Chater-3

Object Oriented Programming

Program and Programing

We know that the group of instructions written in order to complete a certain task
is called a program and an operation in a computer is called an instruction. Generally, a
program can be seen as a logical process in which data is given (input), that data is
processed and then, as a result, we get data. To solve a problem by computer, it has to be
changed in such a way that computer can understand, this process is called programming.
To prepare this, we use some languages,such as Fortran, Pascal, Cobol etc. These lan-
guages are procedural languages. By the year 1960-70s, these languages were used very
effectively, but by this time the programs were becoming big and complex.

3.1 Unstructured programming

While learning programming, we prepare small and simple programs at the initial
level, they have one main program. Main program means - a set of instructions in which
the data is available throughout the program and those data can be changed. See Figure
3.1

Program

Main Program

Figure 3.1: Unstructured Programming - program processes data directly

When size of a program increases, this kind of programming leads to a lot of
problems. For example, if a group of same instructions has to be re-used, we will have to
re-write that group, this unnecessarily will increase the size of program.It is natural to
have difficulties to improve such a program. The solution to this problem came out that as,
this group of instructions should be taken out from the main program and given a new
name, and reference of that name should be used in the main program. Thus, formed the
basis of procedural programming,in which other programs can be used in a main program.
These programs can be understood as helpful processes, which we call procedures.

(120)

3.2 Procedural Programming

With the help of procedural programming, the size of program can be reduced,
chances of errors are less and, maintenance is also easier. When a procedure is called in
the main program, the control of the program goes to that procedure, the computer oper-
ates that group of instructions (procedure). After the completion of that group, the control
goes back to the instruction written next in the main program. See Figure 3.2

—_— - —
!
I.
]
4

Figure 3.2: Execution of Procedure

In the main program, the control of program transfers to the procedure, instruc-
tions written in procedure are executed, control comes to the next statement in the main
program.

With the help of procedures, we are able to reduce the size of program, and make
it an error-free.

Now, we can assume that one program is a series of many procedures. Each
procedure is called from the main program, the data is processed and the results are
transmitted to the main program. Thus, when the whole series is completed, the main
program gets the final result. The data is transferred from main program in the form of
parameters. See figure 3.3

ki Boraywan
[orta

// -,
y =
P Rt

| Procaduie || Fiesad gk || Froe gduie |

Figure 3.3: Procedural Programming - In the control of main programs - Procedure
execution and data exchange.

So now we can say that the main program is divided into small segments which
are called procedures. Common types of procedures that can be used in other programs,
and likewise, the processors created by the user themselves can also work in another
program, it is necessary that the procedures can be stored separately.

(121)

3.3 Modular Programming

In modular programming, the procedures are collectively stored in groups, which
are called modules. In general, the procedures which are meant for similar kind of pro-
cessing are kept in one module. The purpose is to get all of them at one place. These
stored procedures can be used directly in the main program. The main program is divided
into very small pieces and data processing is done through the procedures. See figure 3.4

~

Module
datal

I

MCn Prograrmm
Cata

Procedura

Figure. 3.4 : Modular Programming -Calls of procedures from different modules are
coordinated in the main program, appropriate data is handled as parameters.

Each module has its own data. When the procedures of a module are used, each
module maintains its internal system of data. But a module can be present in a program

only once at a time.

3.4 Benefits of Procedural and Modular Programming Languages

N

hMociul=1
data

Frocedure?

0 Very good for general programming

0 Solution code may be available for many problems, so it may not be necessary to
repeat coding for the same.

0 As required in case of machine languages, knowledge of hardware is not neces-
sary.
0 Programs written in such languages can be run on another CPU after translating

with the help of different compilers.

Limitations

0 Availability of many languages, the programmer has to stick to one language, and

N

Procadurs2

different languages require different types of expertise.

(122)

0 In-depth knowledge of language-specific programming instructions is necessary.

0 For problems requiring artificial intelligence, where logic is fuzzy (logical), proce-
dural languages are not suitable.

3.5 Concept of Object-Oriented Programming

Object-Oriented Programming is different from procedural programming.Programs
are based on classes and objects in such languages. Objects-classes are used with the
help for methods written in them. Before the development of OOP, procedural languages
were used. Programming instructions and data are separate entities in such languages and
for this reason, chances of errors are high in such programming. This problem becomes
more serious when the programs become lengthy, i.e. the number of instructions is higher
or the problem itself is a complex one.

Object1 ’ Object2
Data [~ Dala
\\—\K
"H“‘h. .fll‘l
> s
| Objeat3 [
e Data
Object3

Figure 3.5: Object-Oriented Programming
3.5.1 Object

In OQP, an object is considered as an entity. Everything that is in existence and
which can be seen, touched or felt logically is an object. It is quite possible that an object
is a group of other small objects. One object can perform many activities. These activities
define the behavior of the object. For example, a two-wheeler is an entityand this two-
wheeler is made up of many other entities like wheels, seat, handle, pedals etc. We know
that there are many two-wheelers which have some or all features, for example, bicycle,
bike or scooter. At the same time pedals will not be present in all two wheelers. Another
example, if we consider that "Student" is an object, to which we can relate information like
student's name, address, class. Similarly, StudentStatus can be another object that which
may contain details about presence, subject, exam_score, exam_results etc. Objects store
data and instructions, and they are created for special processing. Object can be used
through the available instructions in the language. An object can also call another object to
perform an action through messages. The object to request the object to act through the
data or the instruction is called Sender Object and the object that receives is called the
Receiving Object.

(123)

Sending
Object

Message Receiving

Object

qSeniler
Command

Figure. 3.6 Object

The control of the implementation now comes to the receiving object and it re-
mains until the instruction is completed. After execution of the instruction, the control goes
back to the sender object. For example, if we consider two objects -exam and student.
Exam object, uses the student object to get the name of the student.

Sender object can also send information to the recipient object through message,
it is called argument. The recipient object generally returns a value to the sender object.
This value is used by the sender object in further processing. For example, the StudentStatus
object wants to change the value of the student's attendance, for that he sends the new
value into a message as a parameter. In this example the value returned by the receiving
object will be ignored.

3.5.2 Method

How does the receiving object understand messages received from the sender
object? How are those messages processed, and the parameters obtained with them are
processed? When an object receives a message, the program code that accompanies that
message is executed. In other words, these messages determine how the behavior of an
object will be and the program code written in the object determines what the object will
do. The code associated with the message is called method.

When the object receives a message, that message also contains the name of the
method.It determines which program code will be executed and control is transferred to
that code for execution.

We know, in procedural languages, a procedure is a group of instructions. method
is also a group of instructions. The program code written is a method is similar to code in
a procedure. Sending a message to an object is like invoking or calling a procedure.

3.5.3 Class

An object comes in to picture when execution of program takes place. While
writing the code, we define it through class. Class is a data type and object is a variable.
After defining the class, we can make its object variable as per the requirement. The data
and program code that we write in definition, are consistent with the need for program-
ming. They are called member data and member functions.

(124)

class
memoser catal
MEmoaer cata?
member functionl
member function

chiect ahject

member data? member data?

Figure. 3.7 Class
3.6 Characteristics of OOP
Reusability

Assume that we write a program to solve one problem and we have some similar
more problems. There are all the chances that we need to write programs again to solve
such problems because one program written to solve a problem may not be useful in
solving similar other problems.This happens because in traditional programming, data and
programs are kept separate. For example, the new problem for which we need to write
program is exactly same except the data types. We need different data types in our new
problem. Similarly, there may be slight changes required in the logic, most of the code
remains the same. Still, we need to write the program again as the old program cannot
work in such situations. Object-Oriented programming is a system in which solutions can
be written for new problems while changing the available solutions.It means we do not
have to try again from the beginning to program for the new problem. We have already
developed programs. What we need to do is make some changes according to our need.
Reusability is possibly one of the most important features of Object Oriented Program-
ming.

Encapsulation

In procedural languages, the data and the processes which will use that data are
defined separately. In object-oriented programming, as we go about defining the class, we
write the data and the processes together. These processes are called methods. This is
called encapsulation. The abstraction implies that whatever data is defined in a class, it
can be used without further explanation and details. The advantage of encapsulation and
abstraction is that the use of data structures and symbols is the same as the programmer
has thought of while defining them. In this way, the information given in the class is hidden
(information hiding) by which the programming becomes more secure.

(125)

Polymorphism

The behaviour and implementation of an object are different. Many objects may
work for the same message or the same object can be used in different forms. The form
of an object may vary according to the requirement at the time of execution. For example,
we define a class as 'addition' for mathematical addition operation. In this class we define
a method called 'add', in which we write the code to add two integer variables. In the
same class there is another method called add, in which we write the code to add two float
variables. Now,at the time of execution of the program, if two integer variables are used
while the add method, the first method will come in action, and if two float variables are
used, the second method will come in action. Here the point to note is that, there are two
methods with the same name but the desired method will be used depending on the data
sent at the time of execution. The same name is being used in different forms. Due to
arrangement of polymorphism, the exchange of messages between the sender object and
the receiving object becomes possible.

Inheritance

Inheritance is another important concept in object-oriented programming. After
defining a class, if we have to define another class - a class whose properties are the
same as the first class and we want to add some other properties - we can do it by use of
inheritance. In such a system, we are also using reusability, due to this reason there is no
need to do all the work again which we did while defining the first class. This also saves
time and facilitates maintenance of the program.The class taking the property of a class is
called a Sub Class or Derived Class, and the class from which properties are forwarded is
called Super Class or Base Class.

3.7 Object-Oriented Problem Solving Approach

Object-oriented programming approach is similar to the approach we follow in
our daily life to find solutions to problems. We identify the real-life objects that are helpful
in solving the problem and use them in a certain order. We usually do it to solve our
problems. Think about the objects in problem and use them to solve the problem. While
programming, we create objects that can solve the problem. Based on the messages sent
to the object, there are different operations are performed which solve the problem.

The process of resolving an object-oriented problem can be divided into four
phases.

1. Identify the problem

2. Identify the objects needed for the solution

3. Identify messages to be sent to the objects

4. Create a sequence of messages to the objects that solve the problem.

(126)

3.8 Benefits of Object-Oriented Programming

(O

3.9

Programming is easy. After examining a class thoroughly, the convenience of
using in the work decreases the likelihood of errors.

Class can be considered as a "black box".We don't need to have the internal
details of a class to use it. Methods available in a class can be used without the
knowledge of details.

Unnecessary effort of writing the same type of programs is avoided. A class can
be used directly as per our requirement. In other words, program code can be
reused.

With the help of different compilers, code can be made in conformance with
another CPU, which means code-portability is available.

C++ Basic Elements

C ++ uses the class to use the concept of objects. Keyword 'class’ is used to

create a class. Class is a user-defined data type that a programmer can use to define a
real-time object for its programming, and then programming through a resource based on
it. While defining we do not create objects, but make a model which is called a class. We
make objects using class as per the requirement. For example, we define a class named
student, and, in the program, can create different objects for different courses according
to our need.

Each class has some features defined in it, these are the characteristics which we

want in an object.They are called attributes of an object. It is not necessary that all the
attributes are required in each object.We can create another class which has all the at-
tributes the first class andsome new attributes too. This feature is available to us through
inheritance.

Example

class class_name

{

private:

Data_Members;

Member_Functions;

public:

Data_Members;

(127)

Member_Functions;
|5

We create object to use class, which we call instance of a class. Class is a
definition and an object a variable. A class contains variables known as data members,
and procedures to handle these variables known as ember functions.

Each programming language is a set of symbols, specific words and rules. A
program is written using all of these. There are some elements that are found in every
language. We now discuss some of the elements available in C++.

Character Set

Group of characters which is recognized in a language is known as Character

Set.
Letters A-7Z,a-z
digits 0-9

Special Characters Space + - * / MO []{}=!=><""$,;:% & ?7#<=
(faely 2ErR) >=@

Formatting characters backspace, horizontal tab, vertical tab, form feed and carriage
return

3.10 Tokens

A token is a group of characters. Programmer writes program using these to-
kens. Tokens available in C++language are: Keywords, Identifies, Literal, Integer Con-
stants.

Keywords

C++ language has certain words which are already defined in the language. They
are reserved words. Meaning of these words is already known to the compiler and pro-
grammer cannot change that meaning.

Identifiers

C++ provides a feature of using symbolic names (identifiers) for various data
elements (variable, function, class, module, or any other user-defined item) in C ++ is
available to the programmer. These names are created by taking the letters from the C ++
character set. The rules for making the name are as follows:

0 An identifier may have alphabets (A-Z, a-z), digits (0-9), and / or under score (_)
in the name.

(128)

0 The initial character cannot be a number.
0 It should not be a reserved word.
Literals

Those data elements whose value cannot be changed in the program are called
literals.

¢ Integer constant : Integer constants mean whole numbers which do not have any
fractional part. C++provides three types of integer constants.

¢ Decimal Integer Constant: Numbers, first digit cannot be zero. Example: 78, -168, +4

¢ Octal Integer Constant: Numbers,first digit is zero. Example: 014.

¢ Hexadecimal Constant:Numbers, first two characters are ox or OX. Example:
0X24C

Character Constant: One or more character which are written within single
quotation marks, for example 'A’, '4', \t'. The characters which cannot be printed directly
using keyboard, like tab, backspace, are printed using escape sequence.

Floating Constant: Fractionalnumbers.These can be written in fractional form
or exponential form, example -0.342, 314159E-5

String Constant: Sequence of characters written in double quotation marks is
known as string constant. \0' is added at the end of string, which denotes the end of string.
Example, "TECHNOLOGY" will be stored in memory as "TECHNOLOGY\0"and its
size will be 12 characters.

Data Types

Basic Data Types

Type Keyword
Boolean bool
Character char
Integer int
Floating point float
Double floating point double
Valueless void

Wide character wchar_t

(129)

Following data type modifiers can be used to change the basic data types.

¢ signed

¢ unsigned
14 short

¢ long

Various variable types, how much memory would be needed to store the value in
memory, and what is maximum and minimum value which can be stored in those vari-
ables, is shown in the following table.

Type Typical Bit Width Typical Range

char 1byte -127to 127 or 0 to 255
unsigned char 1byte 0 to 255

signed char 1byte -127to0 127

int 4bytes -2147483648 102147483647
unsigned int 4bytes 0104294967295

signed int 4bytes -2147483648 t0 2147483647
short int 2bytes -32768 to 32767

unsigned short int Range 0to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,648 t0 2,147,483,647
signed long int 4bytes same as long int

unsigned long int 4bytes 0t04,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)
double 8bytes +/- 1.7e +/- 308 (~15 digits)
long double 8bytes +/- 1.7e +/- 308 (~15 digits)
wchar_t 2 or 4 bytes 1 wide character

(130)

Depending upon the compiler and the computer you are using, the size of data
types in memory may differ from what is shown here.

Input-Output

In the standard library of C++, there is one header file called - iostream.h, which
may be used to read data from keyboard and display it on the screen.

Following C++stream objects may be used for input-out
cout console output
cin console input
cout object
cout is used to display message on screen using << insertion operator.
cout<< "Hello World";displays Hello world on screen
cout<< 250; // displays number 250 on screen
cout<< sum; // displays the value of variable sum on screen

If variable and constant are to be displayed in combination, << can be used more
than once. Example

cout<< "Area of Crop Field is "<< area<< " square meter" ;
cin object

cin is used to input value using keyboard by the user. To store the value in memory
>> extraction operator is a must.

cin >> marks; // Data will be received from keyboard and will be stored in variable marks.

(131)

Important Points

1.

With the help of procedural programming, the size of the program can be reduced,
thereby reducing the chances of errors.

In modular programming, the procedures are collectively stored in modules.
Procedural languages are suitable for general programming.

For problems requiring artificial intelligence, where logic is fuzzy, procedural lan-
guages are not compatible.

Class is a data type and object a variable.

To program for a new problem, we do not need to try again from the beginning, by
making changes in the program already made, we can get the same solution.

When defining a class, we write data and code together. This is called encapsula-
tion.

Abstraction means that whatever data or function is defined in a class, it can be
used without further explanation and explanation.

At the time of execution of the program, the object may be as per our require-
ments.

A method in object-oriented programming is similar to what is a procedure in
procedural programming.

In the context of procecudural Programming methods are group of those instruc-
tions. Method and programe code written is code of procedure.

Exercises

Objective Type Questions

1.

The ability to have different forms

A. Inheritance B. Polymorphism
C. Member function D. Encapsulation
The process of taking out an object's properties is called

A. Polymorphism B. Inheritance

C. Reusablisty D. Data hiding
What facilities in C++ makes it a strong language?

A. Easy implementation B. Reusing old code

(132)

10.

C. Writing new code D. All of the above

Which facility is not available in C++7?

A. Encapsulation B. Abstraction

C. Polymorphism D. Exceptions

To be called 'object-oriented', a programming language must have facility for

A. Encapsulation B. Abstraction

C. Polymorphism D. All of these

Which statement is not true?

A. To perform a specific task, part of the code is called a function

B. With the help of a function, large and complex programs can be divided

into small and simple.
C. Functions are helpful to carry out common tasks using the available code.
D. A function can be used only once in a program.
A function defined in a class is called
A. Member Variable B. Member function
C. Class function D. Classic function

In OOP which concept means "Only the information required is communicated
outside the object"

A. Encapsulation B. Abstraction
C. Data hiding D. Data binding

Which approach is better for saving information and understanding real-time ex
amples, like information about vehicle or employee?

A. Procedural Approach B. Object Oriented Approach
C. Modula Approach D. None of the above
Advantages of object-oriented programming

A. Re-use of code B. Better use of code

C. Error free D. All of the above

Very Short Type Questions

1.

2.

Likelihood of errors in procedural programming are less because the size of the
program can be (reduced)

First O in OOP is (Object)

(133)

3. Data and may be taken in a new class, in hierarchy.

4. In C++, class is @ ..cooeennenee. data type.
5. An advantage of ReusabilityiS........cc.cceevueenne (Ability to use already written
code)

Short Type Questions

1. Differentiate between class and object.

2. Differentiate between procedure and method.
3. What are the tokens in C ++?

4. What are the character constants in C ++?

5. What are the data type modifier?

Essay Type Questions

9. Explain the characteristics of OOP.

10. Describe basic data types of C++.

11. Explain the use of 'cin'and'cout' with the help of examples.

12. Differentiate between Encapsulation and Abstractation.

Answer Key
.B 2.D 3D 4D 5D 6D 7.B 8C 9.B 10D

(134)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283

