Exercise 13.3

Question :1 Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area.

Solution:

Radius (r) of the base of cone = $\frac{10.5}{2}$

= 5.25 cm

Slant height (1) of cone = 10 cm

CSA of cone = π rl

$$=\frac{22}{7}\times5.25\times10$$

$$=22\times0.75\times10$$

 $= 165 \text{ cm}^2$

Therefore, the curved surface area of the cone is 165 cm²

Question :2 Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m

Solution: Radius (r) = $\frac{24}{2}$ = 12 m

Slant height (1) = 21 m

TSA of cone = $\pi r(r+1)$

$$=\frac{22}{7}\times 12\ (12+21)$$

$$=\frac{22}{7}\times12\times33$$

$$= 3.14 \times 396$$

$$= 1243.44 \text{ m}^2$$

Question :3 The curved surface area of a cone is 308 cm² and its slant height is 14 cm. Find (i) radius of the base and (ii) total surface area of the cone.

Solution:

(i) Slant height (l) of cone = 14 cm

Let the radius of the circular end of the cone be "r".

CSA of cone = π rl

$$308 \text{ cm}^2 = \frac{22}{7} \times r \times 14$$

$$r = \frac{308}{44}$$

$$=7$$
 cm

Therefore, the radius of the circular end of the cone is 7 cm.

(ii) The total surface area of cone = CSA of cone + Area of base

$$=\pi rl + \pi r^2$$

=
$$[308 + \frac{22}{7} \times (7)^2]$$
 cm²

$$= (308 + 154) \text{ cm}^2$$

$$= 462 \text{ cm}^2$$

Therefore, the total surface area of the cone is 462 cm²

Question :4 A conical tent is 10 m high and the radius of its base is 24 m. Find

- (i) Slant height of the tent.
- (ii) Cost of the canvas required to make the tent, if the cost of 1 m² canvas is Rs 70

Solution: (i) Let ABC be a conical tent.

Height (h) of conical tent = 10 m

Radius (r) of conical tent = 24 m

Let the slant height of the tent be 1.

In $\triangle ABO$,

$$AB^2 = AO^2 + BO^2$$

$$l^2 = h^2 + r^2$$

$$= (10 \text{ m})^2 + (24 \text{ m})^2$$

$$= 676 \text{ m}^2$$

$$1 = 26 \text{ m}$$

(ii) CSA of tent =
$$\pi r l$$

$$=\frac{22}{7}*24*26$$

$$=\frac{13728}{7}$$
 m²

Cost of $1 \text{ m}^2 \text{ canvas} = \text{Rs } 70$

So, cost of
$$\frac{13728}{7}$$
 m² canvas = $(\frac{13728}{7}$ m² * 70)

$$= Rs 137280$$

Question :5 What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (Use $\pi = 3.14$)

Solution:

To Find: Length of Tarpaulin

Concept Used:

Curved Surface Area of Cone = π rl

Diagram:

Height (h) = 8m

Radius (r) = 6m

Now, we know that,

According to Pythagoras theorem, 12 = r2 + h2

$$\Rightarrow 12 = 62 + 82$$

$$\Rightarrow 12 = (62 + 82)$$

$$\Rightarrow 12 = 36 + 64$$

$$\Rightarrow 12 = 100$$

$$\Rightarrow 1 = \sqrt{100} = 10 \text{ m}$$

Therefore, slant height of the conical tent = 10 m.

CSA of conical tent = π rl

$$= \pi \times 6m \times 10m$$

$$= 3.14 \times 6m \times 10m$$

$$= 188.4 \text{ m}^2$$

Now, Let the length of tarpaulin sheet required be "x" m

As 20 cm will be wasted, therefore, the effective length will be = (x - 20 cm) = (x - 0.2 m)

Breadth of tarpaulin = 3 m

Area of sheet = CSA of tent

$$\Rightarrow$$
 [(x - 0.2 m) × 3] m = 188.4 m²

$$\Rightarrow x - 0.2 \text{ m} = \frac{188.4}{3}$$

$$\Rightarrow$$
 x $- 0.2$ m $= 62.8$ m

$$\Rightarrow$$
x = 63 m

Therefore, the length of the required tarpaulin sheet will be 63 m.

Question :6 The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of Rs 210 per 100 m²

Solution:

Slant height (1) of conical tomb = 25 m

Base radius (r) of tomb = $\frac{14}{2}$

$$=7 \text{ m}$$

CSA of conical tomb = π rl

$$=\frac{22}{7}*7*25$$

$$= 550 \text{ m}^2$$

Cost of white-washing 100 m^2 area = Rs 210

Cost of white-washing 550 m² area = Rs ($\frac{210*550}{100}$)

$$= Rs. 1155$$

Therefore, it will cost Rs 1155 while white-washing such a conical tomb.

Question :7 A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.

Solution: Radius (r) = 7cm

Height (h) = 24 cm

Slant height (1) = $\sqrt{7 * 7 + 24 * 24}$

- $=\sqrt{625}$
- =25m

CSA (1 conical cap) = $\pi r l$

$$= \left(\frac{22}{7} \times 7 \times 25\right)$$

 $= 550cm^2$

CSA of 10 conical caps = (10×550)

 $=5500cm^{2}$

Question :8 A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height1 m. If the outer side of each of the cones is to be painted and the cost of painting is Rs 12 per m², what will be the cost of painting all these cones? (Use $\pi = 3.14$ and take $\sqrt{1.04} = 1.02$)

Solution:

Radius (r) =
$$\frac{40}{2}$$
 = 20 cm
= 0.2 m
Height (h) = 1 m
Slant height (l) = $\sqrt{1 * 1 + 0.2 * 0.2}$

$$=\sqrt{1.04}$$

$$= 1.02 \text{ m}$$

Curved Surface Area = πrl

$$= (3.14 \times 0.2 \times 1.02) \text{ m}^2$$

$$= 0.64056 \text{ m}^2$$

$$CSA (50 cones) = 0.64056 * 50$$

$$= 32.028 \text{ m}^2$$

Cost of painting 1 m^2 area = Rs 12

Cost of painting $32.028 \text{ m}^2 \text{ area} = \text{Rs} (32.028 \times 12)$

- = Rs 384.336
- = Rs 384.34 (approximately)

Therefore, it will cost Rs 384.34 in painting 50 such hollow cones.