QUADRILATERALS

► IMPORTANT POINTS

- A quadrilateral is a figure bounded by four line segments such that no three of them are parallel.
- Two sides of quadrilateral are consecutive or adjacent sides, if they have a common point (vertex).
- Two sides of a quadrilateral are opposite sides, if they have no common end-point (vertex).
- The consecutive angles of a quadrilateral are two angles which include a side in their intersection. In other words, two angles are consecutive, if they have a common arm.
- Two angles of a quadrilateral are said to be opposite angles if they do not have a common arm.
- The sum of the four angles of a quadrilateral is 360°.

♦ EXAMPLES ♦

- **Ex.1** In a quadrilateral ABCD, the angles A, B, C and D are in the ratio 2 : 4 : 5 : 7. Find the measure of each angles of the quadrilateral.
- Sol. We have $\angle A : \angle B : \angle C : \angle D = 2 : 4 : 5 : 7$. So, let $\angle A = 2x^{\circ}$, $\angle B = 4x^{\circ}$, $\angle C = 5x^{\circ}$, $\angle D = 7x^{\circ}$.
 - $\therefore \quad \angle A + \angle B + \angle C + \angle D = 360^{\circ}$
 - $\Rightarrow 2x + 4x + 5x + 7x = 360^{\circ}$
 - $\Rightarrow 18x = 360^{\circ}$

$$\Rightarrow x = 20^{\circ}$$

Thus, the angles are :

$$\angle A = 40^{\circ}, \angle B = (4 \times 20)^{\circ} = 80^{\circ},$$

 $\angle C = (5 \times 20)^{\circ} = 100^{\circ}$
and, $\angle D = (7x)^{\circ} = (7 \times 20)^{\circ} = 140^{\circ}$

Ex.2 The sides BA and DC of a quadrilateral ABCD are produced as shown in fig.

Prove that a + b = x + y.

Sol. Join BD. In \triangle ABD, we have

$$\angle ABD + \angle ADB = b^{\circ}$$
(i)

In $\triangle CBD$, we have

$$\angle CBD + \angle CDB = a^{\circ}$$
(ii)

Adding (i) and (ii), we get

$$(\angle ABD + \angle CBD) + (\angle ADB + \angle CDB) = a^{\circ} + b^{\circ}$$

 $\Rightarrow x^{o} + y^{o} = a^{o} + b^{o}$

Hence, x + y = a + b

- **Ex.3** In a quadrilateral ABCD, AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively. Prove that $\angle AOB = \frac{1}{2}(\angle C + \angle D)$.
- **Sol.** In $\triangle AOB$, we have

$$\Rightarrow \angle AOB = 180^{\circ} - \frac{1}{2} (\angle A + \angle B)$$

$$\Rightarrow \angle AOB = 180^{\circ} - \frac{1}{2} [360^{\circ} - (\angle C + \angle D)]$$

$$[\Theta \angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\therefore \angle A + \angle B = 360^{\circ} - (\angle C + \angle D)]$$

$$\Rightarrow \angle AOB = 180^{\circ} - 180^{\circ} + \frac{1}{2} (\angle C + \angle D)$$

$$\Rightarrow \angle AOB = \frac{1}{2} (\angle C + \angle D)$$

Ex.4 In figure bisectors of $\angle B$ and $\angle D$ of quadrilateral ABCD meet CD and AB produced at P and Q respectively. Prove that

Sol. In $\triangle PBC$, we have

$$\therefore \quad \angle P + \angle 4 + \angle C = 180^{\circ}$$
$$\Rightarrow \quad \angle P + \frac{1}{2} \angle B + \angle C = 180^{\circ} \qquad \dots (i)$$

In $\triangle QAD$, we have $\angle Q + \angle A + \angle 1 = 180^{\circ}$

$$\Rightarrow \angle Q + \angle A + \frac{1}{2} \angle D = 180^{\circ} \qquad \dots (ii)$$

Adding (i) and (ii), we get

$$\angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D$$
$$= 180^{\circ} + 180^{\circ}$$

$$\Rightarrow \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D = 360^{\circ}$$
$$\Rightarrow \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} (\angle B + \angle D)$$
$$= \angle A + \angle B + \angle C + \angle D$$

[.:. In a quadrilateral ABCD $\angle A + \angle B + \angle C$ + $\angle D = 360^{\circ}$]

$$\Rightarrow \angle P + \angle Q = \frac{1}{2} (\angle B + \angle D)$$
$$\Rightarrow \angle P + \angle Q = \frac{1}{2} (\angle ABC + \angle ADC)$$

- **Ex.5** In a parallelogram ABCD, prove that sum of any two consecutive angles is 180°.
- Sol. Since ABCD is a parallelogram. Therefore, $AD \parallel BC$.

Now, AD || BC and transversal AB intersects them at A and B respectively.

 $\therefore \quad \angle \mathbf{A} + \angle \mathbf{B} = 180^{\circ}$

 $[\Theta$ Sum of the interior angles on the same side of the transversal is 180°]

Similarly, we can prove that

 $\angle B + \angle C = 180^{\circ}, \ \angle C + \angle D = 180^{\circ}$ and $\angle D + \angle A = 180^{\circ}.$

- A quadrilateral having exactly one pair of parallel sides, is called a trapezium.
- A trapezium is said to be an isoscels trapezium, if its non-parallel sides are equal.
- A quadrilateral is a parallelogram if its both pairs of opposite sides are parallel.
- A parallelogram having all sides equal is called a rhombus.
- A parallelogram whose each angle is a right angle, is called a rectangle.
- ♦ A square is a rectangle with a pair of adjacent sides equal.
- ♦ A quadrilateral is a kite if it has two pairs of equal adjacent sides and unequal opposite sides.
- A diagonal of a parallelogram divides it into two congruent triangles.
- \diamond In a parallelogram, opposite sides are equal.
- The opposite angles of a parallelogram are equal.
- The diagonals of a parallelogram bisect each other.
- In a parallelogram, the bisectors of any two consecutive angles intersect at right angle.
- If diagonal of a parallelogram bisects one of the angles of the parallelogram, it also bisects the second angle.
- The angle bisectors of a parallegram form a rectangle.

- **Ex.6** In a parallelogram ABCD, $\angle D = 115^{\circ}$, determine the measure of $\angle A$ and $\angle B$.
- **Sol.** Since the sum of any two consecutive angles of a parallelogram is 180°. Therefore,

$$\angle A + \angle D = 180^{\circ} \text{ and } \angle A + \angle B = 180^{\circ}$$

Now, $\angle A + \angle D = 180^{\circ}$

$$\Rightarrow \angle A + 115^\circ = 180^\circ [\Theta \angle D = 115^\circ (given)]$$

$$\Rightarrow \angle A = 65^{\circ} \text{ and } \angle A + \angle B = 180^{\circ}$$

$$\Rightarrow 65^{\circ} + \angle B = 180^{\circ} \Rightarrow \angle B = 115^{\circ}$$

Thus, $\angle A = 65^{\circ}$ and $\angle B = 115^{\circ}$

Ex.7 In figure, AB = AC, $\angle EAD = \angle CAD$ and $CD \parallel AB$. Show that ABCD is a parallelogram.

Sol. In $\triangle ABC$, AB = AC [Given]

 $\Rightarrow \qquad \angle ABC = \angle ACB \qquad \dots (1)$

(Angles opposite the equal sides are equal)

 $\angle EAD = \angle CAD[Given] \dots (2)$

Now, $\angle EAC = \angle ABC + \angle ACB$

An exterior angle is equal to sum of two interior opposite angles of a triangles

 $\Rightarrow \qquad \angle EAD + \angle CAD = \angle ABC + \angle ACB$

 $\Rightarrow \angle CAD + \angle CAD = \angle ACB + \angle ACB$

By (1) and (2)

 $\Rightarrow 2\angle CAD = 2\angle ACB$

$$\Rightarrow \angle CAD = \angle ACB$$

 \Rightarrow BC || AD

Thus, we have both pairs of opposite sides of quadrilateral ABCD parallel. Therefore, ABCD is a parallelogram.

[Given]

Ex.8 ABCD is a parallelogram and line segments AX,CY are angle bisector of $\angle A$ and $\angle C$ respectively then show AX || CY.

Sol. Since opposite angles are equal in a parallelogram. Therefore, in parallelogram ABCD, we have $\angle A = \angle C$

$$\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$
$$\Rightarrow \angle 1 = \angle 2 \qquad \dots (i)$$

 $[\Theta AX and CY are bisectors of \angle A and \angle C respectively]$

Now, AB \parallel DC and the transversal CY intersects them.

$$\therefore \quad \angle 2 = \angle 3 \qquad \qquad \dots (ii)$$

 $[\Theta$ Alternate interior angles are equal]

From (i) and (ii), we get

$$\angle 1 = \angle 3$$

Thus, transversal AB intersects AX and YC at A and Y such that $\angle 1 = \angle 3$ i.e. corresponding angles are equal.

 \therefore AX || CY

Ex.9 In the adjoining figure, a point O is taken inside an equilateral quad. ABCD such that OB = OD. Show that A, O and C are in the same straight line.

Sol. Given a quad. ABCD in which AB = BC= CD = DA and O is a point within it such that OB = OD.

To prove $\angle AOB + \angle COB = 180^{\circ}$

Proof In $\triangle OAB$ and OAD, we have

AB = AD (given), OA = OA

(common) and OB = OD (given)

Ex.10 In figure AN and CP are perpendiculars to the diagonal BD of a parallelogram ABCD. Prove that :

Sol. Since ABCD is a parallelogram.

 \therefore AD || BC

Now, AD \parallel BC and transversal BD intersects them at B and D.

 $\therefore \angle 1 = \angle 2$

 $[\Theta \text{ Alternate interior angles are equal}]$

Now, in Δs ADN and CBP, we have

$$\angle 1 = \angle 2$$

 $\angle AND = \angle CPD$ and, AD = BC

[Θ Opposite sides of a \parallel^{gm} are equal]

So, by AAS criterion of congruence

 $\Delta ADN\cong \Delta CBP$

AN = CP

 $[\Theta Corresponding parts of congruent triangles are equal]$

Ex.11 In figure, ABCD is a trapezium such that $AB \parallel CD$ and AD = BC.

BE || AD and BE meets BC at E. Show that (i) ABED is a parallelogram. (ii) $\angle A + \angle C = \angle B + \angle D = 180^{\circ}$. Sol. Here, $AB \parallel CD$ (Given) \Rightarrow AB || DE(1) Also. BE || AD (Given)(2) From (1) and (2), ABED is a parallelogram \Rightarrow AD = BE....(3) AD = BC (Given) Also,(4) From (3) and (4), BE = BC $\angle BEC = \angle BCE$(5) \Rightarrow Also, $\angle BAD = \angle BED$ (opposite angles of parallelogram ABED) i.e.. $\angle BED = \angle BAD$(6) Now, $\angle BED + \angle BEC = 180^{\circ}$ (Linear pair of angles) $\angle BAD + \angle BCE = 180^{\circ}$ \Rightarrow By (5) and (6)

 $\Rightarrow \angle A + \angle C = 180^{\circ}$

Similarly, $\angle B + \angle D = 180^{\circ}$

Ex.12 In figure ABCD is a parallelogram and $\angle DAB = 60^{\circ}$. If the bisectors AP and BP of angles A and B respectively, meet at P on CD, prove that P is the mid-point of CD.

Sol. We have, $\angle DAB = 60^{\circ}$

 $\angle A + \angle B = 180^{\circ}$

 $\therefore \quad 60^{\circ} + \angle B = 180^{\circ} \Longrightarrow \angle B = 120^{\circ}$

Now, AB \parallel DC and transversal AP intersects them.

$$\therefore \angle PAB = \angle APD$$

$$\Rightarrow \angle APD = 30^{\circ} \qquad \qquad [\Theta \angle PAB = 30^{\circ}]$$

Thus, in $\triangle APD$, we have

 $\angle PAD = \angle APD$ [Each equal to 30°] $\Rightarrow AD = PD$ (i)

 $[\Theta$ Angles opposite to equal sides are equal] Since BP is the bisector of $\angle B$. Therefore,

$$\angle ABP = \angle PBC = 60^{\circ}$$

Now, AB \parallel DC and transversal BP intersects them.

$$\therefore \angle CPB = \angle ABP$$

$$\Rightarrow \angle CPB = 60^{\circ} \qquad [\Theta \angle ABP = 60^{\circ}]$$

Thus, in ΔCBP , we have

$$\angle CBP = \angle CPB$$
 [Each equal to 60°]

$$\Rightarrow$$
 CP = BC

 Θ [Sides opp, to equal angles are equal]

$$\Rightarrow$$
 CP = AD (ii)

$$[\Theta ABCD \text{ is a } ||^{gm} \therefore AD = BC]$$

From (i) and (ii), we get

PD = CP

 \Rightarrow P is the mid point of CD.

A quadrilateral is a parallelogam if its opposite sides are equal.

- A quadrilateral is a parallelogram if its opposite angles are equal.
- If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- A quadrilateral is a parallelogram, if its one pair of opposite sides are equal and parallel.
- **Ex.13** Prove that the line segments joining the midpoint of the sides of a quadrilateral forms a parallelogram.
- **Sol.** Points E, F, G and H are the mid-points of the sides AB, BC, CD and DA respectively, of the quadrilateral ABCD. We have to prove that EFGH is a parallelogram.

Join the diagonal AC of the quadrilateral ABCD.

Now, in $\triangle ABC$, we have E and F mid-points of the sides BA and BC.

$$\Rightarrow \qquad \text{EF} \parallel \text{AC}$$

and
$$EF = \frac{1}{2}AC$$
 (1)

Similarly, from \triangle ADC, we have

 $\operatorname{GH} \parallel \operatorname{AC}$

and
$$GH = \frac{1}{2}AC$$
(2)

Then from (1) and (2), we have

EF || GH

and
$$EF = GH$$

This proves that EFGH is a parallelogram.

- **Ex.14** In figure ABCD is a parallelogram and X, Y are the mid-points of sides AB and DC respectively. Show that AXCY is a parallelogram.
- **Sol.** Since X and Y are the mid-points of AB and DC respectively. Therefore,

$$AX = \frac{1}{2}AB$$
 and $CY = \frac{1}{2}DC$... (i)

But, AB = DC [$\Theta ABCD$ is a $||^{gm}$]

Also, AB || DC

$$\Rightarrow$$
 AX || YC (iii)

Thus, in quadrilateral AXCY, we have

$$AX \parallel YC \text{ and } AX = YC$$

[From (ii) and (iii)]

Hence, quadrilateral AXCY is a parallelogram.

- **Ex.15** Prove that the line segments joining the midpoints of the sides of a rectangle forms a rhombus.
- Sol. P, Q, R and S are the mid-points of the sides AB, BC, CD and DA of the rectangle ABCD.

Here, AC = BD ($\Theta \Delta ABC \cong \Delta BAD$)

Now, SR || AC and SR =
$$\frac{1}{2}$$
 AC

and $PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC$

$$\Rightarrow \qquad \text{SR} \parallel \text{PQ} \text{ and } \text{SR} = \text{PQ} = \frac{1}{2} \text{AC}$$

Similarly, PS || QR and PS = QR = $\frac{1}{2}$ BD

 $\Rightarrow \qquad SR \parallel PQ, PS \parallel QR$

and SR = PQ = PS = QR ($\Theta AC = BD$)

PQRS is a rhombus.

- **Ex.16** In figure ABCD is a parallelogram and X and Y are points on the diagonal BD such that DX = BY. Prove that
 - (i) AXCY is a parallelogram
 - (ii) AX = CY, AY = CX
 - (iii) $\triangle AYB \cong \triangle CXD$
- Sol. Given : ABCD is a parallelogram. X and Y are points on the diagonal BD such that DX = BY

To Prove :

- (i) AXCY is a parallelogram
- (ii) AX = CY, AY = CX

(iii) $\Delta AYB \cong \Delta CXD$

Construction : join AC to meet BD at O.

Proof:

(i) We know that the diagonals of a parallelogram bisect each other. Therefore, AC and BD bisect each other at O.

 $\therefore \quad OB = OD$ But,BY = DX

 \therefore OB – BY = OD – DX

 \Rightarrow OY = OX

Thus, in quadrilateral AXCY diagonals AC and XY are such that OX = OY and OA = OC i.e. the diagonals AC and XY bisect each other.

Hence, AXCY is a parallelogram.

(ii) Since AXCY is a parallelogram

 \therefore AX = CY and AY = CX

(iii) In triangles AYB and CXD, we have

 $[\Theta ABCD is a parallelogram]$

So, by SSS-criterion of congruence, we have

 $\Delta AYB \cong \Delta CXD$

- **Ex.17** In fig. ABC is an isosceles triangle in which AB = AC. CP || AB and AP is the bisector of exterior $\angle CAD$ of $\triangle ABC$. Prove that $\angle PAC = \angle BCA$ and ABCP is a parallelogram.
- Sol. Given : An isosceles $\triangle ABC$ having AB = AC.AP is the bisector of ext $\angle CAD$ and $CP \parallel AB$.

To Prove : $\angle PAC = \angle BCA$ and ABCP

Proof : In $\triangle ABC$, we have

$$AB = AC$$
 [Given]

$$\Rightarrow \angle 1 = \angle 2$$
 (i)

 Θ Angles opposite to equal sides in a Δ are equal

Now, in \triangle ABC, we have

ext
$$\angle CAD = \angle 1 + \angle 2$$

 $\left[\begin{array}{c} \Theta \text{ An exterior angles is equal to the} \\ \text{sum of two opposite interior angles} \end{array}\right]$

 \Rightarrow ext \angle CAD = 2 \angle 2 [$\Theta \angle 1 = \angle 2$ (from (i))]

 $\Rightarrow 2 \angle 3 = 2 \angle 2$

 $[\Theta \text{ AP is the bisector of ext.} \angle \text{CAD} \therefore \angle \text{CAD} = 2 \angle 3]$

 $\Rightarrow \angle 3 = \angle 2$

Thus, AC intersects lines AP and BC at A and C respectively such that $\angle 3 = \angle 2$ i.e., alternate interior angles are equal. Therefore,

AP || BC.

But,CP || AB [Gvien]

Thus, ABCP is a quadrilateral such that AP \parallel BC and CP \parallel AB. Hence, ABCP is a parallelogram.

Ex.18 In the given figure, ABCD is a square and $\angle PQR = 90^{\circ}$. If PB = QC = DR, prove that

(i) QB = RC, (ii) PQ = QR, (iii) $\angle QPR = 45^{\circ}$.

Sol. BC = DC, CQ = DR
$$\Rightarrow$$
 BC - CQ = \triangle CDR

 \Rightarrow QB = RC

From $\triangle CQR$, $\angle RQB = \angle QCR + \angle QRC$

$$\Rightarrow \angle RQP + \angle PQB = 90^{\circ} + \angle QRC$$

 $\Rightarrow 90^{\circ} + \angle PQB = 90^{\circ} + \angle QRC$

Now, $\triangle RCQ \cong \triangle QBP$ and therefore,

QR = PQ

 $PQ = QR \Longrightarrow \angle QPR = \angle PRQ$ Bur, $\angle QPR + \angle PRQ = 90^{\circ}$.

So, $\angle QPR = 45^{\circ}$

- Each of the four angles of a rectangel is a right angle.
- Each of the four sides of a rhombus is of the same length.
- Each of the angles of a square is a right angle and each of the four sides is of the same length.
- The diagonals of a rectangle are of equal length.
- If the two diagonals of parallelogram are equal, it is a rectangle.
- The diagonals of a rhombus are perpendicular to each other.
- If the diagonals of a parallelogram are perpendicular, then it is a rhombus.
- The diagonals of a square are equal and perpendicular to each other.
- If the diagonals of a parallelogram are equal and intersect at right angles then the parallelogram is a square.

♦ EXA MPLES ◆

Ex.19 Prove that in a parallelogram

(i) opposite sides are equal

(ii) opposite angles are equal

(iii) each diagonal bisects the parallelogram

Sol. Given : A \parallel gm ABCD in which AB \parallel DC and AD \parallel BC.

To prove (i) AB = CD and BC = AD;

(ii) $\angle B = \angle D$ and $\angle A = \angle C$,

(iii) $\triangle ABC = \triangle CDA$ and $\triangle ABD = \triangle CDB$

Construction join A and C.

In $\triangle ABC$ and CDA, we have,

[Alt. int. \angle , as AB || DC and CA cuts them]

$$\angle 3 = \angle 4$$

 $\angle 1 = \angle 2$

[Alt. int. \angle , as BC || AD and CA cuts them]

AC = CA (common)

- $\therefore \Delta ABC \cong \Delta CDA [AAS-criterial]$
- (i) $\triangle ABC \cong \triangle CDA$ (proved)

 \therefore AB = CD and BC = AD (c.p.c.t.)

(ii) $\triangle ABC \cong \triangle CDA$ (proved)

$$\therefore \angle B = \angle D$$
 (c.p.c.t.)

Also, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$

$$\angle 1 + \angle 4 = \angle 2 + \angle 3 \implies \angle A = \angle C$$

Hence, $\angle B = \angle D$ and $\angle A = \angle C$

(iii) Since $\triangle ABC \cong \triangle CDA$ and congruent triangles are equal in area,

So we have $\triangle ABC = \triangle CDA$

Similarly, $\triangle ABD = \triangle CDB$

- **Ex.20** If the diagonals of a parallelogram are perpendicular to each other, prove that it is a rhombus.
- Sol. Since the diagonals of a ||gm bisect each other,

we have, OA = OC and OB = OD.

Now, in $\triangle AOD$ and COD, we have

$$OA = OC, \angle AOD = \angle COD = 90^{\circ}$$

and OD is common

$$\therefore \quad \Delta AOD \cong \Delta COD$$

 \therefore AD = CD (c.p.c.t.)

Now, AB = CD and AD = BC

(opp. sides of a ||gm)

and
$$AD = CD$$
 (proved)

$$\therefore AB = CD = AD = BC$$

Hence, ABCD is a rhombus.

- **Ex.21** PQRS is a square. Determine \angle SRP.
- **Sol.** PQRS is a square.

 \therefore PS = SR and \angle PSR = 90°

Now, in \triangle PSR, we have

But,
$$\angle 1 + \angle 2 + \angle PSR = 180^{\circ}$$

 $\therefore 2 \angle 1 + 90^{\circ} = 180^{\circ}$ [$\Theta \angle PSR = 90^{\circ}$]
 $\Rightarrow 2 \angle 1 = 90^{\circ}$

$$\Rightarrow \angle 1 = 45^{\circ}$$

Ex.22 In the adjoining figure, ABCD is a rhombus. If $\angle A = 70^\circ$, find $\angle CDB$

Sol.

We have $\angle C = \angle A = 70^{\circ}$

(opposite \angle of a ||gm)

Let
$$\angle CDB = x^{\circ}$$

In $\triangle CDB$, we have

$$CD = CB \Longrightarrow \angle CBD = \angle CDB = x^{\circ}$$

$$\therefore \quad \angle CDB + \angle CBD + \angle DCB = 180^{\circ}$$

(angles of a triangle)

$$\Rightarrow x^{o} + x^{o} + 70^{o} = 180^{o}$$

$$\Rightarrow$$
 2x = 110, i.e., x = 55

Hence, $\angle CDB = 55^{\circ}$

- **Ex.23** ABCD is a rhombus with $\angle ABC = 56^{\circ}$. Determine $\angle ACD$.
- **Sol.** ABCD is a parallelogram

- $\Rightarrow \angle ABC = \angle ADC$
- $\Rightarrow \angle ADC = 56^{\circ} \quad [\Theta \angle ABC = 56^{\circ} (Given)]$

$$\Rightarrow \angle ODC = 28^{\circ} \quad [\Theta \angle ODC = \frac{1}{2} \angle ADC]$$

Now, $\triangle OCD$ we have,

$$\angle \text{OCD} + \angle \text{ODC} + \angle \text{COD} = 180^\circ$$

- $\Rightarrow \angle ODC + 28^\circ + 90^\circ = 180^\circ$
- $\Rightarrow \angle \text{OCD} = 62^\circ \Rightarrow \angle \text{ACD} = 62^\circ.$
- The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.
- The line drawn through the mid-point of one side of a triangle, parallel to another side, intersects the third side at its mid-point.
- **Ex.24** Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.
- **Sol.** Given : A trapezium ABCD in which AB || DC and P and Q are the mid-points of its diagonals AC and BD respectively.

To Prove : (i) $PQ \parallel AB$ or DC

(ii) $PQ = \frac{1}{2} (AB - DC)$

Construction : Join DP and produce DP to meet AB in R.

Proof : Since AB \parallel DC and transversal AC cuts them at A and C respectively.

$$\angle 1 = \angle 2$$
 (i)

[: Alternate angles are equal]

Now, in Δs APR and DPC, we have

 $\angle 1 = \angle 2$ [From (i)]

AP = CP [Θ P is the mid-point of AC]

and, $\angle 3 = \angle 4$ [Vertically opposite angles]

So, by ASA criterion of congruence

 $\Delta \text{ APR} \cong \Delta \text{DPC}$

$$\Rightarrow$$
 AR = DC and PR = DP(ii)

 Θ Corresponding parts of congruent triangles are equal

In \triangle DRB, P and Q are the mid-points of sides DR and DB respectively.

- \therefore PQ || RB
- $\Rightarrow PQ \parallel AB \qquad [\Theta RB is a part of AB]$
- \Rightarrow PQ || AB and DC [Θ AB || DC (Given)]

This proves (i).

Again, P and Q are the mid-points of sides DR and DB respectively in ΔDRB .

$$\therefore PQ = \frac{1}{2} RB \Rightarrow PQ = \frac{1}{2} (AB - AR)$$
$$\Rightarrow PQ = \frac{1}{2} (AB - DC) [From (ii), AR = DC]$$

This proves (ii).

- ♦ A diagonal of a parallelogram divides it into two triangles of equal area.
- For each base of a parallelogram, the corresponding altitude is the line segment from a point on the base, perpendicular to the line containing the opposite side.
- Parallelograms on the same base and between the same parallels are equal in area.
- A parallelogram and a rectangle on the same base and between the same parallels are equal in area.
- The area of a parallelogram is the product of its base and the corresponding altitude.
- Parallelograms on equal bases and between the same parallels are equal in area.

♦ EXAMPLES ◆

Ex.25 In the adjoining figure, ABCD is parallelogram and X, Y are the points on diagonal BD such that DX = BY. Prove that CXAY is a parallelogram.

Sol. Join AC, meeting BD at O.

Since the diagonals of a parallelogram bisect each other, we have OA = OC and OD = OB.

Now, OD = OB and DX = BY

 \Rightarrow OD – DX = OB – BY \Rightarrow OX = OY

Now, OA = OC and OX = OY

 \therefore CXAY is a quadrilateral whose diagonals bisect each other.

∴ CXAY is a ∥gm

- **Ex.26** Prove that the four triangles formed by joining in pairs, the mid-points of three sides of a triangle, are concurrent to each other.
- **Sol.** Given : A triangle ABC and D,E,F are the midpoints of sides BC, CA and AB respectively.

To Prove :

 $\Delta AFE \cong \Delta FBD \cong \Delta EDC \cong \Delta DEF.$

Proof : Since the segment joining the midpoints of the sides of a triangle is half of the third side. Therefore,

 $EF = \frac{1}{2}BC \implies EF = BD = CD \qquad \dots (ii)$

$$DF = \frac{1}{2}AC \implies DF = AE = EC$$
(iii)

Now, in Δs DEF and AFE, we have

$$DF = AE$$
 [From (ii)]

and,EF = FE [Common]

So, by SSS criterion of congruence,

 $\Delta \text{ DEF} \cong \Delta \text{ AFE}$

Similarly, $\Delta \text{ DEF} \cong \Delta \text{ FBD}$ and $\Delta \text{ DEF} \cong \Delta \text{ EDC}$

Hence, $\Delta AFE \cong \Delta FBD \cong \Delta EDC \cong \Delta DEF$

- **Ex.27** In fig, AD is the median and DE || AB. Prove that BE is the median.
- **Sol.** In order to prove that BE is the median, it is sufficient to show that E is the mid-point of AC.

Now, AD is the median in $\triangle ABC$

 \Rightarrow D is the mid-point of BC.

Since DE is a line drawn through the midpoint of side BC of \triangle ABC and is parallel to AB (given). Therefore, E is the mid-point of AC. Hence, BE is the median of \triangle ABC.

- **Ex.28** Let ABC be an isosceles triangle with AB = AC and let D,E,F be the mid-points of BC, CA and AB respectively. Show that $AD \perp FE$ and AD is bisected by FE.
- **Sol.** Given : An isosceles triangle ABC with D, E and F as the mid-points of sides BC, CA and AB respectively such that AB = AC. AD intersects FE at O.

To Prove : $AD \perp FE$ and AD is bisected by FE.

Constructon : Join DE and DF.

Proof : Since the segment joining the mid-points of two sides of a triangle is parallel to third side and is half of it. Therefore,

DE || AB and DE =
$$\frac{1}{2}$$
 AB

Also, DF || AC and DF =
$$\frac{1}{2}$$
 AC

 $But, AB = AC \qquad [Given]$

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC$$
$$\Rightarrow DE = DF \qquad \dots (i)$$

Now,
$$DE = \frac{1}{2}AB \Rightarrow DE = AF$$
 (ii)

and,
$$DF = \frac{1}{2}AC \Rightarrow DF = AE$$
(iii)

From (i), (ii) and (iii) we have

DE = AE = AF = DF

- \Rightarrow DEAF is a rhombus.
- \Rightarrow Diagonals AD and FE bisect each other at right angle.

AD \perp FE and AD is bisected by FE.

Ex.29 ABCD is a parallelogram. P is a point on AD such that $AP = \frac{1}{3}$ AD and Q is a point on BC such that $CQ = \frac{1}{3}$ BP. Prove that AQCP is a parallelogram.

Sol. ABCD is a parallelogram.

 \Rightarrow AP = CQ and AP || CQ

Thus, APCQ is a quadrilateral such that one pair of opposite side AP and CQ are parallel and equal.

Hence, APCQ is a parallelogram.

- **Ex.30** In fig. D,E and F are, respectively the midpoints of sides BC, CA and AB of an equilateral triangle ABC. Prove that DEF is also an equilateral triangle.
- **Sol.** Since the segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively.

$$\Rightarrow$$
 DE = $\frac{1}{2}$ AB (i)

E and F are the mid-points of AC and AB respectively.

$$\therefore \quad \text{EF} = \frac{1}{2} \text{BC} \qquad \dots \text{(ii)}$$

F and D are the mid-points AB and BC respectively.

$$\Rightarrow$$
 FD = $\frac{1}{2}$ AC

. -

Now, $\triangle ABC$ is an equilateral triangle

$$\Rightarrow AB = BC = CA$$
$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$
$$\Rightarrow DE = EF = FD$$

[Using (i), (ii) and (iii)]

Hence, ΔDEF is an equilateral triangle.

Ex.31 P,Q and R are, respectively, the mid-points of sides BC, CA and AB of a triangle ABC. PR and BQ meet at X. CR and PQ meet at Y.

Prove that
$$XY = \frac{1}{4}BC$$

Sol. Given : A \triangle ABC with P,Q and R as the mid-points of BC, CA and AB respectively. PR and BQ meet at X and CR and PQ meet at Y.

Construction : Join "X and Y.

Proof: Since the line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half of it. Therefore, Q and R are mid-points of AC and AB respectively.

$$\therefore RQ \parallel BC \text{ and } RQ = \frac{1}{2} BC \qquad \dots (i)$$

$$\begin{bmatrix} \Theta P \text{ is the mid} - \text{point} \\ \text{of } BC \therefore \frac{1}{2}BC = BP \end{bmatrix}$$

 \Rightarrow RQ || BP and RQ = BP

 \Rightarrow BPQR is a parallelogram.

Since the diagonals of a parallelogram bisect each other.

 \therefore X is the mid-point of PQ.

 $\begin{bmatrix} \Theta X \text{ is the point of intersection of} \\ \text{diagonals BQ and PR of } \parallel^{\text{gm}} \text{BPQR} \end{bmatrix}$

Similarly, Y is the mid-point of PQ.

Now, consider $\triangle PQR$. XY is the line segment joining the mid-points of sides PR and PQ.

$$\therefore \quad XY = \frac{1}{2} RQ \qquad \qquad \dots (i)$$

But
$$RQ = \frac{1}{2}BC$$
 [From (i)]

Hence, $XY = \frac{1}{4}BC$.

- **Ex.32** Show that the quadrilateral, formed by joining the mid-points of the sides of a square, is also a square.
- **Sol.** Given : A square ABCD in which P, Q, R, S are the mid-points of sides AB, BC, CD, DA respectively. PQ, QR, RS and SP are joined.

To Prove : PQRS is a square.

Construction : Join AC and BD.

Proof : In $\triangle ABC$, P and Q are the mid-points of sides AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC (i)

In \triangle ADC, R and S are the mid-points of CD and AD respectively.

$$\therefore \text{ RS} \parallel \text{AC and } \text{RS} = \frac{1}{2} \text{AC} \qquad \dots (\text{ii})$$

From (i) and (ii), we have

$$PQ \parallel RS \text{ and } PQ = RS \qquad \dots(iii)$$

Thus, in quadrilateral PQRS one pair of opposite sides are equal and parallel.

Hence, PQRS is a parallelogram.

Now, in Δs PBQ and RCQ, we have

PB = RC

$$\begin{bmatrix} \Theta \text{ ABCD, is a square} \therefore \text{ AB} = \text{BC} = \text{CD} = \text{DA} \\ \Rightarrow \frac{1}{2} \text{ AB} = \frac{1}{2} \text{ CD and } \frac{1}{2} \text{ AB} = \frac{1}{2} \text{ BC} \\ BQ = CQ \quad [\Rightarrow \text{PB} = \text{CR and } BQ = \text{CQ}] \end{bmatrix}$$

and $\angle PBQ = \angle RCQ$ [Each equal to 90°]

So, by SAS criterion of congruence

 $\Delta PBQ\cong \Delta RCQ$

$$\Rightarrow$$
 PQ = QR(iv)

 $[\Theta \ Corresponding parts of congruent \Delta s are equal]$

From (iii) and (iv), we have

$$PQ = QR = RS$$

But, PQRS is a \parallel^{gm} .

$$QR = PS$$

So, $PQ = QR = RS = PS$ (v)
Now, $PQ \parallel AC$ [From (i)]

$$\Rightarrow PM \parallel NO$$
(vi)

Since P and S are the mid-points of AB and AD respectively.

PS || BD

 $\Rightarrow PM \parallel MO$ (vii)

Thus, in quadrilateral PMON, we have

 $PM \parallel NO \qquad [From (vi)]$

$$PN \parallel MO \qquad [From (vii)]$$

- So, PMON is a parallelogram.
- $\Rightarrow \angle MPN = \angle MON$
- $\Rightarrow \angle MPN = \angle BOA \quad [\Theta \angle MON = \angle BOA]$
- $\Rightarrow \angle MPN = 90^{\circ}$ $z \begin{bmatrix} \Theta & \text{Diagonals of square are } \bot \\ \therefore & AC \bot BD \Rightarrow \angle BOA = 90^{\circ} \end{bmatrix}$
- $\Rightarrow \angle QPS = 90^{\circ}$

Thus, PQRS is a quadrilateral such that PQ = QR = RS = SP and $\angle QPS = 90^{\circ}$.

Hence, PQRS is a square.

- **Ex.33** $\triangle ABC$ is a triangle right angled at B; and P is the mid-point of AC. Prove that $PB = PA = \frac{1}{2}AC$.
- **Sol.** Given : \triangle ABC right angled at B, P is the midpoint of AC.

To Prove : $PB = PA = \frac{1}{2}AC$.

Construction : Through P draw PQ \parallel BC meeting AB at Q.

Proof : Since PQ || BC. Therefore,

$$\angle AQP = \angle ABC$$
 [Corresponding angles]

$$\Rightarrow \angle AQP = 90^{\circ}$$
$$[\Theta \angle ABC = 90^{\circ}]$$

But, $\angle AQP + \angle BQP = 180^{\circ}$

 $[\Theta \angle AQP \& \angle BQP$ are angles of a linear pair]

$$\therefore 90^\circ + \angle BQP = 180^\circ$$

$$\Rightarrow \angle BQP = 90^{\circ}$$

Thus, $\angle AQP = \angle BQP = 90^{\circ}$

Now, in \triangle ABC, P is the mid-point of AC and PQ || BC. Therefore, Q is the mid-point of AB i.e, AQ = BQ.

Consider now Δs APQ and BPQ.

we have,
$$AQ = BC$$
 [Proved above]

 $\angle AQP = \angle BQP$ [From (i)]

and, PQ = PQ

So, by SAS cirterion of congruence

$$\Delta APQ \cong \angle BPQ$$

 \Rightarrow PA = PB

Also,

$$PS = \frac{1}{2}AC$$
, since P is the mid-point of AC

Hence, $PA = PB = \frac{1}{2}AC$.

- **Ex.34** Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a rectangle is a rhombus.
- **Sol.** Given : A rectangle ABCD in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

To Prove : PQRS is rhombus.

Construction : Join AC.

Proof : In $\triangle ABC$, P and Q are the mid-points of sides AB and BC respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \qquad \dots (i)$$

In \triangle ADC, R and S are the mid-points of CD and AD respectively.

 \therefore SR || AC and SR = $\frac{1}{2}$ AC (ii)

From (i) and (ii), we get $PQ \parallel SR$ and PQ = SR(iii)

 \Rightarrow PQRS is a parallelogram.

Now, ABCD is a rectangle.

$$\Rightarrow AD = BC \Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$
$$\Rightarrow AS = BQ \qquad \dots (iv)$$

In Δs APS and BPQ , we have

$$AP = BP$$
 [: P is the mid-point of AB]

 $\angle PAS = \angle PBQ$ [Each equal to 90°]

and,
$$AS = BQ$$
 [From (iv)]

So, by SAS criterion of congruence

$$\Delta APS \cong \Delta BPQ$$

$$PS = PQ \qquad \dots (v)$$

[Θ Corresponding parts of congruent triangles are equal]

From (iii) and (v), we obtain that PQRS is a parallelogram such that PS = PQ i.e., two adjacent sides are equal.

Hence, PQRS is a rhombus.

IMPORTANT POINTS TO BE REMEMBERED

- 1. Sum of the angles of a quadrilateral is 360°.
- **2.** A diagonal of a parallelogram divides it into two congruent triangles.
- 3. Two opposite angles of a parallelogram are equal.
- 4. The diagonals of a parallelogram bisect each other.
- 5. In a parallelogram, the bisectors of any two consecutive angles intersect at right angle.
- **6.** If a diagonal of a parallelogram bisects one of the angles of the parallelogram it also bisects the second angle.
- 7. The angles bisectors of a parallelogram form a rectangle.
- **8.** A quadrilateral is a parallelogram if its opposite sides are equal.
- **9.** A quadrilateral is a parallelogram iff its opposite angles are equal.
- **10.** The diagonals of a quadrilateral bisect each other, iff it is a parallelogram.
- **11.** A quadrilateral is a parallelogram if its one pair of opposite sides are equal and parallel.
- **12.** Each of the four angles of a rectangle is a right angle.
- **13.** Each of the four sides of a rhombus of the same length.

- 14. The diagonals of a rectangle are of equal length.
- **15.** Diagonals of a parallelogram are equal if and only if it is a rectangle.
- **16.** The diagonals of a rhombus are perpendicular to each other.
- **17.** Diagonals of a parallelogram are perpendicular if and only if it is a rhombus.
- **18.** The diagonals of a square are equal and perpendicular to each other.
- **19.** If the diagonals of a parallelogram are equal and intersect at right angle, then it is a square.
- **20.** The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.
- **21.** A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
- **22.** The quadrilateral formed by joining the midpoints of the sides of a quadrilateral, in order, is a parallelogram.