2. Equation of the parabola with focus (0, -2) and 3) $v^2 = 8x$ 4) $x^2 = v$ directrix y-2=0 is 14. Equation of the parabola whose vertex is the origin, 2) $v^2 = -12x$ 1) $v^2 = 8x$ axis along the y axis and which passes through (4, 3) $x^2 = 4v$ 4) $x^2 = -8y$ 2) is 3. Equation of the parabola with focus (3, -4) and 1) $x^2 = 8v$ 2) $x^2 + 8y = 0$ directrix x + y + 7 = 0 is 3) $v^2 = x$ 4) $v^2 + x = 0$ 1) $x^2 + y^2 - 2xy - 26x + 2y + 1 = 0$ 15. Equation of a parabola whose vertex is 2) $x^{2} + v^{2} - 2xv - 26x + 14v - 3 = 0$ (2, -3), axis is parallel to the x axis and latusrectum 3) $x^2 + y^2 - 2xy - 26x - 14y + 3 = 0$ 8 is 4) $x^{2} + y^{2} - 2xy - 26x - 2y + 5 = 0$ 1) $(y+3)^2 = 8(x+2)$ 2) $(y+3)^2 = 16(x-2)$ 4. The focus and vertex of a parabola are (4, 5) and 3) $(y+3)^2 = 8(x-2)$ 4) $(y+3)^2 = 32(x-2)$ (3, 6). The equation of axis is 1) 2x-y+3=02) 2x-y=016. Equation of a parabola whose vertex is 3) 2x+y-13=04) x+y-9=0(-3, 4), axis is parallel to the y axis and the 5. The vertex and focus of a parabola are (0, 0) and latusrectum 12 is (0, 4) then its directrix is 1) $(y-4)^2 = 12(x+3)$ 2) $(y+4)^2 = 12(x-3)$ SR. MATHEMATICS

320

27. A parabola with vertex at the origin and axis along 3) $(x+3)^2 = 12(y-4)$ 4) $(x-3)^2 = 12(y+4)$ the y axis passes through (6, 4), then its directrix 17. Equation of the parabola having focus (3, 2)and vertex (-1, 2) is 1) 4y+7=0 2) 2y+9=0 3) 2y+7=0 4) 4y+9=01) $(x+1)^2 = 16(y-2)$ 2) $(x-1)^2 = 16(y+2)$ 28. If the parabola $y^2 = 4ax$ passes through (2, -6) 3) $(y-2)^2 = 16(x+1)$ 4) $(y+2)^2 = 16(x-1)$ then the equation of the latusrectum is 1) 2x-9=0 2) 4x-9=0 3) 2x+9=0 4) 4x+9=0Equation of the parabola having focus (3, -2)18. 29. If O is the vertex and L, L' are the extremities of and vertex (3, 1) is the latusrectum of the parabola $y^2 = 4ax$ then the 1) $(x-3)^2 = 12(y-1)$ 2 $(x-3)^2 = -12(y-1)$ area of the triangle OLL' is 3) $(y-1)^2 = 12(x-3)$ 4) $(y-1)^2 = -12(x-3)$ 1) $4a^2$ sq.units 2) $2a^2$ sq.units 19. 3) a^2 sq.units Equation of the parabola whose axis is horizontal 4) $8a^2$ sq.units and passing through the points (-2, 1), (1, 2),30. L, L' are the ends of the latusrectum of the parabola (-1, 3) is $x^2 = 6y$. The equation of OL and OL' where O 1) $5y^2 - 2x + 10y + 20 = 0$ being the origin is 1) $x^2 + 4y^2 = 0$ 2) $x^2 - 4y^2 = 0$ 2) $5y^2 + 2x - 21y + 20 = 0$ 3) $5v^2 + 2x - 21v + 40 = 0$ 3) $x^2 + 2y^2 = 0$ 4) $x^2 - 2y^2 = 0$ 4) $3y^2 - 9x + 10y - 15 = 0$ If the parabola $y^2 = 4ax$ passes through (-3, 2) 31. 20. Equation of the parabola whose axis is vertical and then the length of its latusrectum is passing through the points (4, 5), (-2, 11),1) $\frac{2}{3}$ 2) $\frac{1}{3}$ 3) $\frac{4}{3}$ 4) 4 (-4, 21) is 1) $x^{2} + 6x - 7y + 10 = 0$ 2) $x^{2} - 6x + 9y + 13 = 0$ 32. If (9, 12) is one end of a double ordinate of the 3) $x^2 - 4x + 6y - 12 = 0$ 4) $x^2 - 4x - 2y + 10 = 0$ parabola $v^2 = 16x$ then its equation is 21. If (9, 12) is one end of a focal chord of the parabola 2) v+9=01) x + 9 = 0 $y^2 = 16x$ then the slope of the chord is 3) y - 9 = 04) x-9=01) 5/122) 7/3 3) 12/54) 3/733. The point on the parabola $x^2 = y$ which is nearest 22. Length of the perpendicular dropped from the to (3, 0) is focus of the parabola $y^2 = -16x$ to a line making 1)(1, -1)2)(-1, 1) 3)(-1, -1) 4)(1, 1)the equal intercepts 2 on the positive axes 34. The angle subtended by the double ordinate of 1) $3\sqrt{2}$ 2) $8\sqrt{2}$ 3) $6\sqrt{2}$ 4) $2\sqrt{2}$ length 16 of the parabola $y^2 = 8x$ at its vertex is 23. The ordinate of a point on the parabola $y^2 = 18x$ 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{2}$ is one third of its length of the latusrectum. Then the length of subtangent at the point is If the join of ends of the latusrectum of $x^2 = 8y$ 35. 1) 12 2)8 3)6 4)4 subtends an angle θ at the vertex of the parabola 24. The parabola $y^2 = kx$ passes through (9, 6). Then then $\cos\theta =$ the length of subnormal at that point is 1) $\frac{-4}{5}$ 2) $\frac{-2}{3}$ 3) $\frac{-3}{5}$ 4) $\frac{-1}{5}$ 3) $\frac{1}{2}$ 4) 1 2)4 1)2The point on the parabola $y^2 = 36x$ whose 36. The focal distance of a point on the parabola 25. ordinate is three times its abscissa is $y^2 = 8x$ is 10. Its coordinates are 1) (4, 12) 2) (3, 9)(6, 18) (1, 3)1) $(2,\pm 2)$ 2) $(3,\pm 3)$ 3) $(5,\pm 5)$ 4) $(8,\pm 8)$ Which of the following equations represents a 37. parabola 26. The parabola $x^2 = py$ passes through (12, 16). Then the focal distance of the point is 1) $(x-y)^3 = 3$ 2) $\frac{x}{v} - \frac{y}{r} = 0$ 1) $\frac{57}{4}$ 2) $\frac{73}{4}$ 3) 13 4) 18 PARABOLA (CONIC SECTION) SR. MATHEMATICS 321

	3) $\frac{x}{-1} + \frac{4}{-1} = 0$ 4) $(x + v)^2 + 3 = 0$		$x^{2} + 8x + 12y + 4 = 0$ is
20	$\int y x = 0$ is a facel abord of the perchase	52	1) $y+3=0$ 2) $y+2=0$ 3) $y+1=0$ 4) $y+5=0$ One end of latusrectum of the parabola
50.	12x+y+a=0 is a local chord of the parabola $y^2 = -8x$ then $a = -1$	02.	$(x+2)^2 = -4(x+3)$ is
	y = -8x then $a = -1$		(x+2) = -4(y+3) is 1) $(-4 -6)$ 2) $(-4 -6)$ 3) $(-4 -4)$ 4) (2 -6)
39.	The point on $v^2 = 4ax$ nearest to the focus has its	53.	The ends of latusrectum of a parabola are $(6, 7)$,
	abscissa equal to		(6, -1). Its vertex is
	$\frac{1}{2}$	51	1) $(8, 3)$ 2) $(-4, 3)$ 3) $(10, 3)$ 4) $(2, 3)$
	1) $-a$ 2) a 3) $\frac{1}{2}$ 4) 0	54.	and one end of latusrectum of the parabola
40.	$y = \sqrt{x}$ represents		$(x+2)^2 = -12(y-1)$ is
	1) part of ellipse 2) semi parabola		(x+2) = 12(y+1) 10 1) 18 2) 36 3) 12 4) 9
/1	3) parabola 4) circle The length of the latusrectum of the parabola	55.	Equation of the circle on the latusrectum of $v^2 = 8x$
41.	The length of the fatust eetum of the parabola $2v^2 + 3v + 4x - 2 = 0$ is		as ends of diameter is
	2y + 5y + 4x + 2 = 0.05		1) $x^2 + y^2 - 4y + 16 = 0$ 2) $x^2 + y^2 - 4x - 12 = 0$
	1) $\frac{3}{2}$ 2) $\frac{1}{3}$ 3) 2 4) 6		3) $x^2 + y^2 + 4x + 12 = 0$ 4) $x^2 + y^2 - 6x - 12 = 0$
42.	Equation of the axis of the parabola	56.	If the parabola $(y-2)^2 = p(x+1)$ passes through
	$y^2 + 6y - 2x + 5 = 0$ is		(3, 6) then its directrix is
	1) y+3=0 2) 2y+3=0 3) y+2=0 4) y-2=0		1) $x+2=0$ 2) $4x+5=0$ 3) $4x+3=0$ 4) $4x-1=0$
43.	The axis of symmetry of the conic $y = ax^2 + bx + c$.	57.	A parabola with vertex $(2, 3)$ and axis parallel to the vertex pages through $(4, 5)$. Then its length of
	$1 \ y=0$ 2) $y=0$		latusrectum is
	3) b+2ax=0 $4) y=ax$		1) 5 2) 8 3) 2 4) 6
44.	Vertex of the parabola $2y^2 + 3y + 4x - 2 = 0$ is	58.	The length of the latusrectum of a conic is 5. Its $f = \frac{1}{2} + \frac{1}{2} +$
	(25 -7) (25 -3) (15 7) (17 -3)		focus is $(-1, 1)$ and its directrix is $3x-4y+2=0$ then the conic is
	1) $\left(\frac{1}{32}, \frac{1}{4}\right)$ 2) $\left(\frac{1}{32}, \frac{1}{4}\right)$ 3) $\left(\frac{1}{32}, \frac{1}{4}\right)$ 4) $\left(\frac{1}{32}, \frac{1}{4}\right)$		1) a parabola 2) an ellipse
45.	Vertex of the parabola $4x^2 - 12x + 8y - 15 = 0$ is		3) a hyperbola 4) a R.H.
	1) $\left(\frac{5}{2},3\right)$ 2) $\left(\frac{7}{2},3\right)$ 3) $\left(\frac{3}{2},3\right)$ 4) $\left(\frac{1}{2},3\right)$	59.	AB is a focal chord of the parabola $y^2 = 4ax$. If A = (4a, 4a) then B =
46.	Focus of the parabola $4x^2 - 12x + 8y + 13 = 0$ is		1) $\left(\frac{a}{2}, \frac{-a}{4}\right)$ 2) $\left(\frac{a}{4}, -a\right)$ 3) $\left(\frac{a}{2}, \frac{-a}{2}\right)$ 4) $\left(\frac{a}{4}, -4a\right)$
	1) $\left(\frac{3}{2}, -2\right)$ 2) $\left(\frac{3}{2}, -5\right)$ 3) $\left(\frac{3}{2}, -3\right)$ 4) $\left(\frac{3}{2}, -1\right)$	60.	If b and c are the lengths of the segments of a
17	Execus of the parabola $4x^2 = 20x^2 + 20x^2 + 20x^2$		focal chord of the parabola $y^2 = 4ax$ then the length
, , ,	$\begin{array}{c} 1 \text{ (5.1)} & 2 \text{ (4.1)} & 3 \text{ (3.1)} & 4 \text{ (6.1)} \end{array}$		of its semilatusrectum is
48.	Equation of the directrix of the parabola		1) $\frac{bc}{b+c}$ 2) $\frac{4bc}{b+c}$ 3) $\frac{b+c}{2bc}$ 4) $\frac{2bc}{b+c}$
	$y^2 = 5x - 4y - 9$ is	61.	If $(4, 8)$ is one end of a focal chord of the parabola
40	1) $2x+1=0$ 2) $4x+1=0$ 3) $6x+1=0$ 4) $4x-1=0$ Equation of the directrix of the perchase		$y^2 = 16x$ then its equation is
+7.	Equation of the uncerta of the parabola $r^2 - v - 2r = 0$ is		1) $y=8$ 2) $x=4$ 3) $x+y=12$ 4) $x-y=16$
	1) 2y+5=0 2) 2y+3=0 3) 4y+5=0 4) 4y+9=0	62.	One extremity of a focal chord of $y^2 = 16x$ is
50.	Equation of the tangent at the vertex of the		A(1, 4). Then the length of the focal chord at A is
	parabola $x^2 + 4x + 4y + 16 = 0$ is		1) $\frac{25}{4}$ 2) $\frac{25}{2}$ 3) $\frac{15}{2}$ 4) 25
51	1) $y+3=0$ 2) $y+4=0$ 3) $y+2=0$ 4) $y+1=0$	63	PSO is a focal chord of the parabola $v^2 = 16r$ If
51.	Equation of the latusrectum of the parabola	0.5.	
SR.M	ATHEMATICS 3	22	

P=(1, 4) then $\frac{SP}{SO}=$ 1) $\frac{3}{4}$ 2) $\frac{2}{3}$ 3) $\frac{1}{9}$ 4) $\frac{1}{4}$ 64. Equation of the focal chord of the parabola $y^2 = 4x$ inclined an angle $\frac{\pi}{4}$ with the x axis is 1) x+y-5=02) x-y+2=03) x-y+4=04) x-y-1=0 65. If $(x_1, y_1)(x_2, y_2)$ are the extremities of a focal chord of the parabola $y^2 = 16x$ then $4x_1x_2 + y_1y_2 =$ 1) -48 2) 0 3) -64 4) 16 If S is the focus and PQ is a focal chord of the 66. parabola $y^2 = 4ax$ then SP, the semilatusrectum, and SO are in 2) GP 3) HP 4) AGP 1) AP 67. PQ is a double ordinate of the parabola $y^2 = 4ax$. Then the locus of its point of trisection is 1) $7y^2 = 4ax$ 2) $11y^2 = 4ax$ 3) $13v^2 = 4ax$ 4) $9v^2 = 4ax$ Equation of the tangent to $x^2 - 4x - 8y + 12 = 0$ at 68. $4,\frac{3}{2}$ is 8 1) x+2y-1=02) x+2y+1=03) x-2y+1=04) x-2y-1=0 69. Equation of the tangent to $y^2 = 6x$ at the positive end of the latusrectum is 8 2)2x+2y+3=0 1) 2x-2y+3=04) y+4=0 3) y=470. Equation of the tangent to $y^2 = 8x$ inclined at an angle 30° to the axis is 8 1) $x + \sqrt{3}v + 6 = 0$ 2) $x - \sqrt{3}v + 6 = 0$ 4) $\sqrt{3}x - y + 6 = 0$ 3) $\sqrt{3}x + v + 6 = 0$ A tangent to $y^2 = 7x$ is equally inclined with the 71. coordinate axes. Then the area of the triangle formed by the tangent with the coordinate axes is 2) $\frac{49}{32}$ 3) $\frac{36}{25}$ 4) $\frac{49}{36}$ 1) $\frac{25}{16}$ 72. If the line x-3y+k=0 touches the parabola $3y^2 = 4x$ then the value of k is 1)52)7 3)6 4)373. If the line 2x+3y+k=0 touches the parabola $x^{2} = 108y$ then k = 3) lies on the line x=31) 27 2) 18 3) 24 4) 36 4) lies on the directrix SR. MATHEMATICS 323

74.	If the line $y=3x+1$ touches the parabola $y^2 = 4ax$					
	then its length of latusrectu	um is				
	1) 24 2) 16	3) 12	4) 18			
75.	Equation of the common	tangent to	$y^2 = 4x$ and			
	$x^2 = 32y$ is					
	1) $x+2y+4=0$	2) x+2y+8=	=0			
	3) $2x+y+8=0$	4) $2x+y-16$	=0			
76.	Equation of the common	tangent to t	he parabola			
	$y^2 = 24x$ and the circle x^2	$x^2 + y^2 = 18$ is	5			
	1) $x+y+6=0$	2) x+y+4=()			
	3) 2x+y-9=0	4) $x+2y-8=$	0			
//.	The point of intersection o	of the two tai	ngents at the			
	ends of the fatusreet	um of the	e parabola			
	$(y+3)^2 = 8(x-2)$ is					
	1) $(0, -4)$ 2) $(0, -3)$	3) (-1, -3)	4) (-2, -3)			
78.	A tangent to the parabola	$y^2 = 4ax$ me	eets the axes			
	at A and B. Then the locu	s of mid po	int of \overline{AB} is			
	1) $y^2 + 2ax = 0$	2) $y^2 - 2ax =$	= 0			
	3) $2v^2 + ax = 0$	4) $4v^2 + ax$	= 0			
79	Faultion of the tangen	$v^2 = 8$	r which is			
).	rate = 100 m	y = 0				
	1) $x-v+4=0$	2) x-v+5=0				
	3) $x-y+2=0$	4) x-y+7=0				
30.	Equation of the tangent	t to $v^2 = 16$	x which is			
	perpendicular to $2x - y + 5$	5 = 0 is				
	1) $x+2v+16=0$	(2) x + 2y - 17	=0			
	3) $x+2y-19=0$	4) $x+2y-18$	=0			
31.	Equation of the tangent to	$v^2 = 4a(x)$	+a) having			
	slope 1 is)			
	1) $x-y+2a=0$	2) x+v+a=	0			
	3) x+y-4a=0	4) x-y-2a=	0			
32.	If the line $7x+6y-13=0$	touches th	ne parabola			
	$y^2 - 7x - 8y + 14 = 0$ then the	he point of	contact is			
	1) (2, 1)	2) (1, -1)				
	3) (-1, 1)	4)(1,1)				
33.	A tangent to $y^2 = 5x$ is par	allel to the l	ine y=4x+1.			
	Then the point of contact	is				
	(5 5)	$(5 \ 5)$				
	1) (5,5) 2) $\left(\frac{3}{64}, \frac{3}{8}\right)$ 3	$\left(\frac{3}{8},\frac{3}{64}\right)$	4) (2,7)			
84	With respect to the parab	$rac{1}{2}$ $rac{1}{2}$	• the foot of			
, r.	the nernendicular from (1	0) on the 1	ine v = v + 1			
	1) lies on the tangent at th	e vertex				
	2) lies on the line $x=2$					
	/					

For all values of m the line $y = m(x-a) - \frac{a}{m}$ touches 85. the parabola 1) $y^2 = 4a(x+a)$ 2) $y^2 = 4a(x-a)$ 4) $y^2 = -4a(x-a)$ 3) $v^2 = -4a(x+a)$ 86. If the line y=x+2a touches the parabola $y^2 = 4a(x+a)$ then the point of contact is 1)(2a,0)2)(a,a)3)(0,2a)(-a,a)87. The straight line x+y=k+1 touches the parabola y = x (1-x) if1) k = -12) k=0 3) k=14) k takes any real value 88. Equation of the tangent at the point t=-3 to the parabola $y^2 = 3x$ is 1. 12x + 4y + 27 = 02) 4x+12y-27=03) 4x + 12y + 27 = 0 4) 12x + 4y - 27 = 089. If the tangents to the parabola $y^2 = 4ax$ at (x_1, y_1) and (x_2, y_2) meet on the axis then 1) $x_1 = -x_2$ 2) $x_1 = x_2$ 3) $y_1 = y_2$ 4) $y_1 = -y_2$ 90. If the tangents to the parabola $y^2 = 4ax$ make complementary angles with the axis of the parabola then $t_1 t_2 =$ 2)1 3) -1 1)0 4) -2 If the tangents at t_1, t_2, t_3 on $y^2 = 4ax$ make 91. angles 30° , 45° , 60° with the axis then t_1 , t_2 , t_3 are in 1) A.P. 2) G.P. 3) H.P. 4) A.G.P. 92. Number of tangents drawn from (-2, -3) to the parabola $2y^2 = 9x$ is 1) 3 2)0 3)1 4) 2 93. Sum of the slopes of the two tangents drawn from (3, 5) to $y^2 = 8x$ is 1) $\frac{7}{3}$ 2) 5 3) $\frac{5}{3}$ 4) $\frac{8}{3}$ 94. Product of the slopes of the two tangents drawn from (2, 3) to $y^2 = 4x$ is 1) $\frac{5}{2}$ 2) $\frac{3}{2}$ 3) 1 4) $\frac{1}{2}$ The slopes of the two tangents drawn from $\left(\frac{3}{2}, 5\right)$ 95. to $y^2 = 6x$ are 1) $3, \frac{1}{2}$ 2) $5, \frac{1}{5}$ 3) 7, 3 4) 5,2 96. If θ is the angle between the two tangents to

 $y^2 = 12x$ from the point (1, 4) then $\tan \theta =$ 1) $\frac{2}{3}$ 2) $\frac{3}{4}$ 3) $\frac{3}{5}$ 4) $\frac{1}{2}$ 97. Two tangents to the parabola $(y-1)^2 = 4(x-2)$ are at right angles. Then the locus of their point of intersection is 1) x-3=02) x-1=0 3) 2x-1=0 4) 3x-1=098. The locus of point of intersection of the two tangents to $y^2 = 4ax$ inclined at an angle 45^0 is 1) $x^2 + v^2 - 4ax + 2a^2 = 0$ 2) $x^2 - v^2 + 6ax + a^2 = 0$ 3) $x^2 + v^2 + 8ax + 4a^2 = 0$ 4) $x^2 + v^2 - 2ax + 4a^2 = 0$ 99. Two tangents to the parabola $y^2 = 4ax$ make angles θ_1, θ_2 with the x-axis. Then the locus of their point of intersection if $\cot \theta_1 + \cot \theta_2 = c$ is 1) x = ac 2) $y^2 - 2ax = cx^2$ 3) y = ca 4) y = cx100. Two tangents to the parabola $y^2 = 4ax$ make supplimentary angles with the x axis. Then the locus of their point of intersection is 1) x=a2) x=ak3) y=04) x+y=a101. If P is a point on the parabola $y^2 = 4ax$ in which the abscissa is equal to ordinate then the equation of the normal at P is 2) 2x + y - 12a = 01) 2x + y + 12a = 0 $3v \ 2x + y - 18a = 0$ 4) x + 2y - 12a = 0102. If the line x - y + k = 0 is a normal to $y^2 = 4ax$ then the value of k is 3) -5a 4) -3a 1) 4a 2) -a 103. Equation of the normal to $y^2 = 4x$ which is perpendicular to x + 3y + 1 = 0 is 1) 3x-y-33=02) 3x-v+17=03) 3x-y+19=04) 3x-y+27=0104. If a normal is drawn to $y^2 = 12x$ making an angle 45° with the axis then the foot of the normal is 1) (3, 8) 2) (3, -6) 3) (12, -12) 4) (8, -8)105. If the normal at P(18, 12) to the parabola $y^2 = 8x$ cuts it again at Q then Q =1) $\left(\frac{242}{9}, \frac{-44}{3}\right)$ 2) $\left(\frac{121}{9}, \frac{-44}{3}\right)$ 3) $\left(\frac{-121}{9}, \frac{44}{3}\right)$ 4) $\left(\frac{121}{3}, \frac{-77}{9}\right)$ 106. If the normals at the points (x_1, y_1) , (x_2, y_2) on the

parabola $y^2 = 4ax$ intersect on the parabola then

 $x_1x_2 + y_1y_2 =$ 2) $12a^2$ 3) $8a^2$ 1) $-3a^2$ 4) $16a^2$ 107. If the normal at A on the parabola $y^2 = 4ax$ meets the axis at B and If S is the focus of the parabola then 2) SA=2SB 1) SA=SB 4) $SA = \frac{1}{2}SB$ 3) SA=4SB 108. If the normal at t_1 on the parabola $y^2 = 4ax$ meets the curve again at t_2 then $t_1^2 + t_1 t_2 =$ 4)21) -2 2) 0 3) - 1109. The ordinates of the feet of three normals to the parabola $y^2 = 4ax$ from the point (6a, 0) are 1) 0, -3a, 3a2) 0, -2a, 2a3) 0, -4a, 4a4) 0, -5a, 5a110. The subtangent, ordinate of the point, and subnormal to the parabola $y^2 = 12x$ at $\left(\frac{4}{3}, 4\right)$ are in 1) A.P. 4) A.G.P. 2) H.P. 3) G.P. 111. Equation of the normal at t=4 to the parabola $v^2 = 6x$ is 2) 4x + y + 108 = 01) 4x + y - 108 = 04) x + 4y - 108 = 03) x + 4y + 108 = 0112. At any point P on the parabola $y^2 = 4ax$ a normal PG is drawn intersecting the axis in G. If S is the focus of the parabola then $PG^2 =$ 1) 2a.SP 2) 3a.SP 3) a.SP 4) 4a.SP 113. If the line 5x-4y-12=0 meets the parabola $x^2 = 8y$ in A and B then the point of intersection of the two tangents at A and B is 1)(5,3)2)(3,5)(4, 6)(6, 4)114. Length of the chord of contact of (2, 5) with respect to $y^2 = 8x$ is 1) $\frac{3\sqrt{41}}{2}$ 2) $\frac{2\sqrt{17}}{3}$ 3) $\frac{7\sqrt{3}}{5}$ 4) $\frac{5\sqrt{3}}{7}$ 115. Area of the triangle formed by the pair of tangents drawn from (-1, 4) to $y^2 = 16x$ and the chord of contact of (-1,4) is 2) $_{16\sqrt{3}}$ 3) $_{5\sqrt{2}}$ 1) $8\sqrt{2}$ 4) $16\sqrt{2}$ 116. If the chord of contact of tangents from P to the parabola $y^2 = 4ax$ touches the circle $x^2 + y^2 = b^2$ then the equation of the locus of P is 1) $a^2x^2 = b^2(y^2 + 4a^2)$ 2) $4a^2x^2 = b^2(y^2 + 4a^2)$ 3) $2a^2x^2 = b^2(4y^2 + a^2)$ 4) $a^2x^2 = 4b^2(y^2 + a^2)$ 117. Pole of the line x-2y+3=0 w.r.to $y^2 = 4x$ is 1301)(4,3)2)(3,4)(1, 2)(2, 1)SR. MATHEMATICS 325

118. Pole of the line x+y+2=0 w.r.to the parabola $v^{2} + 4x - 2v - 3 = 0$ is 1) (5, 3) 2) (-5, 3) 3) (4, 3)(-4, 3)119. If the lines 2x+3y+12=0 and x-y+4p=0 are conjugate w.r.to $y^2 = 8x$ then p= 1) -5 2)4 4) - 33)7 120. If (2, 4), (p, 6) are conjugate points w.r.to $y^2 = 16x$ then the value of p is 3) - 3 4)1 1) -2 2) 5 121. Pole of 3x+4y-4=0 w.r.to $x^2 = 4y$ is 1) $\left(\frac{-3}{2}, -1\right)$ 2) $\left(\frac{3}{2}, \frac{-1}{2}\right)$ $(-1,\frac{-5}{2})$ (2,3)122. If the polar of P w.r.to the circle $x^2 + y^2 = a^2$ touches the parabola $y^2 = 4ax$, then the locus of P 1) $v^2 + 2ax = 0$ 2) $v^2 + 3ax = 0$ 3) $y^2 + ax = 0$ 4) $2v^2 + ax = 0$ 123. If the polar of P w.r.to $y^2 = 4ax$ touches the circle $x^{2} + y^{2} = 4a^{2}$ then the locus of P is 1) $2x^2 - y^2 = 4a^2$ 2) $x^2 - 2y^2 = 4a^2$ 3) $x^2 - v^2 = 4a^2$ 4) $3x^2 - v^2 = a^2$ 124. The locus of poles of focal chords of the parabola $v^2 = 4ax$ is 1) x+2a=0 2) x+a=0 3) x+4a=0 4) x-2a=0125. The locus of poles of chords of the parabola $y^2 = 4ax$ which subtend a right angle at the vertex of the parabola is 1) x+4a=0 2) x+2a=0 3) x+a=0 4) x+6a=0126. Equation of the chord of the parabola $y^2 = 8x$ which is bisected at the point (2, -3) is 1) 4x+3y+1=02) 3x+4y+6=03) 2x-3y-13=04) x-y+5=0127. The condition for the line 4x+3y+k=0 to intersect $v^2 = 8x$ is 1) $K < \frac{9}{2}$ 2) K > 5 3) $K > \frac{15}{2}$ 4) K > 6128. The mid point of the chord of the parabola $y^2 = 2x$ is (1,1). Then the point of intersection of the two tangents at the extremeties of the chord is 1) (0,3) 2) (0,1) 3) $\left(0,\frac{5}{2}\right)$ 4) (0,2) 129. If the line 4x+3y+1=0 meets the parabola $y^2 = 8x$ then the mid point of the chord is

1)
$$(-1,1)$$
 2) $(2,-3)$ 3) $(3,-3)$ 4) $(5,-7)$
D. If the locus of mid points of the chords of the

is the triangle formed by three tangents at A, B, C parabola $y^2 = 4ax$ which passes through a fixed then point (h, k) is also a parabola then its length of 1) $\Delta ABC = 2\Delta PQR$ 2) $\triangle ABC = \triangle POR$ latusrectum is 3) $\Delta ABC = 3\Delta PQR$ 4) $\Delta ABC = 4\Delta PQR$ 3) $\frac{7a}{2}$ 4) 2a 1) a 2) 3a 142. Tangents are drawn from P to $y^2 = 4ax$. If the 131. The locus of middle points of all chords of the padifference of the ordinates of the points of contact rabola $y^2 = 4ax$ passing through the vertex of the of the two tangents is *i* then the equation to the locus of P is parabola is 1) $y^2 = 2ax$ 2) $y^2 = 2a(x-a)$ 1) $y^2 - 4ax = l^2$ 2) $y^2 - 4ax = \frac{l^2}{2}$ 3) $y^2 = a(x-a)$ 4) $2y^2 = ax$ 3) $y^2 - 4ax = \frac{l^2}{4}$ 4) $y^2 - 4ax = 2l^2$ 132. The locus of mid points of the chords of the parabola $y^2 = 4(x+1)$ which are parallel to 3x=4y143. If the chord joining the points t_1 and t_2 on the is parabola $y^2 = 4ax$ subtends a right angle at its ver-1) 5y-8=0 2) 3y+10=03) 5y+9=04) 3v-8=0tex then $t_2 =$ 133. If a chord 4y=3x-48 subtends an angle θ at the 1) $\frac{2}{t_1}$ 2) $\frac{-2}{t_1}$ 3) $\frac{4}{t_1}$ 4) $\frac{-4}{t_1}$ vertex of the parabola $y^2 = 64x$ then $\tan \theta =$ 1) $\frac{10}{9}$ 2) $\frac{13}{9}$ 3) $\frac{20}{9}$ 4) $\frac{16}{9}$ 144. If t_1, t_2, t_3 are the feet of the normals drawn from (x_1, y_1) to $y^2 = 4ax$ then $t_1t_2 + t_2t_3 + t_3t_1 =$ 134. The length of the chord 4y=3x+8 of the parabola $v^2 = 8x$ is 2) $\frac{y_1}{a}$ 3) $\frac{2a - x_1}{a}$ 4v $\frac{x_1 - 2a}{a}$ 1)0 1) $\frac{320}{7}$ 2) $\frac{320}{9}$ 3) $\frac{80}{9}$ 4) $\frac{640}{7}$ 145. The point of intersection of normals to the parabola $y^2 = 4x$ at the points whose ordinates are 4 and 6 135. Length of the chord intercepted by the line x+y=5is on the parabola $y = x^2 + 3x$ is 2)(21, -30)1)(30, -21)1) $4\sqrt{2}$ 2) $6\sqrt{2}$ 3) $10\sqrt{2}$ 4) $5\sqrt{2}$ 3) (17, -19) (19, -18)136. $y = x\sqrt{2} - 4a\sqrt{2}$ is a normal chord to $y^2 = 4ax$. 146. The area of the triangle inscribed in the parabola Then its length is $v^2 = 4x$ with the vertices, whose ordinates are 1, 2) $_{4a\sqrt{3}}$ 3) $_{6a\sqrt{3}}$ 4) $_{2a\sqrt{3}}$ 1) $8a\sqrt{3}$ 2, 4 is 137. The point of intersection of the tangents at the points 1) $\frac{7}{2}$ sq.units 2) $\frac{5}{2}$ sq.units on the parabola $y^2 = 4x$ whose ordinates are 4 and 6 is 3) $\frac{3}{2}$ sq.units 4) $\frac{3}{4}$ sq.units (2)(7,3)3)(9,10) 4)(6,10)1)(6,5)138. If y_1 and y_2 are the ordinates of two points P and Q on 147. If the locus of the point $(4t^2 - 1, 8t - 2)$ represents a aparabola and y_2 is the ordinate of the point of intersection parabola then the equation of latusrectum is of the tangents at P and Q then 2) 2x-7=0 3) x+5=0 4) x-3=01) x-5=01) y_1, y_2, y_3 are in A.P. 2) y_1, y_3, y_2 are in A.P. 148. The tangents to the parabola $y^2 = 4ax$ at $P(t_1)$ 3) y_1, y_2, y_3 are in G.P. 4) y_1, y_3, y_2 are in G.P. and $Q(t_2)$ intersect at R. Then the area of $\triangle PQR$ 139. If the tangents at $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ on the is parabola $y^2 = 4ax$ intersect on the axis then 1) $\frac{a^2}{2}(t_1-t_2)^2$ 2) $\frac{a^2}{2}(t_1-t_2)$ 1) $t_1 = \frac{2}{t}$ 2) $t_1 t_2 = -4$ 3) $t_1 t_2 = -1$ 4) $t_1 = -t_2$ 3) $\frac{a^2}{2}(t_1-t_2)^3$ 4) $a^2(t_1-t_2)^2$ 140. If the tangents at P and Q on the parabola $y^2 = 4ax$ 149. If P is a point on the parabola $y^2 = 4ax$ such that meet in T and if S is the focus of the parabola then the subtangent and subnormal at P are equal then SP, ST, SQ are in the coordinates of P are 4) A.G.P. 1) A.P. 2) G.P. 3) H.P. 1) (a, 2a) or (a, -2a)141. If A, B, C are three points on a parabola and PQR

SR. MATHEMATICS

326

	2) $(2a, 2a\sqrt{2})$	$\overline{2}$) or $(2a)$	$(-2a\sqrt{2})$			34.	Length of double ordinate is 16. Hence points on
	(4a, -4a)) or $(4a, 4a)$	1a)				the parabola $y^2 = 8x$ are $(x, \pm 8)$.
	4) $(5a, -5a)$) or $(5a, -$	-3a)				\therefore points are (8,±8)
150.	P(-3, 2) is parabola y normal at Q	(-3, 2) is one end of focal chord PQ of the arabola $y^2 + 4x + 4y = 0$. Then the slope of the ormal at Q is			Q of the pe of the		Angle at vertex is $\frac{\pi}{2}$
	1) $\frac{-1}{2}$	2) 2	3) $\frac{1}{2}$	4) –2	58.	Semilatusrectum $l = \frac{5}{2}$
	2	K	EY				$d = \frac{1 - 3 - 4 + 21}{5} = 1$
	1. 1 6. 2 11. 1 16. 3 21. 3	2. 4 7. 3 12. 3 17. 3 22. 1	3. 1 8. 3 13. 1 18. 2 23. 4	4. 4 9. 4 14. 1 19. 2 24. 1	5. 4 10.2 15.3 20. 4 25. 4	63.	$\frac{l}{d} = \frac{5/2}{1} = \frac{5}{2} = e$ $\therefore e > 1 \text{ conic is hyperbola.}$ $p = (1, 4) = p(4t^2, 8t)$
	21. 3 26. 2 31. 3 36. 1 41. 3	22. 1 27. 4 32. 4 37. 3 42. 1	23. 4 28. 1 33. 4 38. 3 43. 3	24. 1 29. 2 34. 4 39. 4 44. 2	23. 4 30. 2 35. 3 40. 2 45. 3	(0)	$\therefore t = \frac{1}{2} \qquad \frac{SP}{SQ} = t^2 = \frac{1}{4}$
	46.4	47.3	48.2	49.3 54.4	50. 1 55. 2	68.	To get the equation of the tangent write $S_1 = 0$ and simplify.
	56. 1 61. 2	57.3 62.4	58.3 63.4	59.2 64.4	60. 4 65. 2	77.	For the parabola $(y+3)^2 = 8(x-2)$
	66. 3	67.4	68. 4	69. 1	70.2		equation of axis is $y = -3$
	71.2 76.1	72.4 77.2	73.4 78.3	74.3 79.3	75.1 80.1		equation of directrix is $x=2-2=0$
	81.1	82.4	83.2	84.1	85.4	81.	Take the tangent equation in the form
	86.3 91.2 96.4	87.2 92.4 97.2	88.3 93.3 98.2	89.4 94.4 99.3	90. 2 95. 1 100.3		$y = m(x+a) + \frac{a}{m}$ put m=1 and simplify.
	101. 2 106. 2	102.4 107.1	103. 1 108. 1	104.2 109.3	105.1 110.3	82.	Select the point satisfying the line and the parabola equations.
	111. 1 116. 2	112.4 117.2	113.1	114. 1 119. 4	115.4 120.4	84.	For $y^2 = 4x$ (1,0) is focus and y=x+1 is a tangent.
	121. 1 126. 1	122.3 127.1	123.3 128.2	124. 2 129. 2	125. 1 130. 4		Hence foot of the perpendicular lies on the tangent
	131.1	132.4	133.3	134.3	135.2	87	at the vertex. Solve $x + y = k + 1$ $y = r(1 - x)$
	130. 3	137.1	138.2	139.4	140. 2 145. 2	07.	Solve $x + y = k + 1, y = x(1 - x)$ $x^{2} - 2x + k + 1 = 0$
	146. 4	147.4	148.3	149. 1	150. 1		since the line touches the parabola
		HI	N T S				$b^2 - 4ac = 4 - 4(k+1) = 0$
11	Focus (1 2) directri	x is 2x-3x	v+1=0		100	$\therefore k = 0$
	equation of	flatusrect	122 Let 39	-3y=-4; 2>	x-3y+4=0	100.	$m_1 = \tan \theta, m_2 = -\tan \theta$
	equation of	tangent a	t vertex is	$x^{2} - 3y +$	$\frac{5}{2} = 0$ i.e.,		sum of the slopes $m_1 + m_2 = \frac{y_1}{y_1}$
19.	4x-6y+5=0 Since the a) Ixis is ho	rizontal s	elect the	parabola		equation to locus is $y=0$
	equation in the form $y^2 + Dy + Ex + F = 0$ satisfying					105.	$P = (18, 12) = (2t^2, 4t)$ $\therefore t = 3$
20	the given points.						normal at P meets at $Q(t_1)$
	equation in	the form	$x^2 + 1$	Dx + Ey + L	F = 0		$t_1 = -3 - \frac{2}{3} = \frac{-11}{3}$
	Sunsiying ti						

327

$$\begin{aligned} & \rho\left[2x\frac{12!}{9}, 4x - \frac{11}{3}\right] = \left(\frac{242}{9}, \frac{-44}{3}\right) \\ \text{109. Equation of the normal with slope m is \\ & y = mx - 2am - am' passes through (6a, 0) \\ & y, values of m are 0, 2, -2 \\ & put m - 0, 2, -2 n - 2am \\ \text{112. normal atp() is $\alpha + y = 2\alpha + a\alpha^2$
 $G^{-1}(2\alpha + a\alpha^2, 0) \\ & G^{-1}(2\alpha + a\alpha^2, 0) \\ & FC^2 = 4a^2 + 4a^2(2^2 - 4a(\alpha + a\alpha^2) = 4a, xp) \\ & FC^2 = 4a^2 + 4a^2(2^2 - 4a(\alpha + a\alpha^2) = 4a, xp) \\ & FC^2 = 4a^2 + 4a^2(2^2 - 4a(\alpha + a\alpha^2) = 4a, xp) \\ & FC^2 = 4a^2 + 4a^2(2^2 - 4a(\alpha + a\alpha^2) = 4a, xp) \\ & FC^2 = 4a^2 + 4a^2(2^2 - 4a^2 - 4a^2) + 22 = 0 \\ & fTC^2 = 4a^2 + 4a^2(2^2 - 4a^2 - 4a^2) + 22 = 0 \\ & fTC^2 = 4a^2 + 4a^2(2^2 - 4a^2 - 4a^2) + 22 = 0 \\ & fTC^2 = 4a^2 + 4a^2 - 4a^2 + 22 = 0 \\ & fTC^2 = 4a^2 + 4a^2 - 4a^2 + 22 = 0 \\ & fTC^2 = 4a^2 + 4a^2 - 4a^2 + 22 = 0 \\ & fTC^2 = 4a^2 + 4a^2 - 4a^2 + 2a^2 - 4a^2 + 4a^2 + 2a^2 + 4a^2 + 2a^2 + 4a^2 + 4a^2 + 2a^2 + 2a^2$$$

PARABOLA (CONIC SECTION)

 $y^2 = 8x.$

 $(3, 2\sqrt{3})$

	focus is		distance of the point is	
	1) $\left(\frac{3}{10}, 0\right)$ 2) $\left(\frac{3}{5}, 0\right)$ 3) $\left(\frac{3}{7}, 0\right)$ 4) $\left(\frac{6}{7}, 0\right)$		1) 3a 2) 4a 3) $\frac{5}{3}$	$\frac{a}{3}$ 4) $\frac{8a}{3}$
11.	Equation of the parabola whose vertex is $(0, 0)$ and focus is the point of intersection of the lines x+y=2 $2x-y=4$ is	21.	The vertex of a parabola is (2, is y axis. The end of latusrectum is	,0) and its directrix in the first quadrant
12.	1) $y^2 = 2x$ 2) $y^2 = 4x$ 3) $y^2 = 8x$ 4) $x^2 = 8y$ The parabola $y^2 = 2ax$ passes through the centre of the circle $4x^2 + 4y^2 - 8x + 12y - 7 = 0$. Its directrix is	22.	1) (2, 4) 2) (4, 4) 3) (6 A parabola has x axis as its directrix and 4a as its latusrect to the left side of the directrix t the parabola is	(5, 4) 4) (8, 4) axis, y axis as its um. If the focus lies then the equation of
	1) $4x+9=0$ 3) $16x+9=0$ 2) $4x+15=0$ 4) $16x-7=0$		1) $y^2 = 4a(x+a)$ 2) y	$a^2 = 4a(x-a)$
13.	The length of the double ordinate of the parabola $y^2 - 8x + 6y + 1 = 0$ which is at a distance of 32 units	23.	3) $y^2 = -4a(x+a)$ 4) y If the equation	$a^2 = 4a(x-2a)$
	from vertex is 1) 28 2) 30 3) 32 4) 26		$25\left\{ \left(x-5 \right)^{2} + \left(y-3 \right)^{2} \right\} = \left(3x-4y \right)^{2}$	$((1+1)^2)$
14.	If the angular bisectors of the coordinate axes cut the parabola $y^2 = 4ax$ at the points O, A, B then the area of $AOAB$ is (O is the origin)		represents a parabola then its 1) $4x+3y-10=0$ 2) $4x$ 3) $4x+3y-29=0$ 4) $4x$	axis is x+3y-15=0 x+3y-17=0
	1) $32a^2$ 2) $16a^2$ 3) $64a^2$ 4) $8a^2$	24.	If the equation $136(x^2 + y^2) = 0$	$(5x+3y+7)^2$ repre-
15.	The condition that the line y=mx+c to be a tangent to $v^2 - 4a(x+a)$ is		sents a conic then its length of	latusrectum is
	$(1) \qquad (1) \qquad (1)$		1) $\frac{7}{2\sqrt{34}}$ 2) $\frac{7}{\sqrt{34}}$ 3) $\frac{7}{\sqrt{34}}$	$\frac{14}{\sqrt{34}}$ 4) $\frac{9}{\sqrt{34}}$
	1) $c = a \begin{pmatrix} m + - \\ a \end{pmatrix}$ 2) $c = a \begin{pmatrix} m \\ m \end{pmatrix}$	25.	If the vertex of the parabola y	$=x^2-8x+c$ lies on
	3) $c = a\left(m + \frac{1}{m}\right)$ 4) $a = c\left(m + \frac{1}{m}\right)$		x axis then the value of c is 1) 12 2) 14 3) 8	4) 16
16.	The length of latusrectum of the parabola	26.	Reflection of $y^2 = x$ about y a	xis is
	$(x-2a)^2 + y^2 = x^2$ is 1) 22 (2) (2) (2) (2) (3) (4) (4)		1) $x + y^2 = 0$ 2) x^2	$y^2 - y = 0$
17.	An equilateral triangle is inscribed in the parabola	27.	3) $y^2 - 4x = 0$ S is the focus and Z is the foot of	$y^{2} + y = 0$ of the perpendicular
	$y^2 = \frac{1}{2}x$ so that one of its vertex coincides with		drawn from S to the directr $(x - 2)^2 = 3(y + 1)$ Then the m	ix of the parabola
	the vertex of the parabola. Then the length of its side is		(x-2) = 3(y+1). friendle int $1) (-2, 1) 2) (2, -1) 3) (2)$	$\begin{array}{c} 10 \\ 2, 1 \\ 1 \\ 4 \\ (-2, -1) \end{array}$
18.	1) $\sqrt{3}$ 2) $2\sqrt{3}$ 3) $3\sqrt{3}$ 4) $4\sqrt{2}$ A parabolic arch has a height 18 meters and span 24 meters. Then the height of the arch at 8 meters	28.	The focus of a conic is the corresponding directrix is latusrectum is 2 then its eccent	he origin and its 7x-y-10=0. If its tricity is
	from the centre of the span is 1) 10 2) 11 3) 12 4) 13		1) $\sqrt{2}$ 2) 1 3) $-$	$\frac{1}{\sqrt{2}}$ 4) $\frac{1}{2}$
19.	A parabola with axis parallel to x axis passes through $(0, 0)$, $(2, 1)$, $(4, -1)$. Its length of latusrectum is	29.	The number of parabolas passin points $(1, 3), (6, 13), (-5, -9)$ 1) 3 2) 2 3) 0	ng through the three is 4) infinite
	1) $\frac{2}{2}$ 2) $\frac{1}{4}$ 3) $\frac{7}{2}$ 4) $\frac{1}{2}$	30.	Perpendiculars are drawn o	n a tangent to the
20.	A point on the parabola $v^2 = 4ax$. the foot of the		parabola $y^2 = 4ax$ from the point of the	points $(a \pm k, 0)$. The
	$\perp r$ from it on the directrix and the focus are the vertices of an equilateral triangle. Then the focal		1) 4 2) 4a 3) 4	k 4) 4ak

31. If the tangents at t_1 and t_2 to a parabola are perpendicular then $(t_1 + t_2)^2 - (t_1 - t_2)^2 =$ 3) 6 1) -1 2) -4 4)241. 32. For the parabola $y^2 = 8x$ tangent and normal are drawn at P(2, 4) which meet the axis of the parabola in A and B. Then the length of the diameter of the circle through A, P, B is 1)22)4 3)8 4)642. 33. If L_1L_2 is the latusrectum of $y^2 = 12x$ P is any point on the directrix then the area of $\Delta PL_1L_2 =$ 1) 32 2) 18 3) 36 4) 16 43. 34. The equations of the tangents at the ends of latusrectum of $y^2 = 4ax$ are 1) $x \pm y - a = 0$ 2) $x \pm y + a = 0$ 44. 3) $x \pm y - 3a = 0$ 4) $x \pm y + 2a = 0$ 35. The equations of the normals at the ends of latusrectum of $y^2 = 4ax$ are 1) $x \pm y - 3a = 0$ 2) $x \pm y + 3a = 0$ 3) $x \pm v - 2a = 0$ 4) $x \pm v + 2a = 0$ 36. If two tangents from any point on the directrix to the parabola $y^2 = 4ax$ touch the parabola at t_1, t_2 46. then 1) $t_1t_2 = -1$ 2) $t_1t_2 = 1$ 3) $t_1t_2 = 2$ 4) $t_1t_2 = \frac{1}{2}$ 37. The angle between the two tangents at the ends of a focal chord of the parabola is 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{2}$ 38. Equation of the two tangents drawn from (1, 4) to the parabola $y^2 = 12x$ are 1) x - y + 3 = 0, 3x - y + 1 = 02) x - y + 1 = 0, x - 2y + 4 = 03) x + y - 2 = 0, x - y = 34) x + y - 1 = 0, x + 2y + 4 = 039. The angle between the two tangents drawn from origin to the parabola $y^2 = 4a(x-a)$ is 2) 30° 3) $\tan^{-1}(2)$ 4) 45° 1) 90° 40. Two tangents to $y^2 = 4ax$ make angles θ_1, θ_2 with x axis. If $\cos \theta_1 \cos \theta_2 = k$ then the locus of their intersection is 1) $x^2 = k^2 \left[(x-a)^2 + y^2 \right]$ 2) $x^2 = k^2 \left[(x+a)^2 + y^2 \right]$

3) $x^2 = k^2 \left[(x-a)^2 + 4y^2 \right]$ 4) $4x^2 = k^2 \left[\left(x + a \right)^2 + y^2 \right]$ Locus of the point of intersection of perpendicular tangents drawn one each to the parabolas $y^{2} = 4(x+1), y^{2} = 8(x+2)$ is 1) x+12=0 2) x+8=0 3) x+4=0 4) x+3=0The number of points of intersection of $x^2 + y^2 = 2x$ with $y^2 = x$ 1)1 2)2 3) 3 4)4The number of points of intersection of $x^2 + y^2 = 4x$ with $y^2 = 4(x-3)$ 3) 3 1)12)2 4)4Equation of the common tangent to the circle $x^{2} + y^{2} = 4ax$ and $y^{2} = 4ax$ is 1) x+y+a=02) x=04) x-y+a=0 3)x=a45. If the line lx + my + n = 0 touches the parabola $y^2 = 4a(x-b)$ then 1) $al^2 = bm^2 + nl$ 2) $am^2 = bl^2 + nl$ 4) $an^2 = bl^2 + 2nm$ 3) $an^2 = bl^2 + nm$ A tangent to $y^2 = 4ax$ meets x axis at T and tangent at vertex A in P and the rectangle TAPQ is completed. Then the locus of Q is given by 1) $v^2 + 4ax = 0$ 2) $v^2 + 2ax = 0$ 3) $v^2 = 2ax$ 4) $v^2 + ax = 0$

is cut by the line $x \cos \alpha + y \sin \alpha - p = 0$ is

1) 2ly + am = 01) $(p \tan \alpha, 2a \sec \alpha)$ 2) $(-p \sec \alpha, -2a \tan \alpha)$ 2) lv + 4am = 03) ly + 3am = 04) lv + 2am = 04) $(p \sec \alpha, 2a \tan \alpha)$ 3) $(2a \sec \alpha, p \tan \alpha)$ 60. The polar of a point w.r.to $y^2 = 4ax$ touches 52. The locus of poles of chords of the parabola $x^2 + 4by = 0$. Then the locus of poles is $y^2 = 4ax$ which subtend a constant angle α at the 1) xy=2ab 2) 4xy=ab 3) xy=ab4) 3xv=abvertex of the parabola is 61. The triangle formed by the latusrectum of a 1) $(x+4a)^2 \tan^2 \alpha = 4(y^2-4ax)$ parabola and the tangents drawn at the ends of latusrectum is always 2) $(x+a)^{2} \tan^{2} \alpha = v^{2} - 4ax$ 1) equilateral 2) isosceles 3) $(x+a)^2 \cot^2 \alpha = v^2 - 4ax$ 3) right angled 4) right angled isosceles 62. The locus of mid points of parallel chords of a 4) $(x+4a)^2 \cot^2 \alpha = y^2 - 4ax$ parabola is 53. The locus of poles of normal chords of the pa-1) the axis 2) a line parallel to the axis rabola $y^2 = 4x$ is 3) a line parallel to directrix 1) $v^2(x+4)+8=0$ 2) $v^{2}(x+2)+4=0$ 4) a focal chord 3) $v^{2}(x+1)+8=0$ 4) $v^{2}(x+4)+6=0$ 63. The locus of mid points of chords of the parabola $y^2 = 4ax$ passing through the foot of the directrix 54. The abscissa of the orthocentre of the triangle formed by the lines $y = m_1 x + \frac{b}{m_1}$, $y = m_2 x + \frac{b}{m_2}$, 1) $y^2 = a(x+a)$ 2) $y^2 = 2a(x+a)$ 3) $y^2 = a(x-a)$ 4) $y^2 = 2a(x-a)$ $y = m_3 x + \frac{b}{m_2}$ is 64. If the segment intercepted by the parabola $y^2 = 4ax$ with the line lx + my + n = 0 subtends a 1)b 2) -b 3) 2b 4) - 2b 55. The line y=(2x+a) will not intersect the parabola right angle at the vertex then 1) 4al + n = 02) 4al + 4am + n = 0 $v^{2} = 2x$ if 3) 4am + n = 04) al + n = 01) $a < \frac{1}{4}$ 2) $a > \frac{1}{4}$ 3) $a = \frac{1}{4}$ 4) a = -265. A normal chord of the parabola $y^2 = 4x$ makes an angle 45° with the axis of the parabola. Then 56. If (a, b) is the mid point of the chord of the parabola its length is $y^2 = 4ax$ passing through the vertex then 2) $10\sqrt{2}$ 3) $6\sqrt{3}$ 4) $4\sqrt{3}$ 1) $8\sqrt{2}$ 1) a=2b 2) 2a=b 3) $a^2 = 2b$ 4) $2a^2 = b^2$ The normal at (a, 2a) on $y^2 = 4ax$ meets the curve 66. 57. A tangent to the parabola $y^2 + 4bx = 0$ meets again at $(at^2, 2at)$. Then the value of t is equal to $y^2 = 4ax$ at P and Q. Then the locus of mid point 1)1 2) 3 3) -1 4) -3 of chord PQ is 67. The circumcircle of the triangle formed by any three 1) $y^2(a+2b) = 4a^2x$ 2) $y^2(2a+b) = 2a^2x$ tangents to a parabola passes through 1) vertex 3) $y^2(2a+b) = 4a^2x$ 4) $y^2(a+2b) = a^2x$ 2) the ends of latusrectum 58. Locus of mid points of the chords of the parabola 3) the focus $y^2 = 4ax$ which touch the circle $x^2 + y^2 = a^2$ is 4) the mid point of focus and vertex 1) $(y^2 - 2ax)^2 = a^4 (y^2 + 4a^2)$ 68. If a tangent is drawn to the parabola $y^2 = 4x$ through (-2, 1) then the point of contact is 2) $(y^2 - 2ax)^2 = a^2(y^2 + 4a^2)$ (1, 2)3) (1, -2) 4) $(2,\sqrt{2})$ 1)(2,1)3) $(y^2 - 2ax)^2 = 2a^4(y^2 + 4a^2)$ 69. The radical centre of the circles drawn on the focal chords of the parabola $y^2 = 4ax$ as diameters is 4) $(y^2 - 2ax)^2 = 4a^2(y^2 + 4a^2)$ 1)(-a, 0)2)(a, 0)(0, 0)(a, a)59. Locus of mid points of chords of the parabola 70. The locus of point of intersection of two tangents $y^2 = 4ax$ parallel to the line lx + my + n = 0 is

	to $y^2 = 4ax$	att and	2t on the	parabola	is		HINTS
	1. $2y^2 = 9a$	$ax 2. 4y^2$	=9ax			$\ _{2}$	Select the equation of the parabola satisfying the
	3. $3y^2 = 4a$	$ax 4. 3y^2 =$	=8ax			2.	vertex (2, 1).
71.	The area o	ftriangle	formed b	y the tang	gents at the	5.	Let $Q(x_1, y_1)$ be the mid point of \overline{AP}
	points t_1	$t_2''t_3'$ of	$n y^2 = 4a$	<i>IX</i> 18			Q $A = (-2, 0), P = (2x_1 + 2, 2y_1)$
	1) $a^2 (t_1 - t_1) (t_1 - t_2) (t_1 $	$-t_2)(t_2-t_2)$	t_3) $(t_3 - t_1)$)			P lies on $y^2 = 8x + 4y_1^2 = 8(2x_1 + 2)$
	2) $2a^2 (t_1 + t_2) (t_2 + t_2) $	$-t_{2})(t_{2} -$	$(t_3 - t_3)(t_3 - t_3)$	t_1			$y^2 = 4(x+1)$ Focus = $[-1 + 1, 0] = (0, 0)$
	a^2		- / (-			7.	Take the intersection point as one end of latusrectum of the given parabola
	3) $\frac{a}{2} (t_1 - t_2) $	$-t_2)(t_2 -$	$(t_3)(t_3-t_1)$	1)		8.	Take the equation of the parabola in the form
	4) $a^{2} t.t.t.$						(perpendicular distance from $p(x,y)$ to the $axia) = (anoth of laturation) (perpendicular)$
72		opents to	narahal	$12 u^2$	lan have		distance from $p(x,y)$ to the tangent at the vertex)
12.	inclination			a y = 2	auch that	9.	Select the vertex satisfying 2x-y-3=0, x+2y-4=0
		$ans \theta_1$ and $ans \theta_2$	$u = \frac{1}{2} $ WIU			13.	Length of double ordinate is $4\sqrt{aK}$
	$\tan^2 \theta_1 + t$	$an^2 \theta_2 = 0$	k then th	e locus of	i the point		$a = \frac{1}{4}$ (length of latusrectum)
	1) $v = kr$		2)	$v^2 = kr^2$	⊦2ar		K = given distance
	3) $v^2 - 2$	av	 	$w^2 - 2a$	2011	17.	В
73.	The length	of the cho	ord interce	y = 2u	ne parabola		length of the side
	$y = x^2 + 3$	x on the	line $x + y$	v = 5 is			$\frac{30^{\circ}}{1000}$ = $\frac{1}{10000000000000000000000000000000000$
	1) $6\sqrt{2}$	2) $2\sqrt{2}$	$\frac{1}{26}$ 3)	$\sqrt{26}$	4) $4\sqrt{26}$		$\frac{1}{2}$
	,	, _ , _	- ,	• - •	,		$=\frac{1}{2}\cdot\frac{\sqrt{3}}{2}\cdot4=\sqrt{3}$
		K	ΕY				$\mathbf{U} \mathbf{\psi}_2 = \frac{1}{2} x$
	1.2	2.3	3.3	4. 1	5.1	18.	A (0,0)
	6.2	7.1	8.3	9.3	10.1		(18-x, 8)
	11.3	12.3	13.3	14.2	15.3		
	10. 4 21. 2	22.3	23.3	24. 2	20. 2 25. 4		
	26.1	27.2	28.3	29.3	30. 4		(18,12)
	31.2	32.3	33.3	34.2	35.1		24
	36. l 41 4	57.4 47.3	58. I 43-2	39. I 44-2	40. 1 45-2		
	46. 4	47.3	48.3	49. 2	50.3		
	51.2	52.1	53.2	54.2	55.2		(18, 12) and (18-x, 8) lie on $y^2 = 4ax$
	56.4	57.3	58.2	59. 4	60. 1		4a=8
	61.4 66.4	62. 2 67. 3	63. 2 68. 3	04. I 69. 3	03. 1 70. 1		04=8(18-x) x=10
	71.1	72.2	73.1	02.0	, 1	23.	Equation of the parabola is of the form
							$(l^{2} + m^{2}) \left[(x - x_{1})^{2} + (y - y_{1})^{2} \right] = (lx + my + n)^{2}$
							Focus is $(5,3)$ directrix is $3x-4y+1=0$
							Hence axis is $4x+3y=20+9=29$
		20					
ON. IV	IATEMATI					1074	

64.
P
Q
Combined equation of OP and OQ is

$$y^2 + 4ax \left(\frac{lx + my}{+n}\right) = 0$$

Q $P \partial Q = \frac{\pi}{2}$
 $4al + n = 0$
68.
(-2.1)
Select the point satisfying the equation of chord of contact of (-2, 1) w.r.to $y^2 = 4x$
70. Select the equation satisfying the point $[2at^2, 3at]$
LEVEL-3
1. Through the vertex O of the parabola $y^2 = 4ax$ a perpendicular is drawn to any tangent meeting at P and the parabola in Q. Then OP.OQ=
1) a^2 2) $2a^2$ 3) $3a^2$ 4) $4a^2$
2. The length of the portion of the normal at (1, 1) to $x^2 = y$ intercepted between the axes is

1)
$$\frac{5\sqrt{3}}{2}$$
 2) $\frac{3\sqrt{5}}{2}$ 3) $\frac{5\sqrt{3}}{4}$ 4) $\frac{3\sqrt{5}}{4}$

3. Three normals are drawn from the point (c, 0) to the parabola $y^2 = x$. One normal is always x axis. If the other two normals are perpendicular then the value of c is

1)
$$\frac{3}{5}$$
 2) $\frac{2}{3}$ 3) $\frac{3}{4}$ 4) $\frac{5}{7}$

4. The normal at P(2, 4) to $y^2 = 8x$ meets the parabola at Q. Then the equation of the circle on normal chord PQ as diameter is

1)
$$x^2 + y^2 - 20x + 8y - 12 = 0$$

- 2) $x^{2} + y^{2} 10x + 4y 8 = 0$ 3) $x^{2} + y^{2} - 12x + 6y - 15 = 0$ 4) $x^{2} + y^{2} - 10x + 8y - 12 = 0$
- 5. PQ is a normal chord of the parabola $y^2 = 4ax$ at $P(at^2, 2at)$. Then the axis of the parabola divides \overline{PQ} in the ratio

1)
$$\frac{t^2}{t^2+2}$$
 2) $\frac{t^2}{t^2-2}$ 3) $\frac{2t^2}{t^2-2}$ 4) $\frac{t^2}{2(t^2-2)}$

6. S is the focus of the parabola $y^2 = 8x$. P is a point on the parabola. The normal at P meets the axis in G. If SPG is an equilateral triangle then P is

1)
$$(6, 4\sqrt{3})$$
 2) $(8, 8)$ 3) $(4, 4\sqrt{2})$ 4) $(3, 2\sqrt{3})$

7. If the common tangent to the parabola $y^2 = 4ax$ and the circle $x^2 + y^2 = c^2$ makes an angle θ with x axis then $\tan^2 \theta =$

1)
$$-\frac{1}{2} - \frac{\sqrt{c^2 + 4a^2}}{2c}$$
 2) $-\frac{1}{2} + \frac{\sqrt{c^2 + 4a^2}}{2c}$
3) $-\frac{1}{4} + \frac{\sqrt{c^2 + 4a^2}}{2c}$ 4) $-\frac{1}{4} - \frac{\sqrt{c^2 + 4a^2}}{2c}$

The locus of point of intersection of the two tangents to the parabola $y^2 = 4ax$ which intercept a given distance 4c on the tangent at the vertex is

1)
$$y^{2} - 4ax = \frac{c^{2}}{4}$$

2) $y^{2} - 4ax = 8c^{2}$
3) $y^{2} - 4ax = \frac{c^{2}}{2}$
4) $y^{2} - 4ax = 16c^{2}$

9. Through the vertex A of the parabola $y^2 = 4ax$ chords AP and AQ are drawn at right angles to one another. Then the line PQ meets the axis in a fixed point with coordinates

1)
$$(3a, 0)$$
 2) $(2a, 0)$ 3) $(6a, 0)$ 4) $(4a, 0)$

10. Through the vertex O of the parabola $y^2 = 4ax$ chords OP, OQ are drawn at right angles to each other. If the locus of mid points of these chords is a parabola then its vertex is

1) (4a, 0) 2) (2a, 0) 3) (a, 0) 4) (3a, 0) 11. P is a point on the line lx + my + n = 0. The polar of P w.r.to the parabola $y^2 = 4ax$ meets the curve in Q and R. Then the locus of mid point of QR is

1)
$$l(y^2 - 4ax) + 2a(lx + my + n) = 0$$

2)
$$l(y^2 - 4ax) + 4a(mx + ly + n) = 0$$

SR. MATHEMATICS

8.

3)
$$(ly^2 - 2ax) + a(lx + my + n) = 0$$

4) $l(y^2 - 2ax) + 8a(lx + my + n) = 0$
12. The locus of mid points of normal chords of the parabola $y^2 = 4ax$ is
1) $\frac{y^2}{2a} - \frac{4a^2}{y^2} = x + 2a$ 2) $\frac{y^2}{2a} + \frac{4a^2}{y^2} = x - 2a$
3) $\frac{y^2}{2a} - \frac{4a^2}{y^2} = x + 2a$ 2) $\frac{y^2}{2a} - \frac{4a^2}{y^2} = x - 2a$
3) $\frac{y^2}{2a} - \frac{4a^2}{y^2} = x + 2a$ 2) $\frac{y^2}{2a} - \frac{4a^2}{y^2} = x - 2a$
13. A variable chord PQ of the parabola $y^1 = 4ax$ is
drawn parallel to $y = x$. Then the locus of point of
intersection of normals at P and Q is
1) $2x - y - 12a = 0$ 2) $2x - y + 10a = 0$
3) $2x - y - 8a = 0$ 4) $2x - y + 6a = 0$
14. Three normals make complimentary
angles with the axis then the equation to the locus
of P is
1) $y^2 - a(x - 3a)$ 2) $y^2 - a(x - 2a)$
3) $y^2 = 2a(x - a)$ 4) $y^2 - a(x - a)$
3) $y^2 = 3a(x - a)$ 4) $y^2 - a(x - a)$
1) $\frac{1}{2}$ 2) $-\frac{1}{2}$ 3) $\sqrt{2}$ 4) $\frac{2}{3}$
16. The locus optionic fintersection of two normals
drawn to the parabola $y^2 = 4ax$ which are at right
angles is
1) $y^2 - a(x - 3a)$ 2) $y^2 - a(x - a)$
3) $y^2 = 3a(x - 2a)$ 4) $y^2 = 2a(x - 2a)$
KEV
1. 4 2. 2 3. 3 4. 1 5. 1
6. 1 7. 2 8. 4 9. 4 10. 1
11. 1 12. 2 13. 1 14. 4 15. 3
16. 1
NPQ: PRABOLA
1. For the given curve $y^2 = 8x$
1. Length of the lats verturent 8
1. Focal distance to the points (1, 4) then the solue of the line
 $x - 2y + 3 = 0$ with respect to $y^2 = 4x$ is
1) $\frac{-1}{2} \cdot 1.4$ 2) $\frac{1}{2} - \frac{1}{2} \cdot 1.4$
3) $4 \cdot \frac{1}{2} - \frac{1}{2}$ 4) $\frac{1}{2} - \frac{1}{2} \cdot 4$.

) and $Q = (x_2, y_2)$ where $P(at_1^2, 2at_1)$ and presents a focal chord then owing statements ic correct 2) Only II 4) Neither I nor II e end of a focal chord of the x then the slope of it is $x^2 = py$ passes through al distance of the point a $y^2 = kx$ passes through (9,6) 'k' of the point on the parabola ordinate is three times its order of the value of the in the decending order 2) B,D,A,C 4) A,B,C,D alues of the statements given ler are le between the two tangents the points (1, 4) then $\tan \theta =$ e end of focal chord ola $y^2 + 4x + 4y = 0$ then the al at Q is. (P, 6) are conjugate points $x^2 = 16x$ then the value of p is e pole of the line ith respect to $y^2 = 4x$ is 2) $\frac{1}{2}, -\frac{1}{2}, 1, 4$ 4) $\frac{1}{2}, -\frac{1}{2}, 4, 1$

4) All the three

		11					
5.	Observe the following lists:	_		-			
	List I]	List - 1	Ι			
А.	$y = \sqrt{x}$ represents	1	1. b - 2	2ax = 0			
В.	If $2x + y + a = 0$ is a focal chord		2. $\frac{\pi}{2}$				
	of the parabola $v^2 = -8x$ then a =		2				
C.	The angle subtended by the double ordinate of the length of the parabola		3.Semi	parabo	la		
	$y^2 = 8x$ at its vertex is						
D.	The axis of the symmetry of the conic	4	4.4				
	$y = ax^2 + bx + c$ is	4	5. $b + 2$	2ax = 0			
	·						
	The correct Match for List I from List II i	s:			_	-	
	A B C D		•	A	B	Ç	
	1. 3 4 5 2	4	2. 4	3	1	2	$\frac{2}{5}$
6	3. 3 4 1 $2Observe the following Lists:$	2	4.	3	4	Ζ	3
0.	List I	1	List	тт			
	$\mathbf{LISt} = \mathbf{I}$	I	List -	11			
	A. If the parabola $y^2 = 4ax$ passes through						
	(-3,2) then the length of the latus rectum	is 1	1. Para	bola			
	x 4						
	B. The equation $\frac{-+-=0}{y}$ represents	2	2. $2x - $	-9 = 0			
			_				
	C. If the parabola $y^2 = 4ax$ passes through		3.x-2	y + 1 =	0		
	(2,-6) then the equation of the latus rectumes	n i:					
	D.Equation of the tangent to $x^2 - 4x - 8y + 12 =$	= 0 4	4. ellips	se			
	at $(4,3/2)$ is		_				
			4				
		-	5. $\frac{1}{3}$				
	Correct matching of List I from List II ite	ms	-				
	A B C D		_	A	B	C	D
	1. 5 1 3 2	2	2.	5	1	2	3
	3. 5 1 4 3	2	4.	1	2	3	4
7.	Observe the following Lists:						
			r• / 1	т			
	List - I	1	List - I	1			
	A. Length of the latus rectum of the parabola	_	1.(5,2)	2)			
	$3y^2 = -4x$						
	D Equation of the name halo where forms (0)	4)	$-\frac{-4}{-1}$				
	b. Equation of the parabola whose focus (0,	7) 4	2. 3				
	and directrix $x + 4 = 0$ is						
	C. The focus of the parabola $(v-2)^2 = 8(r-3)^2$) i:	$3.\frac{4}{-}$				
	D Equation of the parabola whose vertex	, ·	3				
	(-1, -2) latus rectum 4 and avis is normalial	,	1 ($)^{2} - A(-$, , 2)		
	to v-axis	2	T•(1 +]) - +()	/ + 4)		
	,		5. $x^2 =$	=16 <i>y</i>			
	The connect match for I ist I from I int II			-			
	$\frac{1}{4} = \frac{1}{8} \frac{1}{1000} $			A	R	C	מ
		-	2	3	5		1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	∠. ∕I	5 1	2	т 2	<u>і</u> Л
	5. 5 2 1 4	2	╅.	1	2	3	7

SP M	ATHEMATICS 3	37					٨
	D. Number of tangents from (1,3)		4.	1	4	5	3
	D. Focal distance of (1,4) C. Number of tangents from (1.5)		3.	3	4	5	1
	A. Length of the tangent from $(1,3)$ B. Focal distance of $(1,4)$		2.	3	5	4	1
	A Length of the tangent from (1.5)		1.	2	4	3	1
15.	for the parabola $y^2 = 16x$			A	B	С	D
13.	Arrange the following numbers in ascending order		The corr	rect match	for List	- I from Li	st - II is
	$\begin{array}{ccc} 1) \mathbf{B}, \mathbf{D}, \mathbf{C}, \mathbf{A} \\ 3) \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{B} \\ \end{array} \qquad \begin{array}{c} 2) \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \\ 4) \mathbf{A} \mathbf{D} \mathbf{C} \mathbf{B} \\ \end{array}$				5	x + y = 0	
	C) $x = 2y^2 + y + 3$ D) $y^2 + x + y + 9 = 0$		D. $x^2 -$	3y - 9 = 0	4	. y = 0	
	A). $y = 4x^2 + x + 1$ B) $2y = x^2 + x + 5$		C. $y^2 +$	2x - 4 = 0	3	x - 2 = 0	
	ascending order of their latusrecta $A = \frac{1}{2} + 1$		B. $x^2 + 1$	2y = 0	2	. x = 0	
12.	The arrangement of the following parabolas in the		A: $y^2 =$	8 <i>x</i>	1	. y+3 = 0	
	1) only I2) only II3) both I and II4) neither I nor II		to the fol	lowing para	lbolas		
	Which of the above statements is correct?		tangent	1			5
	k = 1.		Locus of	foot of the 1	r perpend	licular from	focus to any
	II. If the line $x + y + k = 0$ touches $y^2 = 4x$ then	16.	Ubserve	the follows	ing List T	ts Jist - II	
	$y^2 = 8x$ then $\theta = 120^\circ$		4.	4	2	1	5
	1. If the line $x\cos\theta + y\sin\theta = 3$ touches		3.	1	3	2	4
1.1	3) Both I and II 4) neither I nor II		2.	3	2	2 1	5
	1) only I 2) only II		1	A 5	В 3	<i>C</i> 2	D 1
	Which of the above statements is correct?		The corr	rect match	for List	t - I from Li	st - II
	and $x^2 = -108y$ is $2x - 3y + 36 = 0$				5	$\cdot x = ka$	
	II: Common tangent to the parabolas $y^2 = 32x$		locus of	P is	4	xy = k	
	and $x^2 = 108y$ is $2x + 3y + 36 = 0$	D.	$\tan \alpha$ ta	$\mathbf{n}\boldsymbol{\beta}=k,$			
10.	I. Common tangent to the parabolas $y^2 = 32x$		locus of	P is	3	kx = y	
	1) Only I2) only II3) Both I and II4) neither I nor II	С.	$\tan(\alpha +$	$-\beta)=k$,			
	Which of the above statements is correct?		locus of	<i>P</i> is	2	y = k(x - x)	-a)
	which of the above statements ic correct?	B.	tan α +	P^{1S} $\tan\beta = k,$	1	$\cdot kx = a$	
	I: Length of the subtangent is twice the abscissa	A.	$\cot \alpha \cot \alpha$	$\beta = k$,	1	7	
9	At any point on the parabola $y^2 = 4 ay$.	List - I			List - II	
	3) A is true but R is false 4) A is false but R is True		"P" to th	ne paraboal	a $y^2 =$	4ax	
	explanation of A		axis of th	ne parabola	u drawn	from the p	oint
	2) Both A and R are true and R is not correct	15.	α,β are	e the angles	made b	y the tange	nts with the
	1) both A and R are true and R is the correct symplemetries of A		3) B.A.(C,D	2 4	C, B, A, D C, A, D, B	
	$x - \sqrt{3}y + 6 = 0$		decendin	ng order is \Box	r		
	inclined at an angle 30° to the axis is		tangents	then the ar	rangem	nent of A,B	,C,D in the
	Reason (R): Equation of the tangent to $y^2 = 8x$		y = x +	B, y = 3x +	- <i>C</i> , <i>y</i> =	=-4x+D	are the
	the parabola $3y^2 = 4x$ then $K = 5$	14.	For the p	ر parabola	$c^2 = 8y$	$, y = 2x + \lambda$	4
8.	Assertion (A): If the line $x - 3y + k = 0$ touches		3) A,C,I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4) D,C,B,A	
8	Assertion (A): If the line $x = 3y + k = 0$ touches		1)B.A.0	C.D	2	D.C.A.B	

17.	Assertion A: Orthocentre of the triangle formed		2003
	by any three tangents to the parabola lies on the	3.	The equation of the parabola with focus $(0,0)$ and
	directrix of the parabola.		directrix $x + y = 4$ is
	hy the tangents at t_{i} t_{i} to the parabola		1) $x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$
	by the tangents at t_1, t_2, t_3 to the parabola $x^2 = 4\pi i s \left(-a a(t + t + t + t t t)\right)$		2) $x^2 + y^2 - 2xy + 8x + 8y = 0$
	$y = 4ax$ is $(-a, a(i_1 + i_2 + i_3 + i_1i_2i_3))$ 1) Both A and R are true and R is the correct		3) $x^2 + y^2 + 8x + 8y - 16 = 0$
	explanation of A		4) $x^2 - y^2 + 8x + 8y - 16 = 0$
	2) Both A and R are true and R is not the correct		2002
	explanation of A	4.	A variable circle passes through the fixed point
	3) A is true but R is false (1) A is false but P is true		(2, 0) and touches the y axis. Then the locus of its
18	4) A is faise but K is true Assertion A: The least length of the focal chord of		centre 1s
10.	r^2 $4r^2$ $4r^2$		3) an ellipse 4) a hyperbola
	y = 4dx is 4a	5.	Equation of the parabola with focus (3, 0) and the
	Reason R: Length of the focal chord of $y^2 = 4ax$		directrix x+3=0 is
	makes an angle θ with its axis is $4a\cos ec^2\theta$		1) $y^2 = 3x$ 2) $y^2 = 6x$ 3) $y^2 = 12x$ 4) $y^2 = 2x$
	1) Both A and R are true and R is the correct	6.	Locus of the poles of focal chords of a parabola is
	explanation of A 2) Both A and R are true and R is not the correct		1) the axis 2) of focal short
	explanation of A		3) the directrix
	3.) A is true but R is false 4) A is false but R is true		4) the tangent at the vertex
	KEY		2001
		7.	The length of latusrectum of the parabola
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$y^2 + 8x - 2y + 17 = 0$ is
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1) 2 2) 4 3) 8 4) 16
	16) 1 17) 1 18) 1	8.	If the normal to the parabola $y^2 = 4x$ at P(1, 2)
	DEVICUS E A MOET EV A MINATIONS		meets the parabola again in Q then $Q =$
	PREVIOUS EAVICE I EXAMINATIONS		$\begin{array}{cccc} 1) (-6, 9) & 2) (9, -6) \\ 2) (0, 6) & 4) (-6, 0) \end{array}$
	2005	9	The equation $4(-0, -3)$
1.	The parabola with directrix $x + 2y - 1 = 0$ and		$16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0$ represents
	focus (1,0) is		1) a circle 2) a parabola
	1) $4x^2 - 4xy + y^2 - 8x + 4y + 4 = 0$		3) an ellipse 4) a hyperbola
	2) $4x^2 + 4xy + x^2 = 8xy + 4xy + 4 = 0$		2000
	2) $4x^{2} + 4xy + y^{2} - 8x + 4y + 4 = 0$ 2) $4x^{2} + 4xy + x^{2} + 8x - 4x + 4 = 0$	10.	The vertex of the parabola $x^2 + 8x + 12y + 4 = 0$ is 1) (4, 1) 2) (4, 1) 2) (4, 1) (4, 1)
	3) 4x + 4xy + y + 8x - 4y + 4 = 0	11	1) $(-4, 1)$ 2) $(4, -1)$ 3) $(-4, -1)$ 4) $(4, 1)$ The line $4x + 6x + 0 = 0$ to us has the membrals -2
	4) $4x^2 - 4xy + y^2 - 8x - 4y + 4 = 0$	11.	at the point $y^{-1} = 4x$
	2004		1) $\left(-3,\frac{9}{4}\right)$ 2) $\left(3,\frac{-9}{4}\right)$
<i>∟</i> .	have also been used as the parabola $y^2 = 4 a y$ is		
	parabola $y = 4ax$ is 1) $x + mv - am^2 = 0$ 2) $x - mv + am^2 = 0$		$3)\left(\frac{9}{4},-3\right) \qquad \qquad 4)\left(\frac{-9}{4},-3\right)$
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		1999
	3) $x + my - am^2 = 0$ 4) $y + mx + am^2 = 0$	12.	Vertex of the parabola $x^{2} + 12x - 9y = 0$ is 1) (6, 4) 2) (6, 4) 2) (6, 4) (6, 4)
			1)(0, -4) 2)(-0, 4) 3)(0, 4) 4)(-0, -4)

338

13.	If $2y=5x+k$ is a tangent to the parabola $y^2 = 6x$		1994
	then k =	26.	The tangents at the points $(at_1^2, 2at_1)(at_2^2, 2at_2)$ or
	1) $\frac{2}{5}$ 2) $\frac{3}{5}$ 3) $\frac{4}{5}$ 4) $\frac{6}{5}$		the parabola $y^2 = 4ax$ are at right angles then
14.	The focus of the parabola $v^2 - 4v - 8x - 4 = 0$ is		1) $t_1t_2 = -1$ 2) $t_1t_2 = 1$ 3) $t_1t_2 = 2$ 4) $t_1t_2 = -2$
	1) (1, 1) 2) (1, 2) 3) (2, 0) 4) (2, 2)	27	1993 The focus of the parabola $y^2 - x - 2y + 2 = 0$ is
15.	1998 The pole of the line $2x+3y-4=0$ w.r.to the parabola	27.	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 (1 \\ 0 \end{pmatrix} = 0 (1 \\ 0 \end{pmatrix} = 0 (1 \\ 0 \\ 0 \end{pmatrix} = 0 (1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
	$y^2 = 4x$ is		1) $\left(\frac{1}{4}, 0\right)$ 2) (1, 2) 3) $\left(\frac{1}{4}, \frac{1}{4}\right)$ 4) $\left(\frac{1}{4}, 1\right)$
16.	1) $(2, 3)$ 2) $(-2, -3)$ 3) $(1, 1)$ 4) $(2, -3)$ Equation of the directrix of the parabola	28.	The parabola $(y+1)^2 = a(x-2)$ passes through (1, 2). Then the equation of dimetrix is
	$y^2 - 2x - 6y - 5 = 0$ is		(1, -2). Then the equation of directrix is 1)4x+1=0 2)4x-1=0 3)4x+9=0 4)4x-9=0
	1) $2x+15=0$ 2) $x+5=0$ 3) $2x+3=0$ 4) $x+2=0$ 1997	29	1992 Two tangents are drawn from the point $(-2, -1)$ to
17.	If $x+y+1=0$ touches the parabola $y^2 = kx$ then the	27.	the parabola $y^2 = 4x$. If α is the angle between
	value of k is (1) (4) (2) (4) (3) (3) (4) (3)		these tangents then $\tan \alpha =$
18.	If the normal at t_1 on the parabola $y^2 = 4ax$ meets		1) 3 2) $\frac{1}{3}$ 3) 2 4) $\frac{1}{2}$
	it again at t_2 then $t_2 =$	30.	An arch is in the shape of a parabola whose axis is
	1) $t_1 + \frac{2}{2}$ 2) $-t_1 - \frac{2}{2}$ 3) $t_1 - \frac{2}{2}$ 4) $-t_1 + \frac{2}{2}$		across the bottom on the ground. Its highest poin
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		is 24 meters. Then the measure of the horizonta
19.	Axis of the parabola $x^2 - 3y - 6x + 6 = 0$ is		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20	1) $x=-3$ 2) $y=-1$ 3) $x=3$ 4) $y=1$	21	1991 Equation of the common tengent to the circle
20.	The equation of the chord of $y^2 = 6x$ with mid point at (-1, 1) is	51.	$x^2 + y^2 = 2a^2$ and the parabola $y^2 = 8ax$ is
	1) $y-3x=4$ 2) $y-3x+4=0$ 2) $2x = x = 0$ 4) $2x = x = 1 = 0$		1) $y = \pm (x+2a)$ 2) $y = \pm (x-2a)$
21.	The point of contact of the line $2x-y+2=0$ with the		3) $y = \pm (x+a)$ 4) $y = \pm (x-a)$
	parabola $y^2 = 16x$ is	32.	On the parabola $y^2 = 8x$ if one extremity of a foca
	1. (2, 4) 2. (3, 4) 3. (1, 4) 4. (-2, 1) 1995		chord is $\left(\frac{1}{2}, -2\right)$ then its other extremity is
22.	The tangents to the parabola $y^2 = 4ax$ at t_1 and t_2		(2)
	intersects on its axis then 1) $t = t$ 2) $t = t$ 3) $tt = 2$ 4) $tt = 1$		1) (2,2) 2) $\left(\frac{1}{8}, -8\right)$ 3) $\left(\frac{8}{8}, \frac{1}{8}\right)$ 4) (8,8)
23.	If the polar w.r.to the circle $x^2 + v^2 = r^2$ touches	33.	The graph represented by the equation $x = \sin^2 t$
	the parabola $y^2 = 4ax$ the locus of the pole is		$y = 2\cos t$ is 1) a portion of a parabola 2) a parabola
	1) $v^2 = \frac{-r^2}{r}r$ 2) $r^2 = \frac{-r^2}{r}v$	E	3) a part of sine graph 4) a part of hyperbola
	$\begin{array}{c} 1 \end{pmatrix} y = \begin{array}{c} x \\ a \end{array} \begin{array}{c} 2 \end{pmatrix} x = \begin{array}{c} y \\ a \end{array}$		Example 1 For the Perphase $x^2 + (x - 2x + 5 - 0)$
	3) $y^2 = \frac{r^2}{a}x$ 4) $x^2 = \frac{r^2}{a}y$	54.	For the ratio of a y + 6y - 2x + 5 = 0 D The vertex is (-2, -3)
24.	Combined equation of pair of tangents to the pa-		I) The directrix is $y + 3 = 0$
	rabola $y^2 = 4ax$ from an external point $A(x_1, y_1)$ is		Which of the follwoing is correct? E-2007
	1) $(y^2 - 4ax)(y_1^2 - 4ax_1) = (yy_1 - 2ax - 2ax_1)^2$		1) Both I and II are true 2) I is true, II is false 3) I is false II is true 4) Both I and II are false
	2) $y^2 - 4ax = (yy_1 - 2ax - 2ax_1)^2$		KEY
	3) $y^2 - 4ax = (yy_1 - 2ax_1)^2$ 4) None of these	1.1 7.3	2.2 3.1 4.1 5.3 6.3 8.2 9.2 10.1 11.3 12.4
25.	If PSP' is a focal chord of the parabola $y^2 = 4ax$ and	13.4	14. 2 15. 2 16. 1 17. 2 18.2
	SL is its semilatusrectum then SP, SL, SP' are in 1) AP 2) HP 3) GP 4) None	19.3 25.2	20.1 21.3 22.2 23.1 24.1 26.1 27.4 28.4 29.1 30.4
	, _, , _, , ,,,,,,,,,,,,,,,,,,,,	31.1	32.4 33.2 34.2
SP M		20	