CAT 2020 Question Paper Slot 1

Quant

- **57.** The area of the region satisfying the inequalities $|x| y \le 1, y \ge 0$ and $y \le 1$ is
- **58.** On a rectangular metal sheet of area 135 sq in, a circle is painted such that the circle touches two opposite sides. If the area of the sheet left unpainted is two-thirds of the painted area then the perimeter of the rectangle in inches is
 - A $3\sqrt{\pi}(5+\frac{12}{\pi})$
 - B $4\sqrt{\pi}(3+\frac{9}{\pi})$
 - **c** $3\sqrt{\pi}(\frac{5}{2} + \frac{6}{\pi})$
 - D $5\sqrt{\pi}(3+\frac{9}{\pi})$
- **59.** A circle is inscribed in a rhombus with diagonals 12 cm and 16 cm. The ratio of the area of circle to the area of rhombus is
 - A $\frac{6\pi}{25}$
 - **B** $\frac{5\pi}{18}$
 - **C** $\frac{3\pi}{25}$
 - **D** $\frac{2\pi}{15}$
- **60.** Among 100 students, x_1 have birthdays in January, X_2 have birthdays in February, and so on. If $x_0=max(x_1,x_2,....,x_{12})$, then the smallest possible value of x_0 is
 - **A** 8
 - **B** 9
 - **C** 10
 - **D** 12
- **61.** A straight road connects points A and B. Car 1 travels from A to B and Car 2 travels from B to A, both leaving at the same time. After meeting each other, they take 45 minutes and 20 minutes, respectively, to complete their journeys. If Car 1 travels at the speed of 60 km/hr, then the speed of Car 2, in km/hr, is
 - **A** 100
 - **B** 90
 - **C** 80
 - **D** 70
- **62.** A person spent Rs 50000 to purchase a desktop computer and a laptop computer. He sold the desktop at 20% profit and the laptop at 10% loss. If overall he made a 2% profit then the purchase price, in rupees, of the desktop is
- **63.** A solution, of volume 40 litres, has dye and water in the proportion 2:3. Water is added to the solution to change this proportion to 2:5. If one fourths of this diluted solution is taken out, how many litres of dye must be added to the remaining solution to bring the proportion back to 2:3?

C	4864					
D	5544					
dir	o persons are walking beside a railway track at respective speeds of 2 and 4 km per hour in the same ection. A train came from behind them and crossed them in 90 and 100 seconds, respectively. The time, seconds, taken by the train to cross an electric post is nearest to					
Α	87					
В	82					
С	78					
D	75					
72. If a, b and c are positive integers such that $ab = 432$, $bc = 96$ and $c < 9$, then the smallest possible value of $a + b + c$ is						
Α	49					
В	56					
С	59					
D	46					
liter	group of people, 28% of the members are young while the rest are old. If 65% of the members are ates, and 25% of the literates are young, then the percentage of old people among the illiterates is rest to					
Α	62					
В	55					
С	59					
D	66					
10%	ru invested Rs 10000 at 5% simple annual interest, and exactly after two years, Joy invested Rs 8000 at 5 simple annual interest. How many years after Veeru's investment, will their balances, i.e., principal plus umulated interest, be equal?					
75. If <i>f</i> root	f(5+x)=f(5-x) for every real x, and $f(x)=0$ has four distinct real roots, then the sum of these is is					
Α	0					
В	40					
С	10					
D	20					

	A, B and C be three positive integers such that the sum of A and the mean of B and C is 5. In addition, sum of B and the mean of A and C is 7. Then the sum of A and B is
Α	5
В	4
С	6
D	7

Answers

Quant

51. B	52. 62	53. 21	54. D	55. D	56. A	57. 3	58. A
59. A	60. B	61. B	62. 20000	63. 8	64. C	65. B	66. 1
67. 36	68. B	69. C	70. D	71. B	72. D	73. D	74. 12
75. D	76. C						

Explanations

Quant

$$2^{Y^2(\log_3 5)} = 5^{Y^2(\log_3 2)}$$

Given,
$$5^{Y^2(\log_3 2)} = 5^{(\log_2 3)}$$

$$\Rightarrow Y^2 (\log_3 2) = (\log_2 3) = > Y^2 = (\log_2 3)^2$$

$$=>Y = (-\log_2 3) \ or \ (\log_2 3)$$

since Y is a negative number, Y= $\left(-\log_2 3\right) = \left(\log_2 \frac{1}{3}\right)$

52.**62**

Let the initial number of chocolates be 64x.

First child gets 32x+1 and 32x-1 are left.

2nd child gets 16x+1/2 and 16x-3/2 are left

3rd child gets 8x+1/4 and 8x-7/4 are left

4th child gets 4x+1/8 and 4x-15/8 are left

5th child gets 2x+1/16 and 2x-31/16 are left.

Given, $2x-31/16=0 \Rightarrow 2x=31/16 \Rightarrow x=31/32$.

.'. Initially the Gentleman has 64x i.e. 64*31/32 =62 chocolates.

53.21

Let the number be 'abc'. Then, $2 < a \times b \times c < 7$. The product can be 3,4,5,6.

We can obtain each of these as products with the combination 1,1, x where x = 3,4,5,6. Each number can be arranged in 3 ways, and we have 4 such numbers: hence, a total of **12** numbers fulfilling the criteria.

We can factories 4 as 2*2 and the combination 2,2,1 can be used to form 3 more distinct numbers.

We can factorize 6 as 2*3 and the combination 1,2,3 can be used to form 6 additional distinct numbers.

Thus a total of 12 + 3 + 6 = 21 such numbers can be formed.

54.**D**

The graphs of $2^x + 2^{-x}$ and $2 - (x - 2)^2$ never intersect. So, number of solutions=0.

Alternate method:

We notice that the minimum value of the term in the LHS will be greater than or equal to 2 {at x=0; LHS = 2}. However, the term in the RHS is less than or equal to 2 {at x=2; RHS = 2}. The values of x at which both the sides become 2 are distinct; hence, there are zero real-valued solutions to the above equation.

$$(x^2 - 7x + 11)^{(x^2 - 13x + 42)} = 1$$

if
$$(x^2-13x+42)$$
=0 or $(x^2-7x+11)$ =1 or $(x^2-7x+11)$ =-1 and $(x^2-13x+42)$ is even number

For x=6,7 the value $(x^2-13x+42)$ =0

$$(x^2 - 7x + 11)$$
=1 for x=5,2.

$$(x^2-7x+11)$$
=-1 for x=3,4 and for X=3 or 4, $(x^2-13x+42)$ is even number.

... {2,3,4,5,6,7} is the solution set of x.

.'. x can take six values.

56.**A**

Let the base radius be 3r.

Height of upper cone is 9 so, by symmetry radius of upper cone will be r.

Volume of frustum= $\frac{\pi}{3}\left(9r^2\cdot 27-r^2.9\right)$

Volume of upper cone = $\frac{\pi}{3}.r^2.9$

Difference=
$$\frac{\pi}{3} \cdot 9 \cdot r^2 \cdot 25 = 225$$
 => $\frac{\pi}{3} \cdot r^2 = 1$

Volume of larger cone = $\frac{\pi}{3} \cdot 9r^2 \cdot 27 = 243$

57.3

The area of the region contained by the lines $|x| - y \le 1, y \ge 0$ and $y \le 1$ is the white region.

Total area = Area of rectangle + 2 * Area of triangle = $2+\left(\frac{1}{2} imes~2 imes~1\right)~=3$

Hence, 3 is the correct answer.

Let ABCD be the rectangle with length 2I and breadth 2b respectively.

Area of the circle i.e. area of painted region = π b^2 .

Given, 4lb- π b^2 =(2/3) π b^2 .

$$\Rightarrow$$
 4lb=(5/3) π b^2 .

$$=> = \frac{5\pi}{12}b.$$

Given, 4lb=135 =>
$$4*\frac{5\pi}{12}b^2$$
=135 => b= $\frac{9}{\sqrt{\pi}}$

$$\Rightarrow |=\frac{15}{4}\sqrt{\pi}$$

=> I=
$$\frac{15}{4}\sqrt{\pi}$$

Perimeter of rectangle =4(I+b)=4($\frac{15}{4}\sqrt{\pi}$ + $\frac{9}{\sqrt{\pi}}$)=3 $\sqrt{\pi}$ (5 + $\frac{12}{\pi}$).

Hence option A is correct.

59.A

Let the length of radius be 'r'.

From the above diagram,

$$x^2 + r^2 = 6^2$$
(i)

$$(10-x)^2 + r^2 = 8^2$$
 ---(ii)

Subtracting (i) from (ii), we get:

$$x=3.6 \Rightarrow r^2 = 36 - (3.6)^2 = r^2 = 36 - (3.6)^2 = 23.04.$$

Area of circle = $\pi~r^2=23.04\pi$

Area of rhombus= 1/2*d1*d2=1/2*12*16=96.

.'. Ratio of areas = 23.04 π /96= $\frac{6\pi}{25}$

60.**B**

$$x_0 = max(x_1, x_2,, x_{12})$$

 x_0 will be minimum if x1,x2...x12 are close to each other

100/12=8.33

- .'. Option B is correct.

61.**B**

Let the speed of Car 2 be 'x' kmph and the time taken by the two cars to meet be 't' hours.

In 't' hours, Car 1 travels $(60 \, imes \, t) \, \, km$ while Car 2 travels $(x \, imes \, t) \, \, km$

It is given that the time taken by Car 1 to travel $(x \times t)$ km is 45 minutes or (3/4) hours. $\therefore \frac{(x \times t)}{60} = \frac{3}{4}$ or $t = \frac{180}{4x}$(i)

Similarly, the time taken by Car 2 to travel $(60 \times t)$ km is 20 minutes or (1/3) hours. $\therefore \frac{(60 \times t)}{x} = \frac{1}{3}$ or $\therefore t = \frac{x}{180}$(ii)

Equating the values in (i) and (ii), and solving for x:

$$\therefore \frac{180}{4x} = \frac{x}{180} \longrightarrow x = 90 \ kmph$$

Hence, Option B is the correct answer.

62.**20000**

Let the price of desktop and laptop be x,y respectively.

Given,

x+y=50000...(i)

12.x+0.9y=50000(1.02)=51000...(ii)

(ii)-0.9(i) gives

0.3x=6000=> x=20000.

63.**8**

Initially the amount of Dye and Water are 16,24 respectively.

To make the ratio of Dye to Water to 2:5 the amount of water should be 40l for 16l of Dye=> 16l of water is added.

Now, the Dye and Water arr 16,40 respectively.

After removing 1/4th of solution the amount of Dye and Water will be 12,30l respectively.

To have Dye and Water in the ratio of 2:3, for 30l of water we need 20l of Dye => 8l of Dye should be added.

Hence, 8 is correct answer.

64.**C**

$$x = 2^{12(7+4\sqrt{3})}$$
.

$$x^{\frac{7}{2}} = 2^{42\left(7+4\sqrt{3}
ight)}$$

$$x^{2\sqrt{3}} = 2^{24\sqrt{3}(7+4\sqrt{3})}$$

$$\frac{x^{\frac{7}{2}}}{x^{2\sqrt{3}}}$$
 = $2^{\left(7+4\sqrt{3}\right)\left(42-24\sqrt{3}\right)}=2^{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)6}$ = 2^{6} .

Hence C is correct answer.

65.B

Let the volume of Metals A,B,C we 3x, 4x, 7x

Ratio weights of given volume be 5y,2y,6y

$$1.15xy+8xy+42xy=130 => 65xy=130 => xy=2.$$

... The weight, in kg. of the metal C is 42xy=84.

66.1

Let
$$a = x + \frac{1}{x}$$

So, the given equation is $a^2-3a+2=0$

So, a can be either 2 or 1.

If
$$a=1$$
, $x+rac{1}{x}=1$ and it has no real roots.

If
$$a=2$$
, $x+rac{x}{x}=2$ and it has exactly one real root which is $x=1$

So, the total number of distinct real roots of the given equation is 1

67.36

$$\frac{\log 5}{2\log 2} = \frac{\log y}{2\log 2} \cdot \frac{\log 5}{2\log 6}$$

$$\log 36 = \log y$$
; : $y = 36$

68.B

The difference in the time take to traverse the same distance $^\prime d^\prime$ at two different speeds is 35 minutes.

Equating this:
$$\frac{d}{8} - \frac{d}{15} = \frac{35}{60}$$

On solving, we obtain d=10kms. Let xkmph be the speed at which Amal needs to travel to reach the office in 50 minutes; then

$$rac{10}{x}=rac{50}{60}~or~x~=~12~kmph.$$
Hence, Option B is the correct answer.

69.C

Let the total distance be 'D' km and the speed of the train be 's' kmph. The time taken to cover D at speed d is 't' hours. Based on the information: on equating the distance, we get $s \times t = \frac{s}{3} \times \left(t + \frac{1}{2}\right)$

On solving we acquire the value of $t=\frac{1}{4}$ or 15 mins. We understand that during the return journey, the first 5 minutes are spent traveling at speed 's' {distance traveled in terms of s = $\frac{s}{12}$ }. Remaining distance in terms of 's' = $\frac{s}{4} - \frac{s}{12} = \frac{s}{6}$

The rest 4 minutes of stoppage added to this initial 5 minutes amounts to a total of 9 minutes. The train has to complete the rest of the journey in 15-9=6mins or {1/10 hours}. Thus, let 'x' kmph be the new value of speed. Based on the above, we get $\frac{s}{\frac{s}{2}}=\frac{1}{10}$ or $x=\frac{10s}{6}$

Since the increase in speed needs to be calculated: $\frac{\left(\frac{10s}{6}-s\right)}{s} \times 100 = \frac{200}{3} \approx 67\%$ increase.

Hence, Option C is the correct answer.

70.**D**

The four digit even numbers will be of form:

1100, 1122, 1144 ... 1188, 2200, 2222, 2244 ... 9900, 9922, 9944, 9966, 9988

Their sum 'S' will be (1100+1100+22+1100+44+1100+66+1100+88)+(2200+2200+22+2200+44+...)....+ (9900+9900+22+9900+44+9900+66+9900+88)

=> S=1100*5+(22+44+66+88)+2200*5+(22+44+66+88)....+9900*5+(22+44+66+88)

=> S=5*1100(1+2+3+...9)+9(22+44+66+88)

=>S=5*1100*9*10/2 + 9*11*20

Total number of numbers are 9*5=45

.'. Mean will be S/45 = 5*1100+44=5544.

Option D

71.**B**

Let the length of the train be lkms and speed be skmph. Base on the two scenarios presented, we obtain:

$$rac{l}{s-2} = rac{90}{3600}....$$
(i) and $rac{l}{s-4} = rac{100}{3600}...$ (ii)

On dividing (ii) by (i) and simplifying we acquire the value of s as 22kmph. Substituting this value in (i), we have $l=\frac{90}{3600}\times~20~kms$ {keeping it in km and hours for convenience}

Since we need to find $\frac{l}{s}$, let this be equal to x. Then, $x=90\times\frac{20}{22}=81.81\approx82\,\sec onds$ Hence, Option B is the correct choice.

72.**D**

Since c < 9, we can have the following viable combinations for $b \times c = 96$ (given our objective is to minimize the sum):

$$48 \times 2$$
; 32×3 ; 24×4 ; 16×6 ; 12×8

Similarly, we can factorize $a \times b = 432$ into its factors. On close observation, we notice that 18×24 and 24×4 corresponding to $a \times b$ and $b \times c$ respectively together render us with the least value of the sum of a+b+c=18+24+4=46

Hence, Option D is the correct answer.

73.**D**

Let 'x' be the strength of group G. Based on the information, 0.65x constitutes of literate people {the rest 0.35x = illiterate}

Of this 0.65x, 75% are old people =(0.75)0.65x old literates. The total number of old people in group G is 0.72x {72% of the total}. Thus, the total number of old people who are illiterate = 0.72x - 0.4875x = 0.2325x. This is $\frac{0.2325x}{0.35x} \times 100 \approx 66\%$ of the total number of illiterates. Hence, Option D is the correct answer.

74.**12**

Let their individual Amounts be equal after 't' years. Let their initial investments amount to A_V and A_J ;

$$A_{V}~=10,000\left(1+rac{5t}{100}
ight)$$
 and $A_{J}~=8,000\left(1+rac{10(t-2)}{100}
ight)$

Equating both: $10,000\left(1+\frac{5t}{100}\right)~=8,000\left(1+\frac{10(t-2)}{100}\right)$

On simplifying both sides, we get: 15t = 180; t = 12

75.**D**

Let 'r' be the root of the function. It follows that f(r) = 0. We can represent this as $f\left(r\right)=f\left\{5-\left(5-r\right)\right\}$

Based on the relation:
$$f(5-x) = f(5+x)$$
; $f(r) = f(5-(5-r)) = f(5+(5-r))$

$$f(r) = f(10 - r)$$

Thus, every root 'r' is associated with another root '(10-r)' [these form a pair]. For even distinct roots, in this case four, let us assume the roots to be as follows: r_1 , $(10-r_1)$, r_2 , $(10-r_2)$

The sum of these roots = $r_1 \,+ (10-r_1) + \,r_2 + \,(10-r_2) \,=\, 20$

Hence, Option D is the correct answer.

76.**C**

Given

A+(B+C)/2=5 => 2A+B+C=10....(i)

(A+C)/2 +B=7 => A+2B+C=14....(ii)

(i)-(ii)=> B-A=4=> B=4+A.

Given, A, B, C are positive integers

If A=1=>B=5 => C=3

If $A=2=>B=6 \Rightarrow C=0$ but this is invalid as C is positive.

Similarly if A>2 C will be negative and cases are not valid.

Hence, A+B=6.