
Answers to Some Questions in Exercises

- 11.5 Hydrogen bonding between alcohol and water molecules.
- **11.8** o-Nitrophenol is steam volatile because of intramolecular hydrogen bonding.
- 11.12 Hint: Carryout sulphonation followed by nucleophilic substitution.

12.19 The compound is methyl ketone and its structure would be: CH₃COCH₂CH₂CH₃CH₃

Chemistry 466

UNIT 13

- **13.1** (i) 1-methylethylamine or propan-2-amine
 - (iii) N-methyl-2-methylethylamine or N-methylpropan-2-amine (iv) 2-methylpropan-2-amine
 - (v) N-methylbenzenamine or N-methylaniline
 - (vii) 3-Bromoaniline or 3-Bromobenzenamine
- **13.4** (i) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_2H_5NH_2 < (C_2H_5)_2NH$
 - (ii) $C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2NH$
 - (iii) (a) p-nitroaniline < aniline < p-toluidine (b) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$
 - (iv) $(C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$ (v) $(CH_3)_2NH < C_2H_5NH_2 < C_2H_5OH$
 - (vi) $C_6H_5NH_2 < (C_2H_5)_2NH < C_2H_5NH_2$

UNIT 15

15.1 Polymer is a high molecular mass macromolecule consisting of repeating structural units derived from monomers.

Monomer is a simple molecule capable of undergoing polymerisation and leading to the formation of the corresponding polymer.

Natural polymers are high molecular mass macromolecules and are found in plants and animals. 15.2 The examples are proteins and nucleic acids.

Synthetic polymers are man-made high molecular mass macromolecules. These include synthetic plastics, fibres and rubbers. The two specific examples are polythene and dacron.

- **15.4** Functionality is the number of bonding sites in a monomer.
- Polymerisation is a process of formation of a high molecular mass polymer from one or more 15.5 monomers by linking together of repeating structural units with covalent bonds.
- **15.6** Since the unit $-(NH-CHR-CO)_n$ is obtained from a single monomer unit, it is a homopolymer.
- Polymer chains in elastomeric polymers are held together by weak intermolecular forces which 15.7 allow the polymer to be stretched. The cross links between the chains bring them back to the original position when the stretching force is removed.
- 15.8 In addition polymerisation, the molecules of the same or different monomers add together to form a large polymer molecule. Condensation polymerisation is a process in which two or more bi-functional molecules undergo a series of condensation reactions with the elimination of some simple molecules and leading to the formation of polymers.
- Copolymerisation is a process in which a mixture of more than one monomeric species is allowed 15.9 to polymerise. The copolymer contains multiple units of each monomer in the chain. The examples are copolymers of 1,3-butadiene and styrene and 1, 3-butadiene and acrylonitrile.
- 15.10

 $C_{6}H_{5}-C-\dot{O}-\dot{O}-C-C_{6}H_{5} \longrightarrow 2C_{6}H_{5}-C-\dot{O} \longrightarrow 2C_{6}\dot{H}_{5} + CO_{2}$ $C_{6}\dot{H}_{5}+CH_{2}=CH_{2} \longrightarrow C_{6}H_{5}-CH_{2}-C\dot{H}_{2}$

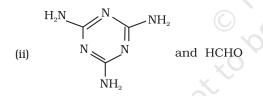
$$C_{6}H_{5}-CH_{2}-\dot{C}H_{2}+CH_{2}=CH_{2} \longrightarrow C_{6}H_{5}-CH_{2}-CH_{2}-CH_{2}-CH_{2}$$

$$\downarrow chain termination$$

$$C_{6}H_{5}+CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}-CH_{2}+CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}-CH_{2}+CH_{2}+CH_{2}-CH_{2}+CH_{2}+CH_{2}-CH_{2}+C$$

- **15.11** A thermoplastic polymer can be repeatedly softened on heating and hardened on cooling, hence it can be used again and again. The examples are polythene, polypropylene, etc.
 - A thermosetting polymer is a permanent setting polymer as it gets hardened and sets during

7 Answers...


- (ii) Propan-1-amine
- (vi) N-Ethyl-N-methylethanamine

moulding process and cannot be softened again. The examples are bakelite and melamine-formaldehyde polymers.


- 15.12 (i) The monomer of polyvinyl chloride is CH₂=CHCl (vinyl chloride).
 - (ii) The monomer of teflon is $CF_2=CF_2$ (tetrafluoroethylene).
 - (iii) The monomers involved in the formation of bakelite are HCHO (formal dehyde) and C_6H_5OH (phenol).
- **15.14** From the structural point of view, the natural rubber is a linear cis-1,4- polyisoprene. In this polymer the double bonds are located between C_2 and C_3 of isoprene units. This cis-configuration about double bonds do not allow the chains to come closer for effective attraction due to weak intermolecular attractions. Hence, the natural rubber has a coiled structure and shows elasticity.
- **15.17** The names and structures of monomers are:

(i)	Polymers Buna-S	Monomer Names 1,3-Butadiene Styrene	$\begin{array}{l} \textbf{Monomer Structures} \\ \text{CH}_2 = \text{CH} - \text{CH} = \text{CH}_2 \\ \text{C}_6 \text{H}_5 \text{CH} = \text{CH}_2 \end{array}$
(ii)	Buna-N	1,3- Butadiene Acrylonitrile	$\begin{array}{l} \mathrm{CH}_2 \texttt{=} \mathrm{CH} \texttt{-} \mathrm{CH} \texttt{=} \mathrm{CH}_2 \\ \mathrm{CH}_2 \texttt{=} \mathrm{CH} \mathrm{CN} \end{array}$
(iii)	Neoprene	Chloroprene	$\begin{array}{c} \text{Cl} \\ \text{I} \\ \text{CH}_2 = \text{C} \text{-} \text{CH} = \text{CH}_2 \end{array}$
(iv)	Dacron	Ethylene glycol	$OHCH_2-CH_2OH$
		Terephthalic acid	соон—Соон

15.18 The monomers forming the polymer are: (i) Decandioic acid HOOC – $(CH_2)_8$ – COOH and Hexamethylene diamine $H_2N(CH_2)_6$ NH₂

15.19 The following are the equations for the formation of Dacron.

