# EXERCISE-4 (A)

**Question 1:** State, true or false: (i)  $x < -y \Rightarrow -x > y$ (ii)  $-5x \ge \Rightarrow x \ge -3$ (iii)  $2x \le -7 \Rightarrow \frac{2x}{-4} \ge \frac{-7}{-4}$ (iv)  $7 > 5 \Rightarrow \frac{1}{7} < \frac{1}{5}$ **Solution 1:** (i)  $x < -y \Rightarrow -x > y$ The given statement is true. (ii)  $-5x \ge 15 \Rightarrow \frac{-5x}{5} \ge \frac{15}{5} x \le -3$ The given statement is false (iii)  $2x \le -7 \Rightarrow \frac{2x}{-4} \ge \frac{-7}{-4}$ The given statement is true (iv)  $7 > 5 \Rightarrow \frac{1}{7} < \frac{1}{5}$ The given statement is true. **Question 2:** (i)  $a < b \Rightarrow a - c < b - c$ (ii) If  $a > b \Rightarrow a + c > b + c$ (iii) If  $a < b \Rightarrow ac < bc$ 

- (iv) If  $a > b \Rightarrow \frac{a}{c} > \frac{b}{c}$
- (v) If  $a c > b d \Rightarrow a + d > b + c$ (vi) If  $a < b \Rightarrow a - c < b - c$  (Since, c > 0)
- Where a, b, c and d are real numbers and  $c \neq 0$ .

#### **Solution 2:**

- (i)  $a < b \Rightarrow a c < b c$ The given statement is true.
- (ii) If  $a > b \Rightarrow a + c > b + c$ The given statement is true.

(iii) If 
$$a < b \Rightarrow ac < bc$$
  
The given statement is false.

(iv) If  $a > b \Rightarrow \frac{a}{c} > \frac{b}{c}$ The given statement is false. (v) If  $a - c > b - d \Rightarrow a + d > b + c$ The given statement is true.

(vi) If  $a < b \Rightarrow a - c < b - c$  (Since, c > 0) The given statement is false.

# **Question 3:**

If  $x \in N$ , find the solution set of in-equations. (i)  $5x + 3 \le 2x + 18$ (ii) 3x - 2 < 19 - 4xSolution 3: (i)  $5x + 3 \le 2x + 18$   $5x - 2x \le 18 - 3$   $3x \le 15$   $X \le 5$ Since,  $x \in N$ , therefore solution set is {1,2,3,4,5} (ii) 3x - 2 < 19 - 4x3x + 4x < 19 + 2

3x + 4x < 19 + 2 7x < 21 X < 3Since,  $x \in N$ , therefore solution set is {1,2}.

# **Question 4:**

If the replacement set is the set of whole numbers, solve:

(i)  $x + 7 \le 11$ (ii) 3x - 1 > 8(iii) 8 - x > 5(iv)  $7 - 3x \ge -\frac{1}{2}$ (v)  $x -\frac{3}{2} < \frac{3}{2} - x$ (vi)  $18 \le 3x - 2$ Solution 4: (i)  $x + 7 \le 11$   $X \le 11 - 7$   $X \le 4$ Since, the replacement set = W (set of whole numbers)  $\Rightarrow$  Solution set = {0,1,2,3,4}

(ii) 3x - 1 > 83x > 8 + 1X > 3 Since, the replacement set = W (Set of whole numbers)  $\Rightarrow$  Solution set = {4, 5, 6.....} (iii) 8 - x > 5-X > 5 - 8-X >-3 X < 3 Since, the replacement set = W (Set of whole numbers)  $\Rightarrow$  Solution set = {0, 1, 2 .....} (iv)  $7 - 3x \ge -\frac{1}{2}$  $-3x \ge -\frac{1}{2} - 7$  $-3x \ge -\frac{15}{2}$  $X \leq \frac{5}{2}$ Since, the replacement set = W (set of whole numbers)  $\therefore$  Solution set = {0, 1, 2} (v)  $X - \frac{3}{2} < \frac{3}{2} - x$  $x + x < \frac{3}{2} + \frac{3}{2}$ 2x < 3  $X < \frac{3}{2}$ Since, the replacement set = W (set of whole numbers)  $\therefore$  Solution set = {0, 1} (vi)  $18 \le 3x - 2$  $18 + 2 \le 3x$  $20 \le 3x$  $X \ge \frac{20}{3}$ Since, the replacement set = W (set of whole numbers)  $\therefore$  Solution set = {7, 8, 9....}

Question 5: Solve the in-equation:  $3 - 2x \ge x - 12$  given that  $x \in N$ Solution 5:  $3 - 2x \ge x - 12$   $\begin{array}{l} - & 2x - x \ge -12 - 3 \\ - & 3x \ge -15 \\ X \le 5 \\ \text{Since, } x \in N, \text{ therefore,} \\ \text{Solution set} = \{1, 2, 3, 4, 5\} \end{array}$ 

#### **Question 6:**

If  $25 - 4x \le 16$ , find: (i) the smallest value of x, when x is a real number, (ii) the smallest value of x, when x is an integer. Solution 6:  $25 - 4x \le 16$   $- 4x \le 16 - 25$   $- 4x \le -9$   $X \ge \frac{9}{4}$   $X \ge 2.25$ (i) The smallest value of x, when x is a real number, is 2.25.

(ii) The smallest value of x, when x is an integer, is 3.

# **Question 7:**

If the replacement set is the set of real number, solve:

(i)  $4x \ge -16$ (ii)  $8 - 3x \le 20$ (iii)  $5 + \frac{x}{4} > \frac{x}{5} + 9$ (iv)  $\frac{x+3}{8} < \frac{x-3}{5}$ Solution 7: (i)  $-4x \ge -16$   $X \le 4$ Since, the replacement set of real numbers.  $\therefore$  solution set = {  $x:x \in \mathbb{R}$  and  $x \le 4$ } (ii)  $8 - 3x \le 20$   $- 3x \le 20 - 8$   $- 3x \le 12$   $X \ge -4$ Since the replacement set of real numbers.  $\therefore$  solution set = {  $x:x \in \mathbb{R}$  and  $x \le -4$ } (iii)  $5 + \frac{x}{4} > \frac{x}{5} + 9$ 

| x x > 0 F                                             |
|-------------------------------------------------------|
| $\frac{1}{4} = \frac{1}{5} > 9 = 5$                   |
| $\frac{x}{2} > 4$                                     |
| 20 - 1                                                |
| X > 80                                                |
| Since the replacement set of real numbers.            |
| $\therefore$ solution set = { x:x $\in$ R and x > 80} |
|                                                       |
| (iv) $\frac{x+3}{2} < \frac{x-3}{5}$                  |
| $5^{\circ} 8 = 5^{\circ}$                             |
| 5x + 15 < 0x - 24                                     |
| 5x - 8x < -24 - 15                                    |
| -3x < -39                                             |
| X > 13                                                |
| Since the replacement set of real numbers.            |
| $\therefore$ solution set = { x:x $\in$ R and x > 13} |

### **Question 8:**

Find the smallest value of x for which 5 –  $2x < 5\frac{1}{2} - \frac{5}{3}x$ , where x is an integer.

# **Solution 8:**

5 - 2x < 5 $\frac{1}{2}$  -  $\frac{5}{3}x$ -2x +  $\frac{5}{3}x < \frac{11}{2}$  - 5  $\frac{-x}{3} < \frac{1}{2}$ -x <  $\frac{3}{2}$ X >  $\frac{-3}{2}$ X > -1.5 Thus, the required smallest value of x is -1.

#### **Question 9:**

Find the largest value of x for which  $2(x - 1) \le 9 - x$  and  $x \in W$ . Solution 9:  $2(x - 1) \le 9 - x$   $2x - 2 \le 9 - x$   $2x + x \le 9 + 2$   $3x \le 11$   $x \le \frac{11}{3}$   $X \le 3.67$ Since,  $x \in W$ , thus the required largest value of x is 3.

# Question 10: Solve the in-equation: $12 + 1\frac{5}{6} \times \le 5 + 3x$ and $x \in \mathbb{R}$ . Solution 10: $12 + 1\frac{5}{6} \times \le 5 + 3x$ $\frac{11}{6}X - 3X \le 5 - 12$ $\frac{-7}{6}X \le -7$ $X \ge 6$ $\therefore$ solution set = {x : x \in \mathbb{R} and x \ge 6}

```
Question 11:Given x \in \{\text{Integers}\}, find the solution set of : -5 \le 2x - 3 < x + 2Solution 11:-5 \le 2x - 3 < x + 2\Rightarrow -5 \le 2x - 3\Rightarrow -5 + 3 \le 2x\Rightarrow -2 \le 2x\Rightarrow -2 \le 2x\Rightarrow X \ge -1Since, x \in \{\text{integers}\}\therefore Solution set = \{-1, 0, 1, 2, 3, 4\}
```

```
Question 12:Given x \in \{whole numbers\}, find the solution set of : -1 \le 3 + 4x < 23Solution 12:-1 \le 3 + 4x < 23\Rightarrow -1 \le 3 + 4x\Rightarrow -4 \le 4x\Rightarrow -4 \le 4x\Rightarrow x \ge -1and x < 5Since, x \in \{ Whole numbers\}\therefore solution set = \{0, 1, 2, 3, 4\}
```

### EXERCISE 4(B)





# **Question 2:**

For each graph given alongside, write an in-equation taking x as the variable



Question 3:For the following in-equations, graph the solution set on the real number line:(i)  $-4 \le 3x - 1 < 8$ (ii)  $x - 1 < 3 - x \le 5$ Solution 3:(i)  $-4 \le 3x - 1 < 8$  $-4 \le 3x - 1$ and 3x - 1 < 8 $-1 \le x$ 





#### **Question 4:**

Represent the solution of each of the following in-equalities on the real number line: (i) 4x - 1 > x + 11(ii)  $7 - x \le 2 - 6x$ (iii)  $x + 3 \le 2x + 9$ (iv) 2 - 3x > 7 - 5x(v)  $1 + x \ge 5x - 11$ (vi)  $\frac{2x+5}{3} > 3x - 3$ **Solution 4:** (i) 4x - 1 > x + 113x > 12 X > 4 The solution on number line is: x > 4 -2 -1 -3 -4 ò (ii)  $7 - x \le 2 - 6x$  $5x \leq -5$  $X \leq -1$ The solution on number line is: x ≤-1 -3 -2 6 1 2 3 4 5 -1 (iii)  $x + 3 \le 2x + 9$  $- 6 \leq x$ The solution on number line is:



Question 5:  $X \in \{\text{real numbers}\} \text{ and } -1 < 3 - 2x \le 7 \text{ evaluate } x \text{ and represent it on a number line.}$ Solution 5:  $-1 < 3 - 2x \le 7$   $-1 < 3 - 2x \text{ and } 3 - 2x \le 7$   $2x < 4 \text{ and } -2x \le 4$  $X < 2 \text{ and } x \ge -2$ 

Solution set =  $\{-2 \le x < 2, x \in R\}$ 

Thus, the solution can be represented on a number line as:

 $-2 \le x < 2$ 



# **Question 6:**

List the elements of the solution set of the in-equation  $-3 < x - 2 \le 9 - 2x$ ;  $x \in N$ . Solution 6:  $-3 < x - 2 \le 9 - 2x$  -3 < x - 2 and  $x - 2 \le 9 - 2x$  -1 < x and  $3x \le 11$  $-1 < x \le \frac{11}{3}$ 

Since,  $x \in N$  $\therefore$  Solution set = {1, 2, 3}

# **Question 7:**

Find the range of values of x which satisfies  $-2\frac{2}{3} \le x + \frac{1}{3} < 3\frac{1}{3}, x \in \mathbb{R}.$ Graph these values of x on the number line. Solution 7:  $-2\frac{2}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < 3\frac{1}{3}$   $\Rightarrow -\frac{8}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < \frac{10}{3}$   $\Rightarrow -\frac{8}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < \frac{10}{3}$   $\Rightarrow -\frac{8}{3} - \frac{1}{3} \le x \text{ and } x < \frac{10}{3} - \frac{1}{3}$   $\Rightarrow -\frac{9}{3} \le x \text{ and } x < \frac{9}{3}$   $\Rightarrow -3 \le x \text{ and } x < 3$ The required graph of the solution set is:  $+\frac{1}{-5} -4 -3 -2 -1 = 0 = 1 = 2 = 3$ 

# **Question 8:**

Find the values of x, which satisfy the in-equation:  $-2 \le \frac{1}{2} - \frac{2x}{3} < 1 \frac{5}{6}$ ,  $x \in N$ . Graph the solution on the number line.

**Solution 8:** 

$$-2 \leq \frac{1}{2} - \frac{2x}{3} < 1\frac{5}{6} \\ -2 \leq \frac{1}{2} - \frac{2x}{3} \text{ and } \frac{1}{2} - \frac{2x}{3} < 1\frac{5}{6} \\ \frac{-5}{2} \leq -\frac{2x}{3} \text{ and } \frac{-2x}{3} < \frac{8}{6} \\ \frac{15}{4} \geq x \text{ and } x > -2 \\ 3.75 \geq x \text{ and } x > -2 \\ \text{Since, } x \in \mathbb{N} \\ \therefore \text{ Solution set} = \{1, 2, 3\}$$

The required graph of the solution set is:

# **Question 9:**

Given  $x \in \{\text{real number}\}$ , find the range of values of x for which  $-5 \le 2x - 3 < x + 2$ And represent it on a real number line.

#### **Solution 9:**

- $-5 \le 2x 3 < x + 2$
- $-5 \le 2x 3$  and 2x 3 < x + 2
- $-2 \le 2x$  and x < 5
- $-1 \le x \text{ and } x < 5$
- $\therefore$  Required range is 1  $\le$  x < 5

The required graph is:

# **Question 10:**

If  $5x - 3 \le 5 + 3x \le 4x + 2$ , express it as  $a \le x \le b$  and then state the values of a and b.

#### **Solution 10:**

 $\begin{array}{l} 5x-3 \leq 5+3x \leq 4x+2\\ 5x-3 \leq 5+3x \text{ and } 5+3x \leq 4x+2\\ 2x \leq 8 \text{ and } -x \leq -3\\ X \leq 4 \text{ and } x \geq 3\\ Thus, \ 3 \leq x \leq 4\\ Hence, \ a=3 \text{ and } b=4 \end{array}$ 

#### **Question 11:**

Solve the following in-equation and graph the solution set on the number line:  $2x - 3 < x + 2 \le 3x + 5$ ;  $x \in \mathbb{R}$ . Solution 11:  $2x - 3 < x + 2 \le 3x + 5$  2x - 3 < x + 2 = 3x + 5 2x - 3 < x + 2 and  $x + 2 \le 3x + 5$  X < 5 and  $-3 \le 2x$  X < 5 and  $-3 \le 2x$  X < 5 and  $-1.5 \le x$ Solution set = {  $-1.5 \le x < 5$ } The solution set can be graphed on the number line as:





Question 13: Solve and graph the solution set of: (i) 3x - 2 > 19 or  $3 - 2x \ge -7$ ;  $x \in \mathbb{R}$ . (ii) 5 > p - 1 > 2 or  $7 \le 2p - 1 \le 17$ ;  $p \in \mathbb{R}$ . Solution 13: (i) 3x - 2 > 19 or  $3 - 2x \ge -7$ 







Question 16: Illustrate the set {x:  $-3 \le x < 0$  or x > 2;  $x \in R$ } on a real number line. Solution 16:

Graph of solution set of  $-3 \le x < 0$  or x > 2

= Graph of points which belong to  $-3 \le x < 0$  or x > 2 or both Thus, the required graph is:



Question 17: Given A = {x:  $-1 < x \le 5, x \in R$ } and B = {x:  $-4 \le x < 3, x \in R$ } Represent on different number lines: (i) A  $\cap$  B (ii) A'  $\cap$  B (iii) A - B Solution 17: (i) A  $\cap$  B = {x:  $-1 < x < 3, x \in R$ } It can be represented on a number line as: -5 -4 -3 -2 -1 0 1 2 3 4 5 (ii) Numbers which belong to B but do not belong to A = B - A $A' \cap B = \{x: -4 \le x \le -1, x \in R\}$ It can be represented on a number line as: 2 3 5 -4 -3 -2 -1 4 1 -5 0 (iii) A - B = {x:  $3 \le x \le 5, x \in R$ } It can be represented on a number line as: 2 -3 -2-1 0 1 3 4

# **Question 18:**

P is the solution set of 7X - 2 > 4X + 1 and Q is the solution set of  $9x - 45 \ge 5 (x - 5)$ ; where  $x \in R$ , Represent: (i)  $P \cap Q$ 

(iii)  $P \cap Q'$  on different number lines.

**Solution 18:** 

 $P = \{ X : 7X - 2 > 4X + 1, X \in R \}$ 7x - 2 > 4x + 17x - 4x > 1 + 23x > 3 X > 1 and  $Q = \{x: 9x - 45 \ge 5 (x - 5), x \in R\}$  $9x - 45 \ge 5x - 25$  $9x - 5x \ge -25 + 45$  $4x \ge 20$  $X \ge 5$ (i)  $P \cap Q = \{x : x \ge 5, x \in R\}$ 2 3 1 -5 -4 -3 -2 -1 0 4 (ii)  $P - Q = \{ X : 1 < X < 5, X \in R \}$ 2 3 -5 -3 -2 -1 0 1 4 5 -4

(iii) 
$$P \cap Q' = \{x : 1 < x < 5, x \in R\}$$
  
 $-5 -4 -3 -2 -1 0 1 2 3 4 5$ 

#### **Question 19:**

If P = {X: 7X - 4 > 5X + 2, X  $\in$  R} and Q = {X : X - 19  $\ge$  1 - 3X, X  $\in$  R}; find the range of set P  $\cap$  Q and represent it on a number line.

# **Solution 19:**

| $P = \{X : 7X - 4 > 5X + 2, X \in R\}$                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7X - 4 > 5X + 2                                                                                                                                                                                                                                                  |
| 7X - 5X > 2 + 4                                                                                                                                                                                                                                                  |
| 2X > 6                                                                                                                                                                                                                                                           |
| X > 3                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                  |
| $Q = \{ X: X - 19 \ge 1 - 3X, X \in R \}$                                                                                                                                                                                                                        |
| $X - 19 \ge 1 - 3X$                                                                                                                                                                                                                                              |
| $X + 3X \ge 1 + 19$                                                                                                                                                                                                                                              |
| $4X \ge 20$                                                                                                                                                                                                                                                      |
| $X \ge 5$                                                                                                                                                                                                                                                        |
| $P \cap Q = \{ X: X \ge 5, X \in R \}$                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                  |
| $\bullet \blacksquare \blacksquare$ |
| -5 -4 -3 -2 -1 0 1 2 3 4 5                                                                                                                                                                                                                                       |

# Question 20: Find the range of values of x, which satisfy: $-\frac{1}{3} \le \frac{x}{2} + 1\frac{2}{3} < 5\frac{1}{6}$ Graph, in each of the following cases, the values of x on the different real number lines: (i) $x \in w$ (ii) $x \in z$ (iii) $x \in R$ . Solution 20: $-\frac{1}{3} \le \frac{x}{2} + 1\frac{2}{3} < 5\frac{1}{6}$ $-\frac{1}{3} - \frac{5}{3} \le \frac{x}{2} < \frac{31}{6} - \frac{5}{3}$ $-\frac{6}{3} \le \frac{x}{2} < \frac{21}{6}$ $-4 \le X < 7$ (i) If $x \in W$ , range of value of x is {0, 1, 2, 3, 4, 5, 6}



# **Question 22:**

Solve the following in-equation and represent the solution set on the number line.  $2x - 5 \le 5x + 4 < 11$ , where  $x \in I$ . Solution 22:



# **Question 23:**

Given that  $x \in I$ , solve the in-equation and graph the solution on the number line:  $3 \ge \frac{x-4}{2} + \frac{x}{3} \ge 2$ **Solution 23:**  $3 \ge \frac{x-4}{2} + \frac{x}{2} \ge 2$  $3 \ge \frac{1}{2} = \frac{3}{3x - 12 + 2x} \ge 2$  $18 \ge 5x - 12 \ge 12$  $30 \ge 5x \ge 24$  $6 \ge x \ge 4.8$ Solution set =  $\{5,6\}$ It can be graphed on number line as: 2 5 3 4 6 1 0

Question 24: Given:  $A = \{x: 11x - 5 > 7x + 3, x \in R\}$  and  $B = \{x: 18x - 9 \ge 15 + 12x, x \in R\}$ Find the range of set  $A \cap B$  and represent it on a number line. Solution 24:  $A = \{x: 11x - 5 > 7x + 3, x \in R\}$   $= \{x: 4x > 8, x \in R\}$   $= \{x: x > 2, x \in R\}$   $B = \{x: 18x - 9 \ge 15 + 12x, x \in R\}$   $= \{x: 6x \ge 24, x \in R\}$   $= \{x: x \ge 4, x \in R\}$   $A \cap B = \{x: x \ge 4, x \in R\}$ It can be represented on number line as:



Question 25: Find the set of value of x, Satisfying:  $7X + 3 \ge 3X - 5$  and  $\frac{x}{4} - 5 \le \frac{5}{4} - x$ , Where  $x \in N$ . Solution 25:  $7X + 3 \ge 3X - 5$   $4X \ge -8$   $X \ge -2$   $\frac{X}{4} - 5 \le \frac{5}{4} - X$   $\frac{X}{4} - X \le \frac{5}{4} + 5$   $\frac{5X}{4} \le \frac{25}{4}$ X \le 5 Since,  $x \in N$  $\therefore$  Solution set = {1, 2, 3, 4, 5}

#### **Question 26:**

Solve: (i)  $\frac{x}{2} + 5 \le \frac{x}{3} + 6$ , where x is a positive odd integer. (ii)  $\frac{2x+3}{3} \ge \frac{3x-1}{4}$ , Where x is a positive even integer. Solution 26: (i)  $\frac{x}{2} + 5 \le \frac{x}{3} + 6$   $\frac{x}{2} - \frac{x}{3} \le 6 - 5$   $\frac{x}{6} \le 1$   $x \le 6$ Since, x is a positive odd integer  $\therefore$  Solution set = {1, 3, 5} (ii)  $\frac{2x+3}{3} \ge \frac{3x-1}{4}$   $8x + 12 \ge 9x - 3$  $-X \ge -15$ 

Maths

X ≤ 15 Since, x is a positive even integer ∴ Solution set = {2, 4, 6, 8, 10, 12, 14}

**Question 27:** Solve the in-equation:  $- 2\frac{1}{2} + 2x \le \frac{4x}{5} \le \frac{4}{3} + 2x, x \in \mathbb{W}.$ Graph the solution set on the number line. Solution 27:  $-2\frac{1}{2} + 2x \le \frac{4x}{5} \le \frac{4}{3} + 2x$  $-2\frac{1}{2} \le \frac{4x}{5} - 2x \le \frac{4}{3}$  $-\frac{5}{2} \le -\frac{6x}{5} \le \frac{4}{3}$  $\frac{25}{12} \ge x \ge -\frac{10}{9}$  $2.083 \ge x \ge -1.111$ Since,  $x \in W$  $\therefore$  Solution set = {0, 1, 2} The solution set can be represented on number line as: Т 5 -2 -1 3 6 4

# **Question 28:**

Find three consecutive largest positive integers such that the sum of one-third of first, one-fourth of second and one-fifth of third is atmost 20.

#### **Solution 28:**

Let the required integers be x, x + 1 and x + 2. According to the given statement,

$$\frac{1}{3}x + \frac{1}{4}(x+1) + \frac{1}{5}(x+2) \le 20$$

$$\frac{20x + 15x + 15 + 12x + 24}{60} \le 20$$

$$47x + 39 \le 1200$$

$$47x \le 1161$$

$$X \le 24, 702$$
Thus, the largest value of the positive integer x is 24  
Hence, the required integers are 24, 25 and 26.

# **Question 29:**

Solve the given in-equation and graph the solution on the number line.  $2y - 3 < y + 1 \le 4y + 7$ ,  $y \in R$ 

Solution 29:  $2y - 3 < y + 1 \le 4y + 7, y \in \mathbb{R}$   $\Rightarrow 2y - 3 - y < y + 1 - y \le 4y + 7 - y$   $\Rightarrow y - 3 < 1 \le 3y + 7$   $\Rightarrow y - 3 < 1 \text{ and } 1 \le 3y + 7$   $\Rightarrow y < 4 \text{ and } 3y \ge -6 \Rightarrow y \ge -2$  $\Rightarrow -2 \le y < 4$ 

The graph of the given equation can be represented on a number line as:



```
Ouestion 30:
Solve the inequation:
3z - 5 \le z + 3 < 5z - 9; z \in \mathbb{R}.
Graph the solution set on the number line.
Solution 30:
3z - 5 \le z + 3 < 5z - 9
3z - 5 \le z + 3 and z + 3 < 5z - 9
2z \le 8 and 12 < 4z
Z \le 4 and 3 < z
Since, z \in R
\therefore Solution set = {3 < z ≤ 4, x ∈ R}
It can be represented on a number line as:
<---
              2
                    3
                               5
         1
   0
```

**Question 31:** 

Solve the following in equation and represent the solution set on the number line.

 $- 3 < -\frac{1}{2} - \frac{2X}{3} \le \frac{5}{6}, x \in \mathbb{R}$ Solution 31:  $- 3 < -\frac{1}{2} - \frac{2X}{3} \le \frac{5}{6}$ Multiply by 6, we get  $\Rightarrow -18 < -3 - 4x \le 5$   $\Rightarrow -15 < -4x \le 8$ Dividing by - 4, We get  $\Rightarrow \frac{-15}{-4} > x \ge \frac{8}{-4}$ 



#### **Question 32:**

Solve the following in equation and represent the solution set on the number line:  $4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, x \in R$ Solution 32:  $4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, x \in R$   $\Rightarrow 4X - 19 + 2 < \frac{3x}{5} - 2 + 2 \le \frac{-2}{5} + X + 2, X \in R$   $\Rightarrow 4X - 17 < \frac{3x}{5} \le X + \frac{8}{5}, X \in R$   $\Rightarrow 4X - \frac{3x}{5} < 17 \text{ and } \frac{-8}{5} \le x - \frac{3x}{5}, x \in R$   $\Rightarrow \frac{20x - 3x}{5} < 17 \text{ and } \frac{-8}{5} \le \frac{5x - 3x}{5}, X \in R$   $\Rightarrow \frac{17x}{5} < 17 \text{ and } \frac{-8}{5} \le \frac{2x}{5}, x \in R$   $\Rightarrow \frac{x < 5 \text{ and } -4 \le x, x \in R}{3 \times x < 5 \text{ and } -4 \le x, x \in R}$ The solution set can be represented on a number line as: