

Let C, D be the centres $andr_1, r_2$ be the radii of two circles.

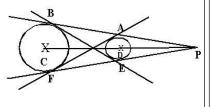
a) If $CD = r_1 + r_2$ then the two circles touch each other externally.

Then we can draw three common tangents to the circles.

aw an-

b) If $CD = |r_1 - r_2|$ then the two circles touch each other internally. Then we can draw one common tangent to the circles.

c) If $|r_1 - r_2| < \text{CD} < r_1 + r_2$


then the two circles intersect each other.Then we can draw two common tangents to the circles.

d) If $CD < |r_1 - r_2|$ then one circle entirely lies inside the other circle. Then we cannot draw common tangent.

e) If CD > $r_1 + r_2$ then the two circles do not intersect.

Then we can draw four common tangents to the circles.

- The concurrect point of two direct common tagents and line of thier centres to two intersecting and non- intersecting circles, is called external centre of similitude.
- s=0 and s'=0 be two circles with centres c_1, c_2 and radii " r_1 " and " r_2 ". The point which divides c_1c_2 in the ratio $r_1 : r_2$ internally is called the internal centre of similitude and the point which diivides externally is called the external centre of similitude.

Length of the direct common tangent of the circle

is
$$\sqrt{d^2 - (r_1 - r_2)^2}$$
.

- Length of the transverse common tangent of the circle is $\sqrt{d^2 (r_1 + r_2)^2}$.
- If d is distance between the centres, r_1 , r_2 are the raddi of two intersecting circles then the angle be-

tween the circles is $\cos^{-1}\left(\frac{d^2 - r_1^2 - r_2^2}{2r_1r_2}\right)$.

- If $d^2 = r_1^2 + r_2^2$ then the angle betwee the two circles is 90°.
- If θ is angle between the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ then

$$\cos\theta = \frac{(c+c_1) - 2(gg_1 + ff_1)}{2\sqrt{g^2 + f^2 - c}\sqrt{g_1^2 + f_1^2 - c_1}}$$

If the circles cut each other orthogonally then

 $2gg_1 + 2ff_1 = c + c_1$.

Two circles with centres c_1 , c_2 and radius "r" cut

each other orthogonally. Then $r = \frac{c_1 c_2}{\sqrt{2}}$.

- Two circles of radii r_1 , r_2 cut orthogonally then area included between the circles is $r_1^2 \tan^{-1}(r_1/r_2) + r_2^2 \tan^{-1}(r_1/r_2) - r_1r_2$.
- If P and Q are conjugate points with respect to the circle s = 0 then the circle on PQ as diameter cuts the circle s = 0 orthogonally.
- The lengths of the tangents from P to two circles are equal then the locus of P is called the radical axis of the two circles. The radial axis of two circles is a straight line perpendicular to the line joining to the centres of the two circles.
- The equation of the radical axis of the circles s = 0 and $s^1=0$ is $s s^1 = 0$
- If two circles intersect each other then their common chord is radical axis of the two circles.

If two circles touch each other then their radical axis is the common tangent at the point of contact.

•

- The locus of the centre of a circle which cuts the given 2 circles orthogonally is the radical axis of the given two circles.
- The point of intersection of the radical axes of three circles whose centres are not collinear is called the radical centre of the three circles.
- The lengths of the tangents from the radical centre of 3 circles to the 3 circles are equal.
- If P is the radical centre of three circles and PA is the length of the tangent from P to one of the three circles then the circle whose centre is P and radius is PA cuts the three circles orthogonally.
- The radical centre of the three circles described on the sides of a triangle as diameters is the orthocentre of the triangle.
- If A, B, C are the centres of three circles which cut each other orthogonally then the radical centre of the three circles is the ortho centre of the triangle ABC.
- If A,B,C are the centres of three circles which touch each other externally then the radical centre of the 3 circles is the in centre of the triangle ABC.
- In a system of circles if every pair of circles has the same radical axis then that system of circles is called a coaxal system of circles.
- In the coaxal system of circles the radical axis of any two circles is called the common radical axis of the coaxal system.
- In the coaxal system of circles the centres of all the circles are collinear and this line is called the line ofcentres of the circles of the coaxal system.
- In the coaxal system of circles the common radical axis is perpendicular to the line of centres of the circles of the coaxal system.
- The point circles of a coaxal system are called limiting points of the coaxal system.
- The limiting points of the coaxal system lie on the line of centres of the circles of the coaxal system.
- If 2 circles of a coaxal system intersect each other then that coaxal system has no limiting point.
- If two circles of a coaxal system touch other than that coaxal system has only one limiting point.

- If two circles of a coaxal system do not intersect then that coaxal system has two limiting points. These 2 limiting points lie on opposite sides of the common radical axis of the coaxal system.
- If (0,0) is one limiting point and $x^{2} + y^{2} + 2gx + 2fy + c = 0$ is one circle of a coaxal system then the other limiting point is

$$\left(\frac{-gc}{g^2+f^2},\frac{-fc}{g^2+f^2}\right)$$

If (x_1, y_1) is a limiting centres C1 & C2 and radius a cut each other orthogonally. Then

$$a = \frac{C1 C2}{\sqrt{2}}.$$

٠

•

•

•

- The circle with common tangent of two circles of a coaxial system as diamater passes through the limiting points of the coaxial system (i.e). The common tangent of any two circles of a coaxial system subtends a right angle at each of the limiting points of the coaxial system.
- If a coaxal system has two limiting points then those two points are inverse points with respect to every circle belonging to the coaxal system.
- In a coaxal system if we take the line of centres of the circles as x axis and the common radical axis as y-axis then the equation of the coaxal system in the simplest form is $x^2 + y^2 + 2\lambda x + c = 0$ where λ is a variable. The limiting points of the above coaxal system are $(\pm \sqrt{c}, 0)$.
- The equation of the circle which cuts every circle of the coaxal system $x^2 + y^2 + 2\lambda x + c = 0$ (λ is a variable) orthogonally is $x^2 + y^2 + 2fy - c = 0$, (f is variable)
- The equation $x^2 + y^2 + 2fy c = 0$ where f is a variable represents a coaxal system of circles. Its line of centres is the y axis and common radical axis is the x axis. Its limiting points are $(0, \pm \sqrt{-c})$
- In two coaxal systems if every circle of one coaxal system cuts every circle of the other coaxal system orthogonally then those two coaxal systems are called orthogolal coaxal systems or conjugate coaxal systems.

•	If $s = 0$ and $s^1=0$ are two circles of a coaxal		3) in-centre 4) Circumcentre
	system then the equation of the coaxal system is	4.	$S = 0$ and $S^1 = 0$ are the equations of the two
	S+ λ S ¹ =0 where λ is a variable.		circles. If $\lambda + \lambda^{I} = 0$ then the equation
	If $c < 0$ then the circles of the coaxal system		$\lambda_{s} + \lambda_{s}^{1} = 0$ represents
	-		1) the common tangent of the circles $s = 0$ and
	$x^2+y^2+2 \lambda x+c=0$ intersect each other.		s ¹ =0
•	If $c = 0$ then the circles of the coaxal system		2) the line perpendicular to the line joining centres
	$x^2+y^2+2 \lambda x+c=0$ touch at the origin.		of the circles 3) a circle
•	If $c > 0$ then the circles of the coaxal system		 the line parallel to the line joining the centres of the circles
	$x^2+y^2+2 \lambda x+c=0$ do no intersect.	5.	A, B, C are the centres of three circles which cut
•	The equation of a tangent to the circle		each other orthogonally. The radical centre of the
			three circles is of the $\triangle ABC$
	$x^2 + y^2 + 2gx + 2fy + c = 0$ and having slope		1) Incentre 2) Centroid
	ʻm'is		3) Ortho centre 4) Circum centre
	$y+f=m(x+g)\pm\sqrt{g^2+f^2-c}\ \sqrt{1+m^2}$.	6.	If two circles cut a third circle orthogonally then the radical axis of the two circles passes through
1.			1) Radical centre 2) Origin
	Two circles whose radii are r_1 and r_2 and whose		3) Centre of the third circle
	distance between the centres is 'd' cut each other orthogonally. Then the length of their common		4) cannot be determined
	orthogonally. Then the length of their common	7.	If the radical axis of the circles with centres C_1, C_2
	chord is $\frac{2r_{1}r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$.		bisects $\overline{C_1C_2}$ then their radii are
	$\sqrt{r_1^2 + r_2^2}$.		1) unequal 2) can not say
•	If θ is the angle between two circles with centres		3) equal 4) one is square of other
	-	8.	The locus of a point which moves such that the
	r_1 and r_2 then length of the common chord is		sum of the squares of its distances from three
	$\frac{2r_1r_2\sin\theta}{2r_1r_2\sin\theta}$		vertices of a triangle ABC is constant is a circle
	$\overline{\sqrt{r_1^2+r_2^2+2r_1r_2\cos\theta}}.$		whose centre is at the 1) centroid of triangle ABC
.	Let L, L^1 are the limiting points of a coaxal sys-		2) Circumcentre of triangle ABC
	tem. C be the centre of a circle system and "r" be		3) Orthocentre of triangle ABC
	·		4) incentre of triangle ABC
	the radius of the circle then $LL^1 = 2\sqrt{CM^2 - r^2}$,	9.	If three circles are mutually orthogonal and their
	where CM is the perpendicular distance from C		centres are the vertices of a triangle then the radical centre of the three circles is of the triangle
	to the radical axis. CONCEPTUAL QUESTIONS		1) circumcentre 2) orthocentre
1.	Radical axis exists for		3) incentre 4) centroid
 ¹	1) any two circles	10.	The polars of a point on the R.A. of a coaxal system
	2) any two concentric circles		meet on
	3) any two non-concentric circles 4) Can't say		1) the line of centre 2) at infinity
2.	If A, B, C are the centres of three circles which		3) the R.A
	touch each other externally then the radical centre		4) at the point of intersection of radical axis and
	of the three circles is of the \triangle ABC	11.	line of centres. The locus of a point the lengths of the tangents
	1) ortho centre 2) Circum centre	11.	from which to the circles are in a constant ratio is
	3) Centriod 4) in-centre		a circle
3.	The radical centre of three circles described on the sides of a triangle as diameters is		1) cuting them orthogonally
	the sides of a triangle as diameters is of		2) touching each other externally
	the \triangle ABC		3) coaxal with them
	1) Ortho centre 2) Centroid		4) lying inside the circles
SR. M	MATHEMATICS 2	98	SYSTEM OF CIRCLE

12. The locus of a point such that difference of the $2rR\sin\theta$ squares of the tangents from it to two given circles 1) $\sqrt{r^2 + R^2 - 2rR\cos\theta}$ is constant, is given by 1) A circle 2) $\frac{2rR\sin\theta}{\sqrt{r^2+R^2}}$ 2) A line perpendicular to radical axis 3) A line parallel to radical axis 4) A pair of straight lines 3) $\frac{2rR\sin\theta}{\sqrt{R^2+r^2}}$ r_1 , r_2 are the radii of two non - intersecting circles 13. A, B as centres. If P is the centre of AB then the 4) $\frac{2rR\sin\theta}{\sqrt{r^2+R^2+2rR\cos\theta}}$... perpendicular distance of P from their radical axis is 1) $\frac{r_1^2 + r_2^2}{2AB}$ 2) $\frac{|r_1^2 - r_2^2|}{2AB}$ 3) $\frac{|2AB|}{|r_1^2 - r_2^2|}$ 4) AB KEY 02.4 03.1 04.2 01.3 05.3 08.1 06.3 07.3 09.3 10.3 14. The locus of the centres of the circles which touch 11.3 12.3 13.2 14.3 15.4 the given two circles externally is 1) Pair of lines 16.1 17.1 18.4 2) Ellipse 3) Hyperbola 4) Circle LEVEL-1 The length of the transverse common tangent of 1. 'O' is the origin and $A_k(x_k, y_k)$ where k = 1.2 15. the circles $x^2 + y^2 - 2x + 4y + 4 = 0$ and $x^2 + y^2 +$ are two points. If the circles are described on OA_1 4x - 2y + 1 = 0 is and OA_2 as diametres, then the length of their 1) $\sqrt{17}$ 2) 3 3)9 4) $\sqrt{15}$ common chord is equal to If the distance between the centres of two circles 2. of radii 3, 4 units is 25, then the length of their 1) $|x_1y_2 - x_2y_1|$ 2) $\frac{1}{2}|x_1y_2 - x_2y_1|$ transverse common tangent is 1) 24 2) 12 3) 26 4) 13 3) $\frac{1}{2}A_1A_2$ 3. The length of the direct common tangent of the 4) $|x_1y_2 - x_2y_1| / A_1A_2$ $x^{2} + v^{2} - 4x - 10v + 28 = 0$ circles and If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the 16. $x^{2} + v^{2} + 4x - 6v + 4 = 0$ is circumference of the circle $x^2 + y^2 + 2g_1x + 2f_1y +$ $c_1 = 0$ then 3) $\sqrt{20}$ 1) 2 2)4 4) 16 1) $2g_1(g-g_1)+2f_1(f-f_1)=c-c_1$ 4. The number of common tangents that can be drawn to the circles $x^2 + y^2 - 12x + 8y + 48 = 0$ and 2) $2g_1(g-g_1)+2f_1(f-f_1)+c-c_1=0$ $x^2 + y^2 - 4x + 2y - 4 = 0$ is 2)4 1)03) 2 4)33) $g_1(g-g_1) + f_1(f-f_1) = c - c_1$ The circles $x^2+y^2+4x-2y+4=0$ and $x^2+y^2-2x-2y^2+4=0$ 5. 4) $2g(g-g_1)+2f_1(f-f_1)=c-c_1$ 4y - 20 = 01) intersect each other If a circle cuts three circles S = 0, $S^1 = 0$ and S^{11} 17. 2) touch each other externally = 0 orthogonally then its equation is 3) touch each other internally $\lambda_1 S + \lambda_2 S^1 + \lambda_3 S^{11} = 0$ 4) are such that one circle lies entirely inside another circle. 1) $\lambda_1 S + \lambda_2 S^1 + \lambda_3 S^{11} = 0$ If the circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $5(x^2)$ 6. 2) $\lambda_1 S + \lambda_2 S^1 = 0$ $+y^2$) - 8x - 14y - 32 = 0 touch each other then the point of contact of the circles is 3) $\lambda_1 S^1 + \lambda_2 S^{11} = 0$ 4) $\lambda_1 S + \lambda_2 S^{11} = 0$ 1) (1, -1) 2) (-1, 1) 3) (1, 2)(-1, -1)18. Two circles of radii r and R intersect at an acute angle θ . The length of their common chord is

If the circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + c = 0$ 2by + c = 0 touch each other then 1/c =1) $a^2 + b^2$ 2) $\frac{1}{a} + \frac{1}{b}$ 3) $\frac{1}{a^2} + \frac{1}{b^2}$ 4) a + b If the circles $x^2 + y^2 + kx + y = 0$ and $x^2 + y^2 + 4x$ 8. - 2y = 0 touch each other then k = 4) $\frac{-1}{2}$ 3) -4 1) -2 2) 2 9 If the circles $(x+1)^2 + (y-1)^2 = a^2$ and $x^2 + y^2 - 4x$ + 6y - 3 = 0 have three common tangents only then $a^2 - 2a + 1 =$ 1)12) 0 3) 64 4) -1 If the circles $x^2 + y^2 = c^2$ and $x^2 + y^2 + 2ax = 0$ 10. touch each other then 1) $a^2 = c^2$ 2) $2a^2 = c$ 3) $4c^2 = a$ 4) $4a^2 = c^2$ 11 If the circles $x^2 + y^2 + 2ax + 2by + c = 0$ and x^2 $+y^{2}+2bx+2ay+c=0$ touch each other then 1) $(a - b)^2 = 2c$ 2) a + b = 2c3) $(a + b)^2 = 2c$ 4) $(a + b)^2 = c$ 12 The centre of the circle of radius 2 and which touches the circle $x^2 + y^2 - 4x - 6y - 12 = 0$ internally at (-1,-1) is 1) $\left(\frac{1}{5}, \frac{3}{5}\right)$ 2) $\left(\frac{-1}{5}, \frac{3}{5}\right)$ 3) $\left(\frac{-1}{7}, \frac{1}{7}\right)$ 4) $\left(\frac{3}{5}, \frac{1}{5}\right)$ If the circles $x^2 + y^2 + 5(2x + 1) = 0$ and $x^2 + y^2$ 13. +5(y+1)=0 touch each other then the point of contact is 1)(1,2)2)(1,-2) 3)(-1,2) 4)(-1,-2)If the circles $x^2 + y^2 + 2x + c = 0$ and $x^2 + y^2 + c = 0$ 14. 2y + c = 0 touch each other then c =1) 1/22) 1/4 3) 2 4)415. The triangle formed by the common tangents of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 - 6x = 0$ is 1) an isosceles triangle 2) an equilateral triangle 3) a scalene triangle 4) a right angled triangle 16. If the number of common tangents of the circles x^2 $+y^{2}+8x+6y+21=0$, $x^{2}+y^{2}+2y-15=0$ are 2, then the point of their intersection is 1) (-4, -3) 2) (-8, -5) 3) (8, -5) 4) (8, 5)If the circles $x^2 + y^2 - 4x - 6y + 9 = 0$ and $x^2 + y^2$ 17. +2x+2y-7=0 touch each other, then the equation of the common tangent is 1) 3x + 4y - 8 = 02) 4x - 3y - 20 = 03) 4x + 3y - 15 = 0 4) 3x + 4y - 7 = 0A is a point on the circle $x^2 + y^2 - 8x - 8y + 28 = 0$, 18 B is a point on the circle $x^2 + y^2 - 2x - 3 = 0$. If the distance between A and B is 'd' then 1) $1 \le d \le 9$ 2) $2 \le d \le 83$) $1 \le d \le 5$ 4) $3 \le d \le 6$ SR. MATHEMATICS 300

19 The number of circles passing through the points (0,0), (1,0) and touching the circle $x^2 + y^2 = 9$ is 1)12) 2 3) 3 4)4 The centre of the circle which passes through 20. (0,0),(1,0) and touches the circle $x^2 + y^2 = 9$ is 2) $\left(\frac{1}{2}, -2\right)$ 1) $(-2, \sqrt{2})$ 3) $\left(\frac{1}{2}, -\sqrt{2}\right)$ 4) $\left(\frac{1}{2}, 2\right)$ The length of the common chord of the circles x^2 21. $+y^{2}+6x+5=0$ and $x^{2}+y^{2}+4y-5=0$ is 1) $\sqrt{\frac{12}{13}}$ 2) $\frac{12}{\sqrt{13}}$ 3) $\frac{\sqrt{12}}{13}$ 4) $\sqrt{\frac{13}{12}}$ 22. The centre of the circle which cuts the three circles $x^{2} + y^{2} = 9$, $x^{2} + y^{2} - 2x + 4 = 0$ and $x^2 + y^2 - 4y + 5 = 0$ orthogonally is 1)(-13, -7)2) (-13/2, -7/2)(13, 7)(13/2, 7/2)23. The length of the common chord of the circles (x $a)^{2} + y^{2} = a^{2}$ and $x^{2} + (y - b)^{2} = b^{2}$ is 1) $\frac{ab}{\sqrt{a^2+b^2}}$ 2) $\frac{2ab}{a^2+b^2}$ 3) $\frac{ab}{a+b}$ 4) $\frac{2ab}{\sqrt{a^2+b^2}}$ 24. If 3, 4 are the radii and 5 is the distance between the centres of two intersecting circles then the length of the common chord of the circles is 1) 12/52) 24/25 3) 24/5 4) 5/24 25. The length of the common chord of the circles x^2 $+y^{2} + px = 0$ and $x^{2} + y^{2} + qy = 0$ is 1) $\frac{2pq}{\sqrt{p^2 + q^2}}$ 2) $\frac{pq}{2\sqrt{p^2 + q^2}}$ 3) $\frac{pq}{\sqrt{p^2 + q^2}}$ 4) $\frac{pq}{p^2 + q^2}$ 26. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g_1x + 2f_1y +$ $c_1 = 0$ then the length of the common chord of the circles is 1) $2\sqrt{g_1^2 + f_1^2 - c_1}$ 2) $\sqrt{g_1^2 + f_1^2 - c_1}$ 3) $\sqrt{g^2 + f^2 - c}$ 4) $2\sqrt{g^2 + f^2 - c}$ 27. Two circles of radii 3, 4 intersect orthogonally. Then the length of the common chord is

1) 12/5 2) 24/25 3) 24/5 4) 25/24

SYSTEM OF CIRCLE

28. The radius of one circle is twice the radius of another circle whose centres are (2, 0), (1, 2)respectively cutting orthogonally. Then the radius of the first circle is 1)12) 2 3) 3 (4)529. The circle $2x^2 + 2y^2 + px + 6y - 10 = 0$ and $3x^2 + 6y - 10 = 0$ $3y^2 + 15x + py + 21 = 0$ are orthogonal then p = 1)7/82) 5/8 3) 8/7 4) 8/530. Length of common tangents of the circles $x^{2} + y^{2} = 6x$, $x^{2} + y^{2} + 2x = 0$ are 2) $\sqrt{3}$, $3\sqrt{3}$ 1) $\sqrt{3}$ 3) $2\sqrt{3}$ 4) $2\sqrt{3}$, $3\sqrt{3}$ 31. If the circles $x^2 + y^2 + 2gx + 2fy = 0$, $x^{2} + y^{2} + 2g^{1}x + 2f^{1}y = 0$ touch each other then 1) $fg = f^1g^1$ 2) $fg^1 = f^1g$ 3) $f + g = f^{1} + y^{1}$ 4) $f + f^{1} = g + g^{1}$ 32. If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^{2} + y^{2} - 8x + 2y + 8 = 0$ intersect in two distinct points then 1) r < 22) r = 2 3) r > 2 4) 2 < r < 8If radii of two circles are 4 and 3 and distance 33. between centres is $\sqrt{37}$ then angle between the circles is 1) 30° 2) 45° 3) 60° $4)90^{0}$ 34. The circle with centre (2, 3) and intersecting $x^{2} + y^{2} - 4x + 2y - 7 = 0$ orthogonally has the radius 1)1 2)2 3) 3 4)4The equations of two circles are 35. $x^{2} + y^{2} + 2\lambda x + 5 = 0$ and $x^{2} + y^{2} + 2\lambda y + 5 = 0$. P is any point on the line x - y = 0. If PA and PB are the lengths of the tangents from P to the two circles and PA = 3then PB = ...1) 1.6 2)6 3)4 4) 3 36. The angle betweenl the circles $x^{2}+y^{2}-4x-6y-3=0, x^{2}+y^{2}+8x-4y+11=0,$ 1) $\pi/2$ 2) $\pi/4$ 3) $\pi/3$ 4) $\pi/12$ If the cirlces $x^{2} + y^{2} + 2a^{1}x + 2b^{1}y + c^{1} = 0$ and 37. $2x^2 + 2y^2 + 2ax + 2by + c = 0$ intersect orthogonally, then

1)
$$aa^{1} + bb^{1} = c + c^{1}$$
 2) $aa^{1} + bb^{1} = c + \frac{c^{1}}{2}$
3) $aa^{1} + bb^{1} = \frac{c}{2} + c^{1} 4$) $2(aa^{1} + bb^{1}) = c + c^{1}$
38. If two circles $a(x^{2} + y^{2}) + bx + cy = 0$ and $A(x^{2} + y^{2}) + Bx + Cy = 0$ touch each other, then
1) $aC = cA$ 2) $bC = cB$
3) $aB = bA$ 4) $aA = bB = cC$
39. The length of the common chord of the two circles $x^{2} + y^{2} + 2gx + c = 0$ and $x^{2} + y^{2} + 2fy - c = 0$ is
1) $2\sqrt{\frac{(g^{2} - c)(f^{2} - c)}{g^{2} + f^{2}}}}$
2) $2\sqrt{\frac{(g^{2} - c)(f^{2} + c)}{g^{2} + f^{2}}}}$
3) $2\sqrt{\frac{(g^{2} - c)(f^{2} - c)}{g^{2} + f^{2}}}}$
4) $2\sqrt{\frac{(g^{2} + c)(f^{2} - c)}{g^{2} + f^{2}}}}$

40. Two equal circles with thier centres on x- and yaxis will posses the radical axis in the following form

1)
$$ax - by - \frac{a^2 + b^2}{4} = 0$$

2) $2gx - 2fy + f^2 - g^2 = 0$
3) $g^2x + f^2y - g^4 - f^4 = 0$
4) $2g^2x + 2f^2y - g^4 - f^4 = 0$
The number of points such that the it to three given simples are queak in

- 41. The number of points such that the tangents from it to three given circles are euqal in length, is
 1) 1
 2) 2
 3) 3
 4) 4
- 42. If $S_1 = 0$, $S_2 = 0$ and $S_3 = 0$ are the three circles whose radical centre is the point P, then the lengths l_1 , l_2 , l_3 of the tangents form P to the three circles are such that

1)
$$l_1 = 2 l_2 = 3 l_3$$

2) $l_1 = l_2 = l_3$
3) $l_1 \neq l_2 \neq l_3$
4) $l_1 = l_2 \neq l_3$

		KEY			6.	If the circles $(x - a)^2 + (y - b)^2 = c^2$ and $(x - b)^2 + (y - b)^2 = c^2$
	01.2 02	. 1 03. 2	04.4	05.4		$(y - a)^2 = c^2$ touch each other then $(a + b)^2 =$
		. 3 08. 1	09.2	10.4		1) $2c^2 + 4ab$ 2) $4c^2$
		. 1 13. 4	14. 1	15.2		3) $2c^2$ 4) $2c^2 + 2ab$
	16.2 17		19.2	20.3	7.	If the circles $(x - a)^2 + (y - b)^2 = r^2$, $(x - b)^2 + (y - b)^2 = r^2$
		. 3 23. 4	24.3	25.3		a) ² = r^2 have three common tangents then
	26.1 27		29.3	30.3		1) $(a - b)^2 = 2r^2$ 2) $(a + b)^2 = 2r^2$
	31.2 32		34.2	35.4	0	3) $a^2 + b^2 = 2r^2$ 4) $a^2 + b^2 = r^2$
	36.3 37 41.1 42		39.3	40.2	8.	A circle C of radius 2 units rolls inside the rim of the circle $x^2 + y^2 + 8x - 2y - 19 = 0$. Then the
	41.1 42	. 2				locus of the centre of C is
		HINTS				1) $x^2 + y^2 + 8x - 2y - 47 = 0$
						2) $x^2 + y^2 + 8x - 2y - 1 = 0$
1.	Use the form	nula $\sqrt{d^2 - (r_1)}$	$(+r_2)^2$			3) $x^2 + y^2 + 8x - 2y + 1 = 0$
6.		ical axis and ve	-	options		4) $x^2 + y^2 - 8x + 2y + 1 = 0$
9.		ouch externally			9.	If the locus of the centre of a circle which touches
12.		des line joinin	-	-		the line $x \cos \alpha + y \sin \alpha = p$ and the circle
1.5		nally in the rati				$(x - a)^2 + (y - b)^2 = c^2 is (x - a)^2 + (y-b)^2 = (x - a)^2 = (x - a)^2 + (y-b)^2 = (x - a)^2 = (x - a)^2$
15.		lii is equal to 3	3:1 there	fore tangents		$\cos \alpha + y \sin \alpha + k)^2$ then k =
18.	form eqilater	rai triangle ance between tl	ha contra	of the circles	10	1) p 2) $-p \pm c$ 3) pc 4) $-p$
10.		$) \leq d \leq D + (r_1 + 1)$		s of the cheres	10.	The circle $(x-2)^2 + (y-5)^2 = a^2$ will be inside the circle $(x-2)^2 + (y-6)^2 = b^2$ if
19.	1 2	$\frac{1}{2} = \frac{1}{2} D^{+} (I_1 + I_2)$ am of the give	2	and represent		circle $(x - 3)^2 + (y - 6)^2 = b^2$ if
1.2.1	points $(0,0)$	-				1) b > a + $\sqrt{2}$ 2) a - b < $\sqrt{2}$
20.		quired cirlce is	3/2 dista	nces between		3) $a < \sqrt{2} - b$ 4) $a + b > \sqrt{2}$
		opiton and (1,			11	If the two eigeners $(x, 1)^2 + (x, 2)^2 = x^2$ and
					11.	If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and
		LEVEL-				$x^{2} + y^{2} - 8x + 2y + 8 = 0$ intersect in two distinct
1.		$s x^2 + y^2 = 4 ar$		-6x - 8y + K		points then
		ternally then K		1) 10		1) $r < 2$ 2) $r = 2$ 3) $r > 2$ 4) $2 < r < 8$
n		2) 24 3) $(1 - 2^{2} + 2^{2} + 2^{2})$			12.	The point of contact of $x^2 + y^2 + 4x + 2y - 4 = 0$
2.		cles $x^2 + y^2 + 2$ touch each of				and $x^2 + y^2 + 2y = 0$ is
		$2) 2c \qquad 3)$	U	- 4) 4c		$\begin{array}{c} 1) (-1/2, -1) \\ 2) (2, 2) \\ \end{array} $
3	/	$x^{2} + y^{2} + ax - x^{2}$		/	12	3) $(2, -2)$ 4) $(1, 1)$ The centre of similitude of the two circles $x^2 + y^2$
2.		$y^2 + bx + c = 0$			13.	1 he centre of similitude of the two circles $x^2 + y^2$ + 4x + 2y - 4 = 0 and $x^2 + y^2$ - 4x - 2y + 4 = 0 is
	-	$\operatorname{nd} \mathbf{c} > 0 \qquad 2)$		nd c < 0		(4,1) $(1,-4)$ $(1$
		nd $c > 0 \qquad 4$)			14.	
4.	The equatio	on to the circle	passingt	through $(0,0)$	• ••	+ y ² - 8ax - 6ay - 7a ² = 0 touch each other
	(1,0) and to	uching the circ	ele $x^2 + y^2$	$^{2} = 9$ is		externally then the point of contact is
	1) $x^2 + y^2$ -	x - $2\sqrt{2}$ y = 0				
		$x - \sqrt{2} y = 0$				1) $\left(0,\frac{a}{2}\right)$ 2) (0, a) 3) (0, 2a) 4) (0, -a)
	3) $x^2 + y^2 + y^2$	$x + 2\sqrt{2} y = 0$	C		15.	The internal centre of similitude of the circles $x^2 +$
	4) $x^2 + y^2 + y$	$+x-2\sqrt{2}y=0$)			$y^2 - 2x + 4y + 4 = 0$ and $x^2 + y^2 + 4x - 2y + 1 = 0$ is 1) (0,1) 2) (-1,0) 3) (0,-1) 4) (1,-1)
5.	•	radius 3 units r		le of the circle	16	If the external centre of similitude of the circles
		$(-1)^2 = 25$ then				$x^2 + y^2 - 2x - 4y + 4 = 0$ and $x^2 + y^2 + 4x - 2y + 1 =$
		e is a circle of d				0 is Q then Q =
	1) 2	2) 8 3)	$2\sqrt{2}$	4) 4		1) $(-4,-3)$ 2) $(4,3)$ 3) $(4,-3)$ 4) $(-4,3)$
	,	, -)	~ N ~	,		
	IATHEMAT				602	SYSTEM OF CIRCLE

17. If $\left(\frac{1}{2}, 1\right)$ and Q are centres of similtude of two circles whose centres are (1,3) and (0,0) then Q 1)(1,3)2) (-1,-3) 3) (1,-3) 4) (-1,3)If $\left(0, \frac{5}{2}\right)$ is a centre of similitude for the circles x^2 18. $+y^{2}+6x-2y+1=0$ and $x^{2}+y^{2}-2x-6y+9=$ 0 then the length of the common tangent of the circles through it is 1)6 2) 3 3) 2 4) 1 19. The circle cutting $x^2 + y^2 - 6x + 4y - 12 = 0$ orthogonally and having centre (-1, 2) is 1) $x^{2} + v^{2} + 2x - 4v - 2 = 0$ 2) $x^2 + y^2 + 2x - 4y + 2 = 0$ 3) $x^2 + v^2 - 2x + 4v - 2 = 0$ 4) $x^2 + v^2 + 2x - 4v - 4 = 0$ 20. The circle through origin and cutting $x^{2} + y^{2} + 6x - 15 = 0$, $x^{2} + y^{2} - 8y + 10 = 0$ orthogonally is 1) $2x^2 + 2y^2 - 10x - 5y = 0$ 2) $2x^2 + 2y^2 + 10x + 5y = 0$ 3) $x^2 + v^2 - 5x + 5v = 0$ 4) $2x^2 + 2y^2 + 10x - 5y = 0$ 21. A circle passes through origin and has its centre on x = y and cuts $x^{2} + y^{2} - 4x - 6y + 10 = 0$ orthogonally, then its equation is 1) $x^2 + v^2 - x - v = 0$ 2) $x^2 + v^2 - 4x - 4v = 0$ 3) $x^2 + v^2 - 2x - 2v = 0$ 4) $x^2 + v^2 - 3x - 3v = 0$ The circle through (-2, 5), (0, 0) and intersecting 22. the circle $x^2 + y^2 - 4x + 3y - 1 = 0$ orthogonally is 1) $2x^2 + 2y^2 - 11x - 16y = 0$ 2) $x^{2} + v^{2} - 4x - 4v = 0$ 3) $x^2 + v^2 + 2x - 5v = 0$ 4) $x^2 + v^2 + 2x - 5v + 1 = 0$ SR. MATHEMATICS 303

23. The radical axis of the circles $x^2+y^2+4x-6y=12$ and $x^{2} + y^{2} + 2x - 2y - 1 = 0$ divides the line segement joining the centres of the circles in the ratio 1) 27 : 17 2) 3 : 7 3) - 27 : 17 (4) - 3 : 724. The locus of the centre of a circle which cuts the circles $2x^2 + 2y^2 - x - 7 = 0$ and $4x^2 + 4y^2 - 3x - y$ =0 orthogonally is a straight line whose slope is 2) 1 3) - 2 4) $\frac{-5}{2}$ 1) -1 If C_i is the centre of the circle 25. $x^{2} + y^{2} + 2g_{i}x + 5 = 0$ and t_{i} is the length of the tangent from any point to this circle, i = 1, 2, 3; then the points $(g_1, t_1^2), (g_2, t_2^2)$ and (g_3, t_3^2) are 2) not collinear 1) Collinear 3) either collinear or non collinear 4) not defined The perpendicular distance from the origin to the 26. radical axis of the circles $2x^2 + 2y^2 - 3x - y + 3 =$ 0 and $3x^2 + 3y^2 - x + y - 1 = 0$ is 1) $\sqrt{2}$ 2) $\frac{11}{\sqrt{74}}$ 3) $\frac{\sqrt{5}}{2}$ 4) $\sqrt{\frac{5}{2}}$ If the circles $x^2 + y^2 - 10x + 2y + 10 = 0$ and $x^2 + 10 = 0$ 27. $y^2 - 4x - 6y - 12 = 0$ touch each other then the slope of the common tangent at the point of contact of the circles is 1) 3/42) 4/3 3) -4/3 4) - 3/428. The slope of the radical axis of the circles $(x + 2)^2$ $+(y+3)^{2} = 25$ and $(x+1)^{2} + (y-1)^{2} = 25$ is 1) -1/4 2) 1/4 3) - 4 4) -1/2 29. (a, c) and (b, c) are the centres of two circles whose radical axis is the y-axis. If the radius of first circle is r then the diameter of the other circle is 1) $2\sqrt{r^2-b^2+a^2}$ 2) $\sqrt{r^2-a^2+b^2}$ 3) $2(r^2 - b^2 + a^2)$ 4) $2\sqrt{(r^2 - a^2 + b^2)}$ 30. The radii of two circles are 2 units and 3 units. If the radical axis of the circles cuts one of the common tangents of the circle in P then ratio in which P divides the common tangent is 1)2:32)3:23) 4 : 9 4)1:1The distance of the point (1, 2) from the common 31. chord of the circles $x^2 + y^2 + 6x - 16 = 0$ and

$$x^{2} + y^{2} - 2x - 6y - 6 = 0$$
 is
1) 1 2) 1/5 3) 5

3) 5

1)1

(4) 2

6.5		
32.	If $ax + by + c = 0$ is the equation of the common	
	radical axis of the coaxial system	
	$(3x^2 + 3y^2 - 2x - 2y - 1) + \lambda (x^2 + y^2 - x - 2y - 3)$	
	=0 then $ab + bc + ca =$	
33.	1) 44 2) 13 3) 40 4) 12 The distance of (1, -2) from the common chord of	1
55.	$x^2 + y^2 - 5x + 4y - 2 = 0$ and $x^2 + y^2 - 2x + 8y + 10^{-10}$	4
	3 = 0 is	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
34.	The equation of the circle which passes through	
	the point (2a, 0) and whose radical axis with the	
	circle $x^2 + y^2 = a^2$ is the line $x = a/2$ is	
	1) $x^2 + y^2 - 2ax = 0$ 2) $x^2 + y^2 + 2ax = 0$	42
2.5	3) $x^2 + y^2 - ax = 0$ 4) $x^2 + y^2 + ax = 0$	
35.	A and B are two points on the circle $x^2 + y^2 = 1$.	
	If the x co-ordinates of A and B are the roots of the equation $x^2 + ax + b = 0$ and the y- coordinates	
	of A and B are the roots of the equation $y^2 + by + b^2$	
	a = 0 then the equation of the line AB is	4
	1) $ax + by = 0$ 2) $ax + by + 1 = 0$	
	3) $bx + ay + a + b = 0$ 4) $ax + by + a + b + 1 = 0$	
36.	If $(1,2)$, $(4,3)$ are the limiting points of coaxal	4
	system, then the equation of the circle in its	4
	conjugate system having minimum area is	
	1) $x^2 + y^2 - 5x - 5y + 10 = 0$	
	$2) x^2 + y^2 - 8x - 6y + 25 = 0$	4
	3) $x^2 + y^2 - 2x - 2y + 10 = 0$	
	4) $x^2 + y^2 + 5x + 5y - 10 = 0$	
37.	If the length of the radical axis of two circles	
	$x^{2} + y^{2} + 8x + 1 = 0$ and $x^{2} + y^{2} + 2\mu y - 1 = 0$	4
	is $2\sqrt{6}$ then $\mu = \dots$	
	1) ± 2 2) ± 4 3) ± 8 4) ± 3	
38.	From the point O (2, 3), tangents OP, OQ are	4
	drawn to circle $x^2 + y^2 = 1$. Equation to the line	4
	joining the midpoint of OP and OQ is	
	1) $2x + 3y = 7$ 2) $3x + 2y = 7$	
		4
	3) x + 2y = 3	
39.	B and C are points on the circle $x^2 + y^2 = a^2$. A	
	point A(b, c) lies on that circle such that	
	AB = AC = d. The equation to BC is	
	1) $bx + ay = a^2 - d^2$ 2) $bx + ay = d^2 - a^2$	4
	3) $bx + cy = 2a^2 - d^2$ 4) $2(bx + cy) = 2a^2 - d^2$	
40.	The locus of the centre of the circles which	
	intersects the circles $x^2 + y^2 = 1$ and	
	x + y = 1 and	
	ATHEMATICS 3	04

	$x^2 + y^2 - 2x + y = 0$ orthogonally is
	1) a line whose equation is $2x - y - 1 = 0$
	2) a line whose equation is $2x + y = 1$
	3) a circle 4) a pair of lines
41.	The locus of the centre of a circle which cuts
	orthogonally the circle $x^2 + y^2 - 20x + 4 = 0$ and
	touches the line $x = 2$ is
	1) $y^2 = 16x + 4$ 2) $x^2 = 16y + 4$
	3) $x^2 = 16y$ 4) $y^2 = 16x$
42.	The length of the common chord of the circles $(x - a)^2 + (y - b)^2 = c^2$ and $(x - b)^2 + (y - a)^2 = c^2$ is
	1) $\sqrt{4c^2 - 2(a-b)^2}$ 2) $\sqrt{2c^2 - (a-b)^2}$
	$3.\sqrt{4c^2-(a-b)^2}$ $4.\sqrt{4c^2+2(a-b)^2}$
43.	If the radical centre of the three circles $x^2 + y^2 - 2x$
	$-1 = 0$, $x^2 + y^2 - 3y = 1$ and $2x^2 + 2y^2 - x - 7y - 2 = 0$ is 0 then 0 + 0 =
	$2 = 0 \text{ is } Q \text{ then } Q_x + Q_y = $ 1) 3 2) 0 3) 1 4) -1
14.	The radical centre of the three circles $x^2 + y^2 = 9$,
	$x^2 + y^2 - 2x - 2y - 5 = 0$ and $x^2 + y^2 + 4x + 6y - 19$
	=0 is 1) (1 1) 2) (1 2) 2) (1 1) 4) (1 1)
45.	1) $(1, -1)$ 2) $(1, 2)$ 3) $(1, 1)$ 4) $(-1, -1)$ If Q is the radical centre of the three circles $x^2 + y^2$
10.	$a^{2} = a^{2}$, $(x - g)^{2} + y^{2} = a^{2}$ and $x^{2} + (y - f)^{2} = a^{2}$ then
	$Q_x + Q_y =$
	1) $g+f$ 2) $\frac{g+f}{2}$ 3) $2g+2f$ 4) $\frac{-g-f}{2}$
46.	The point from which the lengths of tangents to
τυ.	the three circles $x^2 + y^2 - 4 = 0$, $x^2 + y^2 - 2x + 3y$
	$= 0$ and $x^2 + y^2 + 7y - 18 = 0$ are equal is
47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
47.	If the radical centre of $x^2 + y^2 - 4x + 2y + 3 = 0$, $x^2 + y^2 - x + 4y + 4 = 0$ and $x^2 + y^2 + 2gx + 5y + 3gx + $
	+y - x + 4y + 4 = 0 and $x + y + 2gx + 3y + 7=0$ is (-1, 1) then $g =$
	1) -3 2) 3 3) -3/2 4) 3/2
48.	The radical centre of the circles $(x - 1)^2 + (y - 2)^2$
	$= 341, (x - 4)^{2} + (y - 1)^{2} = 341, (x - 5)^{2} + (y - 4)^{2}$ = 341 is
	1) (3, 3) 2) (4,1) 3) (6, 6) 4) $\left(\frac{10}{3}, \frac{7}{3}\right)$
1 9.	The equation of the circle which cuts the three
	circles $x^2 + y^2 = a^2$, $(x - g)^2 + y^2 = a^2$ and $x^2 + (y - g)^2 = a^2$ orthogonally is
	- f) ² = a^2 orthogonally is 1) $x^2 + y^2 - 2gx - 2fy + a^2 = 0$
	$2) x^{2} + y^{2} - gx - fy + a^{2} = 0$

	3) $x^2 + y^2 - fx - gy + a^2 = 0$		of a diameter, then its centre is
	4) $x^2 + y^2 + gx + fy - a^2 = 0$	-	1) (2, 3) 2) (-2, 3) 3) (2, -3) 4) (-2, -3)
50.	x = 1 is the radical axis of two circles which cuts	59.	The common chord of the circles $x^2 + y^2 - 4x$ -
	each other orthogonally. If $x^2 + y^2 - 8x + 4 = 0$ is		$4y=0$ and $x^2 + y^2 = 16$ subtends at the origin an
	the equation of one circle then the radius of the		angle equal to
	other circle is		π π π
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{3}$ 4) None
51.	The centre of the circle cutting $x^2 + y^2 - 2x + 4y$ -	60.	The circle $x^2 + y^2 + 4x + 4y - 1 = 0$
	1 = 0 orthogonally and passing through $(0, 0)$, $(2, 0)$	00.	1) cuts the circle $x^2 + y^2 + 2x - 3 = 0$ orthogonally
	0) is		2) touches the circle $x^2 + y^2 + 2x - 3 = 0$
	1) $(3/2, 1)$ 2) $(1, 3/4)$ 3) $(1, -3/4)$ 4) $(-1, -3)$		3) bisects the circumference of the circle $x^2 + y^2 + y^2$
52.	If the line x cos α + y sin α = p and the circle		2x - 3 = 0
	$x^2 + y^2 = a^2$ intersect at A and B then the equation		4) neither intersects nor touches $x^2 + y^2 + 2x - 3$
	of the circle on AB as diameter is $(x^2 + y^2 - a^2) +$		= 0
	$k(x \cos \alpha + y \sin \alpha - p) = 0 \text{ then } k =$	61.	If a circle passes through the point (a, b) and cuts
	1) p 2) -p 3) -4p 4) - 2p	01.	the circle orthogonally then the locus of its centre
53.	The line $2x + 3y = 1$ intersects the circle $x^2 + y^2 =$		IS
	4 at A and B. If the equation of the circle on AB		1) a circle 2) a parabola
	as diameter is $x^2 + y^2 + 2gx + 2fy + c = 0$ then $c =$		3) an ellipse 4) a straight line
- A	1) -50 2) -54/13 3) 50/13 4) -50/13	62.	If the circle $3x^2 + 3y^2 + 10x + y - 27 = 0$ bisects
54.	The equation of the circle describes on the common $1 + 1 + 2 + 2 + 2 = 0 + 1 + 2 + 2 + 2 = 0$		the circumference of the circle $x^2 + y^2 = k$ then k^2
	chord of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 + 2y = 0$ and $x^2 + y^2 + 2y = 0$ and $x^2 + y^2 + 2y = 0$		- 1 =
	2y=0 as diameter is 1) $x^2 + x^2$ x $y = 0$ 2) $x^2 + x^2 + x = 0$		1) 27 2) 728 3) 9 4) 80
	1) $x^{2} + y^{2} - x - y = 0$ 2) $x^{2} + y^{2} + x - y = 0$ 2) $x^{2} + y^{2} + x + y = 0$ 4) $x^{2} + x^{2} - x + y = 0$	63.	If the circle $x^2 + y^2 - 2x - 2y - 1 = 0$ bisects the
55.	3) $x^2 + y^2 + x + y = 0$ 4) $x^2 + y^2 - x + y = 0$ The line $2x + 3y = 1$ cuts the circle $x^2 + y^2 = 4$ in		circumference of the circle $x^2 + y^2 = 1$ then the
35.	The line $2x + 3y = 1$ cuts the circle $x^2 + y^2 = 4$ in		length of the common chord of the circles is
	P and Q. Then the equation of the circle on PQ		1) 1 2) 2 3) $\sqrt{3}$ 4) $2\sqrt{3}$
	as diameter is	64.	
	1) $13(x^2 + y^2) - 4x - 6y + 50 = 0$	04.	The polars of a fixed point w.r.t.a coaxal system of circle are
	2) $13(x^2 + y^2) - 6y - 50 = 0$		1) Paralled 2) Per pendicular
	3) $13(x^2 + y^2) - 4x - 6y - 50 = 0$		3) Con current 4) Coicident
	4) $13(x^2 + y^2) - 4x - 50 = 0$	65.	The circle $x^2 + y^2 - x - y - 1 = 0$
56.	The equation of circle passing through $(0, 0)$ and	0.5.	1) touches the circle $x^2 + y^2 = 1$
	the points of intersection of $x^2 + y^2 - 4x - 6y + 9$		2) intersects the circle $x^2 + y^2 = 1$
	$=0 \text{ and } x^2 + y^2 + 4x - 2y - 4 = 0 \text{ is}$		3) cuts the circle $x^2 + y^2 = 1$ orthogonally
	1) $13x^2 + 13y^2 + 20x - 42y = 0$		4) bisects the circumference of the circlex ² + y ² = 1
	2) $5x^2 + 5y^2 + 52x + 6y = 0$ 2) $x^2 + x^2 + 20x + 42x = 0$	66.	If the circle $x^2 + y^2 + 4x + 22y + c = 0$ bisects
	3) $x^2 + y^2 + 20x - 42y = 0$ 4) $x^2 + x^2 - 20x - 42y = 0$	00.	
57	4) $x^2 + y^2 - 20x - 42y = 0$ The equation of the simple of least radius below sing		the circumference of the circle
57.	The equation of the circle of least radius belonging to the convol system of circles or the good to the		$x^{2} + y^{2} - 2x + 8y - d = 0$ then $c + d =$
	to the coaxal system of circles orthogonal to the		1) 60 2) 50 3) 40 4) 30
	system $x^2 + y^2 + 2\lambda x + 4 = 0$ is	67.	If the tangents from $P(h, k)$ to the circles $x^2 + y^2$
	1) $x^2 + y^2 = 0$ 2) $x^2 + y^2 = 4$		- $4x - 5 = 0$ and $x^2 + y^2 + 6x - 2y + 6 = 0$ are
	3) $x^2 + y^2 + 2x - 4 = 0$ 4) $x^2 + y^2 + 2\lambda x + 4 = 0$		equal then
58.	If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts each		1) $2h + 10k + 11 = 0$ 2) $2h - 10k + 11 = 0$
	of the circles $x^2 + y^2 = 4$; $x^2 + y^2 - 6x - 8y + 10$		3) $10h - 2k + 11 = 0$ 4) $10h + 2k + 11 = 0$
	=0 and $x^2 + y^2 + 2x - 4y - 2 = 0$ at the extremities	68.	The angle between the tangents from a point on x^2
			$+y^{2}+2x+4y-31=0$ to the circle $x^{2}+y^{2}+2x$
SR M	IATHEMATICS 3	05	SYSTEM OF CIRCLE

+4v - 4 = 0 is 1) $\pi/6$ 2) $\pi/2$ 3) $\pi/4$ 4) $\pi/3$ If the circles $x^2 + y^2 - 2x - 4y + 1 = 0$ and $x^2 + y^2$ 69. -4x - 2y + 3 = 0 subtend equal angles at P, then locus of P is 1) $2x^2 + 2y^2 - 6x + 5 = 0$ 2) $2(x^2 + y^2) - 6y - 1 = 0$ 3) $x^2 + y^2 - 2x - 2y + 2 = 0$ 4) $x^2 + y^2 - 6x + 5 = 0$ 70. A transverse common tangent to the circles $x^2 +$ $y^2 + 4x + 2y = 4$ and $x^2 + y^2 - 4x - 2y + 4 = 0$ is 2) x = 21) x = 13) 3x + 4y + 5 = 04) 2x + 3 = 071. For the given two circles $x^2 + y^2 = 1$ and $x^2 + y^2$ -2x - 6y + 6 = 0 the line 4x - 3y - 5 = 0 is 1) A direct common tangent to the cirlces 2) An indirect common tangent to the circles 3) A tangent to the first circle only 4) A tangent to the second cricle only 72. The locus of the midpoints of chords of the circle $x^2 + y^2 = 6$ making an angle 90° at (1, 1) is 1) $2x^2 + 2y^2 - x - y - 4 = 0$ 2) $x^2 + y^2 - x - y + 2 = 0$ 3) $x^2 + y^2 - x - y - 2 = 0$ 4) 4 - 2 $[(x + y - 6) - (x^2 + y^2 - 6)] = 0$ 73. If (0, 0) is one limiting point and $x^2 + y^2 + gx + fy$ + c = 0 is one circle of a coxal system then the other limiting point is 1) $\left(\frac{-\mathrm{gc}}{\mathrm{g}^2+\mathrm{f}^2},\frac{-\mathrm{fc}}{\mathrm{g}^2+\mathrm{f}^2}\right)$ 2) $\left(\frac{-2gc}{g^2+f^2}, \frac{-2fc}{g^2+f^2}\right)$ 3) $\left(\frac{-\text{fc}}{2(\text{g}^2 + \text{f}^2)}, \frac{-\text{fc}}{2(\text{g}^2 + \text{f}^2)}\right)$ 4) $\left(\frac{2gc}{(g+f)}, \frac{2fc}{(g+f)}\right)$ 74. If origin is one limiting point of the coaxal system $x^{2} + y^{2} + \lambda (2ax + 2by - a^{2} - b^{2}) = 0$ then the other limiting point is 1) (-a, b) 2) (a, -b) 3) (b, a)(a, b)75. If (0, 0) is one limiting point and $x^2 + y^2 - 6x - 8y$ +1 = 0 is one circle of a coaxal system then the other limiting point is 2) $\left(\frac{-3}{25}, \frac{-4}{25}\right)$ 1) (-2, -4)

$$(\frac{3}{25}, \frac{4}{25}) \qquad (4) \left(\frac{3}{7}, \frac{4}{7}\right)$$

If $x^2 + y^2 + 2x + 4y + 7 = 0$ and $x^2 + y^2 + 4x + 2y$ 76 +5=0 are two circles of a coaxal system then the limiting points of the coaxal systems are (2, 1), (0, 3)2)(1, 2), (0, -3)(-2, -1), (0, -3) (-2, -1), (-3, 0)77. If $x^2 + y^2 - 6x - 4y - 3 = 0$ is one circle and (-5, -6) is one limiting point of a coaxal system then the other limiting point is 2) (-1, 2) 3) (2, -1) 4) (2, 1)1)(1,2)78. If x + y + 4 = 0 is the equation of the common radical axis and (2, 1) is one limiting point of a coaxal system then the other limiting point is $2)\left(\frac{-3}{2},\frac{-5}{2}\right)$ 1)(5, 6)4) (-5, -6) (-6, -5)79. (2, 3) and (-3, 2) are two limiting points of coaxal system. If the equation of the circle belonging to the coaxal system and passing through the point (-1, 3) is $x^2 + y^2 + 2gx + 2fy + c = 0$ then c =1) 26 2) -13 3) 13 4) -26 The limiting points of the coaxal system $x^2 + y^2 + y^2$ 80. 2 fy + 9 = 0 (f is a variable) are 1) (+3, 0) 2) (+9, 0) 3) (0, +9) 4) (0, +3)81. If (4, 4) and (8, 2) are limiting points of a coaxal system then the equation of the common radical axis of the coaxal system is ax + by + c = 0 (a >0). Then a - b + c = 1)6 2) - 6 3) -8 4) 10 82. If (2, 3) and (-3, 2) are the limiting points of a coaxal system whose equation is $(x^2 + y^2 - 4x - 6y)$ $+13) + \lambda(ax + by + c) = 0$ then a + b - c =3)4 1)6 2) - 64) - 483. The sum of the y-coordinates of the limiting points of the coaxal system $(x^2 + y^2 - 2x - 4y + 5) +$ $\lambda (x^2 + y^2 - 6x - 8y + 25) = 0$ 1) -6 2) 4 3)6 4) 2 If (1, 2) and (3, 4) are limiting points of the given 84. coaxal system then the least circle belonging to the orthogonal coaxal system is $x^2 + y^2 + ax + by$ + c = 0. Then (a, c) = 1) (-4, 11) 2) (-6, 11) 3) (4, 11) 4) (4, -11)85. If x = 1 is the equation of the common radical axis and (2, 3) is one limiting point of a coaxial system then the other limiting point is 2)(0,3)(0, 1)(0, -3)1)(3,0)

86. If the limiting points of the coaxal system $x^2 + y^2$

 $-2x+13+\lambda(x+y+4)=0$ where λ is a variable are (-5, -6) and P then $P_{\mu} + P_{\mu} =$ 1) (2, 1) 2) 3 3) 1 4) - 3If (1, 2), (3, 4) are limiting points and $x^2 + y^2 - x + y^2$ 87. ky = 0 is one circle of a coaxal system then k =1)3 2) - 3 3) - 9 4)988. If (1, 2) is one limiting point and $x^2 + y^2 - 6x - 8y$ +25 = 0 is one circle of a coaxal system then the equation of the radical axis of the coaxal system is 1) x - y - 5 = 02) x + y + 5 = 03) x + y - 20 = 04) x + y - 5 = 089. If (0, 3) and (0, -3) are the limiting points of a coaxal system then the equation of the coaxal system is 1) $x^2 + y^2 + 2\lambda x + 9 = 02$) $x^2 + y^2 + 2fy + 9 = 0$ 3) $x^2 + y^2 + 2\lambda x - 9 = 0$ 4) $x^2 + y^2 + 2fy - 9 = 0$ 90. The number of real circles belonging to the coaxal system $x^2 + y^2 + 2\lambda x + c = 0$ (λ is a variable) and whose centre lie between the limiting points of the given coaxal system is 4) 0 1)12) ∞ 3) 2 91. If the limiting points of a coaxal system are (0, 0)and (1, 0) then one member of the system is 1) $x^2 + y^2 - 6x + 3 = 0$ 2) $x^2 + y^2 - 2x - 1 = 0$ 3) $x^2 + y^2 = 1$ 4) $x^2 + y^2 - 2y + 1 = 0$ 92. (-2,3) is the middle point of chord AB of the circle $x^2 + v^2 = 81$. The equation of the circle through the points A,B and (0,1) is 1) $x^2 + v^2 - 16x + 24v - 23 = 0$ 2) $x^2 + y^2 + 16x - 24y + 23 = 0$ 3) $x^2 + v^2 - 2v + 1 = 0$ 4) $x^2 + y^2 - 16x - 24y = 0$ 93. The limiting points of a coaxal system whose radical axis is x + y - 1 = 0 and having $x^2 + y^2 + 2x + 4y$ -1 = 0 as one member are 1)(2, 1), (2, -3)2)(2, 1), (0, -1)3) (2, 1), (4, 3) (2, 1), (0, 1)94. Limiting points of the coaxal system whose radical axis is x + y - 1 = 0 and having one member as $x^2 + y^2 - 4x - 2y + 5 = 0$ are 1)(2, 1), (0, -1)2)(2,1),(4,3)4) (2, 1), (-2, -3) (2, 1), (0, 1)95. The coaxal system $x^2 + y^2 + 2gx - 8 = 0$ will have 1) two real and distinct limiting points 2) coincident limiting points 3) imaginary limiting points 4) one imaginary, one real limiting points 96. In the co-axal system of circles the common tangent of two circles subtends an angles

 θ_1 and θ_2 at the limiting points then the value of $\cos(\theta_1 + \theta_2) =$ 1)0 2)1 3) - 14) 2 97. P(-2, -1) and Q(0, 3) are the limiting points of a coaxal system of which $C=x^2+y^2+5x+y+4=0$ is a member. The circle $S = x^2 + y^2 - 4x - 2y - 15$ = 0 is orthogonal to the circle C=0. The point where the polar of P with respect to C=0 cuts the circle S=0 is 1)(3, 6)(-3, 6) (-6, 3) (-6, 3) (-6, 3)98. The number of limiting points of orthogonal coaxal system of the coaxal system $x^2 + y^2 + 2 \lambda x - 5 = 0$ are 1)0 2) 1 3) 2 (4) 499. The centre of any circle belonging to the coaxal system $x^2 + y^2 - 20x + 10y + 9 + \lambda(7x - 3y + 2)$ = 0 does not lie between 1) (4, 1) (3, -2)2)(-4, 1), (3, 2)3) (-11, 4), (3, -2) (-4, 1), (3, -2)100. The equation of the circle whose radius is 5 and which touches the circle $x^{2} + y^{2} - 2x - 4y - 20 = 0$ at the point (5,5) is 1) $x^2 + v^2 + 18x + 16v - 120 = 0$ 2) $x^2 + v^2 - 18x - 16v + 120 = 0$ 3) $x^2 + y^2 - 18x - 16y - 120 = 0$ 4) $x^2 + y^2 + 18x + 16y + 120 = 0$ 101. The equation of the coaxal system which is orthogonal to the coaxal system having limiting points $(\pm a, 0)$ is 1) $x^2 + v^2 + 2 \mu v - a^2 = 0$ 2) $x^2 + y^2 + 2\lambda x - a^2 = 0$ 3) $x^2 + y^2 + 2 \mu y + a^2 = 0$ 4) $x^2 + y^2 + 2\lambda x + a^2 = 0$ 102. x = 1 is the radical axis of two circles which cut each other orthogonally. If $x^2 + y^2 = 9$ is the equation of one circle then the equation of the other circle is 1) $x^2 + y^2 - 9x + 9 = 0$ 2) $x^2 + y^2 + 18x - 9 = 0$ 3) $x^2 + y^2 - 18x + 9 = 0$ 4) $x^2 + y^2 + y^2$ 9x + 9 = 0103 The equation of the common radical axis of the orthogonal coaxal system of the coaxal system $(x^{2} + y^{2} - 4x - 6y + 5) + \lambda (2x + 3y + 4) = 0$ is

$$\begin{array}{l} (x^2 + y^2 - 4x - 6y + 5) + \lambda (2x + 3y + 4) = \\ 1) \ 3x - 2y = 0 \\ 3) \ 3x + 2y - 12 = 0 \end{array} \begin{array}{l} 2) \ 3x - 2y + 1 = 0 \\ 4) \ 3x - 2y - 1 = 0 \end{array}$$

104. The equation of the line of centers of the orthogonal

	coaxal system
	$(4x^2 + 4y^2 - 12x + 6y - 3) + \lambda(x + 2y - 6) = 0$ is
	1) $8x - 4y - 15 = 0$ 2) $x + 2y - 6 = 0$
	3) $x + 2y = 0$ 4) $x - 2y = 0$
105	
	coaxal system then the diameter of the smallest
	circle belonging to the conjugate coaxal system is
	1) 5 2) 20 3) 10 4) 5/2
106.	$(-2, -1)$ is one limiting point and $x^2 + y^2 + 2x + 4y$
	+7 = 0 is one circle of the coaxal system. The
	centre of the circle which passes through $(-2, -1)$
	and cuts the given circle Orthogonally lies on the
	line (1) and (1) (2) and (2) (2) (2)
	1) $x - y - 1 = 0$ 2) $x + y - 1 = 0$ 4) $x - y + 1 = 0$
107	3) $x - y - 2 = 0$ The system of similar at the sense $1 + y^2 + y^2 + 2 + 2$
10/.	The system of circles orthogonal to $x^2 + y^2 + 2gx + 10 = 0$ is
	(+10 = 0.18) 1) x ² + y ² - 2gx - 10 = 0
	$2) x^{2} + y^{2} - 2gx - 10 = 0$
	$3) x^{2} + y^{2} + 2gx + 2fy + 10 = 0$
	$4) x^{2} + y^{2} + 2fy - 10 = 0$
108.	(-2, -1) is a limiting point of a coaxal system of
	which $x^2 + y^2 + 2x + 4y + 7 = 0$ is a member. The
	equation of the orthogonal system is
	1) $x^2 + y^2 + x + 3y + C/3(x + y + 3) = 0$
	2) $x^2 + y^2 + x + 3y + C/2(x + y + 3) = 0$
	3) $x^2 + y^2 + x + 3y + C/4(x + y + 3) = 0$
	4) $x^2 + y^2 + x + 3y + C(x + y + 3) = 0$
109.	The limiting points of the system of coaxal circles
	$x^2 + y^2 + 2\lambda y - 25 = 0$ are
	1) $(0, \pm 25)$ 2) $(0, \pm 5)$
	3) $(\pm 5,0)$ 4) Not existing
110	The coaxal system $x^2 + y^2 + 8x - 2y + 3 + \lambda(7x)$
110.	
	-y - 21) = 0 is 1) Intersecting 2) non-intersecting
	3) touching 4) cannot be determined
1111	If $(1, 2)$, $(4, 3)$ are the limiting points of a coaxal
	system, then the equation of the circle in its
	conjugate system having minimum area is
	1) $x^2 + y^2 - 2x - 4y + 5 = 0$
	2) $x^2 + y^2 - 8x - 6y + 25 = 0$
	3) $x^2 + y^2 - 5x - 5y + 10 = 0$
	4) $x^2 + y^2 + 5x + 5y - 10 = 0$
112.	For the co-axal system
	$x^{2} + y^{2} + 4x + 2y + 1 + \lambda(x + y - 2) = 0$ line of
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	1) $x - y + 1 = 0$ 2) $x + y + 3 = 0$
	3) $2x + y - 1 = 0$ 4) $x + y = 2$

113.	For the the co-axal syste	m			
	$x^{2} + y^{2} + 2\lambda x + c = 0$ lline of centres is				
	1) $x=0$ 2) $y=0$ 3) $y=c$ 4) $x=c$				
114.		m			
	$x^2 + y^2 + 2\mu y + c = 0$ radical axis is				
	1) x = 0 2) y = 0 3) y = c 4) y + c =	0			
115.	, , , , , , ,				
	system then the radical axis of the conjugate c				
	axal system is				
	1) $2x + y - 5 = 0$ 2) $2x - y - 3 = 0$				
	3) $x - 2y + 5 = 0$ 4) $x + 2y - 7 = 0$				
116.		re			
	$(x \pm a)^2 + (y \pm a)^2 = a^2$. The radius of a circ	le			
	touching all the four circles externally is				
	1) $2\sqrt{2a}$ 2) $(\sqrt{2}+1)a$				
	3) $\left(\sqrt{2}-1\right)a$ 4) $\left(2+\sqrt{2}\right)a$				
117.	There are two circles whose equations a	re			
	$x^{2} + y^{2} = 9$ and $x^{2} + y^{2} - 8x - 6y + n^{2} = 0$	0,			
	$n \in \mathbb{Z}$. If the two circles have exactly two commo	on			
	tangents then the number of possible values of n				
	1) 2 2) 8 3) 9 4) 5				
118.	1 8 8				
	from which to two circles are in a constant ratio is a circle				
	a circle 1) cutting them orthogonally				
	2) touching each other externally				
	3) coaxal with them				
	4) lying inside the circles				
	KEY				
	001.1 002.1 003.3 004.1 005.4				
	006. 1 007. 1 008. 3 009. 2 010. 1				
	011.4 012.2 013.4 014.4 015.3				
	016. 2 017. 2 018. 3 019. 1 020. 1 021. 3 022. 1 023. 3 024. 1 025. 1				
	021. 3 022. 1 023. 3 024. 1 025. 1 026. 2 027. 1 028. 1 029. 4 030. 4				
	031. 1 032. 1 033. 3 034. 1 035. 4				
	036. 1 037. 4 038. 1 039. 4 040. 1				
	041. 4 042. 1 043. 2 044. 3 045. 2				
	046. 4 047. 4 048. 1 049. 2 050. 2				
	051. 2 052. 4 053. 4 054. 3 055. 3				
	056. 1 057. 2 058. 1 059. 4 060. 3				
	061. 4 062. 4 063. 2 064. 3 065. 4				
	066. 2 067. 3 068. 4 069. 4 070. 1				
	071.1 072.3 073.2 074.4 075.3				
	076.3 077.4 078.4 079.3 080.4				
	081.2 082.1 083.3 084.1 085.2				

SR. MATHEMATICS

SYSTEM OF CIRCLE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4) $\left(\Sigma a \cos \frac{\alpha}{2}, \Sigma a \sin \frac{\alpha}{2} \right)$ 5. Let A, B, C be the centres of three coaxal circles
 76. Find the radical axis of the given circles and verify the options. 82. Dubits for the state of the former of the state of the	if t_1, t_2, t_3 are the lengths of the tangents to them from any point then BC. $t_1^2 + CA$. $t_2^2 + AB$. $t_3^2 =$ 1) 0 2) $t_1 t_2 t_3$ 3) 1 4) 2
 83. Radii of the given circles of the system are equal to 0. 84. Limiting points are systemities of diameter of the 	6. The equation of the orthogonal system of the coaxal system
84. Limiting points are extremities of diameter of the given circle.62 and for the given circle.	$x^{2} + y^{2} + 2x - 4y - 5 + \lambda (x - 3y + 7) = 0$ is
92. verification93. One limiting point is image of the other limiting point	
with respect to radical axis.99. No centre lies between the limiting points.	3) $x^2 + y^2 + 14x - 19 + \mu(3x + y + 1) = 0$ 4) $x^2 + y^2 + 14x + 19 + \mu(3x + y - 1) = 0$
108. Substitute the limiting points in the circle and verify the radical axis if necessary.	7. $A = (x_1, y_1), B = (x_2, y_2), C = (x_3, y_3)$ then the
110. d=r touching d <r intersecting<="" td=""><td>radical centre of the circles $(x - x_1)^2 + (y - y_1)^2 = a^2$, $(x - x_2)^2 + (y - y_2)^2 = a^2$, $(x - x_3)^2 + (y - y_3)^2 = a^2$ is the</td></r>	radical centre of the circles $(x - x_1)^2 + (y - y_1)^2 = a^2$, $(x - x_2)^2 + (y - y_2)^2 = a^2$, $(x - x_3)^2 + (y - y_3)^2 = a^2$ is the
d>r Neither touching nor intersecting111. The circle with given points as the ends of diameter.	 Centroid of ΔABC Orthocentre of ΔABC Incentre of ΔABC
LEVEL-3	4) Circumcentre of $\triangle ABC$
1. In $n(n \ge 3)$ circles the centres of no three circles are collinear. If the number of the radical axes of	8. Let $x^2 + y^2 + g_i x + c = 0$, $i = 1, 2, 3$ be three coaxal circles whose radii are r_1, r_2, r_3 respectively. Let t_1, t_2, t_3 be lengths of the tangents to these

circles from an outside point. Then $(g_2 - g_3)t_1^2 +$ $(g_3 - g_1)t_2^2 + (g_1 - g_2)t_3^2 =$ 1)0 2) 1 4) 3 3)2 KEY 4) 3 2) 3 1)2 3)1 5)1 6) 1 7)4 8)1 **HINTS** 4. 1. $nc_{2}=nc_{2}=>n=5$ 2. All the radical axes passes through origin 3. Find the radical axis and then the circle Ortho centre is equal to $(\sum x_1, \sum y_1)$ 4. 5. Take the random point as(0,0) and the circles in simplest form of coaxal system 6. $r_1:r_2=r_2:r_3=r_3:r_1=1:1$ the radical axis bisects perpendicularly the sides of the triangle. 7. Use the hint of the 6th problem. LEVEL-4 I : The condition that the circles 1. 5. $(x-\alpha)^{2} + (y-\beta)^{2} = r^{2}, (x-\beta)^{2} + (y-\alpha)^{2} = r^{2}$ may touch each other is $(\alpha - \beta)^2 = 2r^2$ II : The condition that the circles $x^{2} + v^{2} + 2ax + 2bv + c = 0$ $x^{2} + y^{2} + 2bx + 2ay + c = 0$ touch each other is $(a+b)^2 = 2c.$ 1) Only I is true 2) Only II is true 3) both I & II are true 4) neither I nor II true 2. I: The equation of the circle cutting othogonally $x^2 + v^2 - 8x - 2y + 16 = 0 ,$ 6. the circles $x^2 + y^2 - 4x - 4y - 1 = 0$ and passing through the point (1, 1) is $3x^2 + 3y^2 - 14x + 23y - 15 = 0$. II : The equation of the circle which cuts orthogonally the three circles $x^{2} + v^{2} + 2x + 17v + 4 = 0$ 7. $x^{2} + v^{2} + 7x + 6v + 11 = 0$ $x^{2} + v^{2} - x + 22v + 3 = 0$ is $x^{2} + y^{2} - 6x - 4y - 44 = 0$ 1) Only I is true 2) Only II is true 3) both I & II are true 4) neither I nor II true 8. 3. I: The equations to the direct common tangents to $x^{2} + v^{2} + 6x + 4v + 4 = 0$, the circles y-1=0, 4x-3y-9=0 $x^2 + y^2 - 2x = 0$ II : The equations to the transverse common circles tangents to the

 $x^{2} + y^{2} - 4x - 10y + 28 = 0$, $x^{2} + y^{2} + 4x - 6y + 4 = 0$ are x - 1 = 0, 3x + 4y - 21 = 01) Only I is true 2) Only II is true 3) both I & II are true 4) neither I nor II true I: Let $x^2 + y^2 + 2g_i x + c = 0$, i = 1, 2, 3 be three coaxal circles whose radii r_1, r_2 and r_3 are respectively and t_1, t_2, t_3 the lengths of the tangents to the circles from an outside point then $(g_2 - g_3)t_1^2 + (g_3 - g_1)t_2^2 + (g_1 - g_2)t_3^2 = 0$ II : If p, q, r are the the powers of a point for three circles whose entres are A, B, C respectively, then p. BC + q. CA + r. AB = 01) Only I is true 2) Only II is true 3) both I & II are true 4) neither I nor II true I: The limiting points of the co-axal system of which containing the circles two $x^{2} + y^{2} + 2x - 2y + 2 = 0$ and $25(x^2 + y^2) - 10x - 80y + 65 = 0$ are (-1, 1), (1/5, 8/5)II: The equation of the circle belonging to the coaxal system of which (1, 2), (4, 3) are the limiting points and passing through the origin is $2x^{2} + 2y^{2} - x - 7y = 0$ 1) Only I is true 2) Only II is true 3) both I & II are true 4) neither I nor II true If the locus of the centre of a circle which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches the y- axis is $y^{2} + ax + by + c = 0$, then the descending order of a, b, c is 1) a, b, c 2) b, c, a 3) c, a, b 4) c, b, a If the locus of the centre of the circle which cuts the circles $x^{2} + y^{2} + 4x - 6y + 9 = 0$ and $x^2 + y^2 - 4x + 6y + 4 = 0$ orthogonally is ax + by + c = 0, then the ascending order of a, b, c is 1) a, b, c 2) b, c, a 3) c, a, b 4) a, c, b If the equation of the circle passing through the origin and the points of intersection of the two circles $x^{2} + v^{2} - 4x - 6v - 3 = 0$ $x^{2} + v^{2} + 4x - 2v - 4 = 0$ is

 $x^{2} + y^{2} + 2ax + 2by + c = 0$ then the ascending order of a, b, c is 1) a, b, c 2) b, c, a 3) c, a, b 4) a, c, b 9 Match the following: I: If $x^2 + y^2 - 6x - 8y + 12 = 0$, a) leut orthogonally $x^{2} + y^{2} - 4x + 6y + k = 0$ then k= II: If $x^2 + v^2 - 2x + 3v + k = 0$, b) -10 cut $x^{2} + y^{2} + 8x - 6y - 7 = 0$ orthogonally then k= III: If $x^2 + v^2 + 2x - 2v + 4 = 0$, c) -24 cut $x^2 + y^2 + 4x - 2ky + 2 = 0$ orthogonally then k= 1) a, b, c 2) b, c, a 3) c, b, a 4) a, c, b Match the following: 10. Circles Number of common tangents I: $x^2 + y^2 = 4$, a) 0 $x^{2} + v^{2} - 8x + 12 = 0$ II: $x^2 + y^2 = 1$, b) 1 $x^{2} + y^{2} - 2x - 6y + 6 = 0$ III: $x^2 + y^2 = 16$, c) 2 $x^{2} + v^{2} - 8x + 6v - 56 = 0$ IV. $x^2 + y^2 - 2x - 6y + 9 = 0$, d) 3 $x^{2} + v^{2} + 6x - 2v + 1 = 0$ e) 4 1) a, b, c, d2) d, e, b, a3) c, b, e, d4) a, c, b, d 11. Match the following : Radical centre Cirlces I. $x^2 + v^2 = 1$, a) (0, 0) $x^2 + y^2 - 2x = 1$, $x^{2} + y^{2} - 2y = 1$ II. $x^2 + y^2 - x + 3y - 3 = 0$, b)(2,3) $x^{2} + y^{2} - 2x + 2y + 2 = 0$ $x^{2} + v^{2} + 2x + 3v - 9 = 0$ III. $x^2 + v^2 - 8x + 40 = 0$, c) (8, -15/2) $x^{2} + v^{2} - 5x + 16 = 0$ $x^2 + y^2 - 8x + 16y + 160 = 0$ 1) a, b, c 2) b, c, a 3) c, a, b 4) a, c, b 12. Match the following: Cirlces **Limiting Points** $x^2 + y^2 + 2x + 4y + 7 = 0,$ a) (-1, 1), (1/5, 8/5) $x^{2} + v^{2} + 4x + 2v + 5 = 0$ II. $x^2 + y^2 - 6x - 8y + 5 = 0$, b) (1, 2), (3, 1) $x^{2} + y^{2} - 8x - 10y + 5 = 0$ III. $x^2 + y^2 + 2x - 6y = 0$, c) (1, 2), (-2, -1) $2(x^2 + y^2) - 10y + 5 = 0$

IV. $x^2 + y^2 + 2x - 2y + 2 = 0$, d) (-2, -1), (0, -3) $25(x^2 + y^2) - 10x - 80y + 65 = 0$ 1) a, b, c, d2) b, a, c, d3) c, d, a, b4) d, c, b, a $x^2 + v^2 = a^2$ 13. A: If the circles $x^2 + y^2 - 6x - 8y + 9 = 0$ touch externally then a = 1R: Two circles with centres C_1, C_2 and radii r_1 , r_2 respectively touch externally iff $C_1 C_2 = r_1 + r_2$ 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true but R is not the correct explanation of A 3) A is true but R is false 4) A is false but R is true 14. A: If $x^2 + y^2 - 2x + 3y + k = 0$, $x^{2} + y^{2} + 8x - 6y - 7 = 0$, cut each other orthogonally then k = 10R: The circles $x^2 + y^2 + 2gx + 2fy + c = 0$, $x^2 + y^2 + 2g'x + 2f'y + c' = 0$ cut each other orthogonally iff 2gg' + 2ff' = c + c'. 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true but R is not the correct explanation of A 3) A is true but R is false 4) A is false but R is true 15. A: The radical centre of the circles $x^{2} + y^{2} = 4, x^{2} + y^{2} - 3x = 4, x^{2} + y^{2} - 4y = 4$ is(0,0)R: Radical centre of three circles is the point of concurrence of the radical axes of the circles taken in pairs. 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true but R is not the correct explanation of A 3) A is true but R is false 4) A is false but R is true 16. A: If origin is a limiting point of a coaxal system of which $x^2 + y^2 - 6x - 8y + 1 = 0$ is a member then the other limiting point is (3/25, 4/25)R: If origin is a limiting point of the coaxal system containing the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, then the other limiting point is $\left(\frac{-gc}{g^2+f^2},\frac{-fc}{g^2+f^2}\right).$ 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true but R is not the correct explanation of A 3) A is true but R is false 4) A is false but R is true i) The circles $x^2 + y^2 - 8x + 6y + 21 = 0$, 17.

 $x^{2} + y^{2} + 4x - 10y - 115 = 0$ touch externally. ii) The circles $x^2 + y^2 - 4x - 6y - 12 = 0$, $x^{2} + y^{2} + 6x - 2y + 1 = 0$ intersect each other. Which of the statement is correct. (1) Only i (2) Only ii 22. (3) Both i & ii (4) Neither i nor ii i) The coaxal system $x^2 + y^2 + 2\lambda x + 5 = 0$ is a 18. non intersecting system. ii) The coaxal system $x^2 + y^2 + 4\lambda x - 3 = 0$ is an intersecting system. which of above statement is correct. (1) Only i (2) Only ii (3) Both i & ii (4) Neither i nor ii 19. Observe the following statements: I. The lengths of the tangents from any point on the line 2x + 3y=5 to the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 4x + 6y = 19$ are equal in length. II. There is only one point such that the tangents from it to the three given circles are equal in length. Then the correct statement is: (1) Only I (2) Only II (3) Both I & II (4) Neither I nor II 20. Observe the following statements: I. If two circles $x^2 + y^2 + 2gx + 2fy = 0$ and $x^2 + y^2 + 2g^1x + 2f^1y = 0$ touch each other, 23. then $gf^1 = fg^1$. II. There are 4 circles of radius 'a' which touch both the axes and have their centres on the line $\mathbf{v} = \mathbf{x}$. Then the correct statement is: (1) Only I (2) Only II (4) Neither I nor II (3) Both I & II 21. Observe the lists: List-I List II A) The radical axis 1) is the square of the disof two circles tance between their centers B) The common 2) is perpendicular to the line tangent to two joining the centres inter secting circles of equal radii 24. C) The common 3) is parallel to the line chord of two joining the centres intersecting circles D) The sum of 4) is bisected by the line squares of the joining the centres of two circles intersecting radii

orthogonally. The correct match is A B C D С D Α B 1) a b с d 2) b с d а 4) a 3) b d с а d b с Observe the lists: List I List II A) The circles 1) If c = 1 $x^{2} + v^{2} + 2x + c = 0$ and $x^2 + v^2 + 2v + c = 0$ touch each other 2) If c < 2B) The circles $x^{2} + v^{2} + 2x + 3v + c = 0$ and $x^2 + y^2 - x + 2y + c = 0$ intersect orthogonally. C) The circle $x^2 + y^2 = 9$ 3) If c = 1/2contains the circle $x^{2} + v^{2} - 2x + 1 - c^{2} = 0$ D) The circle $x^2 + y^2 = 9$ 4) If c > 8contained in the circle The correct match is: A B C D C D A B 1) a b c d 2) c а b d 3) c b a d 4) d a h с Assertion (A): $S_1: x^2 + y^2 + 4x - 2y + 3 = 0$ $S_2: x^2 + y^2 - x - 3y + 2 = 0$ $S_2: x^2 + y^2 + 14x + 5 = 0$ are members of a coaxial system Reason (R): In a coaxial system of circles every pair of circles has the same radical axis. The correct answer is 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true and R is not the correct explanation of A. 3) A is true but R is false (4) A is false but R is true Assertion(A): The circles S = 0, $S^1 = 0$ intersect each other, then the radical axis is $S - S^1 = 0$. Reason (R): The radical axis is perpendicular to the line of centres. The correct answer is (1) Both A and R are true and R is the correct explanation of A.

- (2) Both A and R are true and R is not the correct explanation of A.
- (3) A is true but R is false
- (4) A is false but R is true
- 25. Observe the following statements: Assertion(A): The
 - Assertion(A): The equation $x^{2} + y^{2} + 2\lambda x + 4 = 0$ represents a real circle for
 - all $\lambda \in R$
 - Reason (R): The radical axis of any two circles of

the family represented by $x^2 + y^2 + 2\lambda x + 4 = 0$

is the x-axis The correct statement among the following is:

- (1) A is true, (R) is false
- (2) (A) is false, (R) is true
- (3) (A) is true, (R) is true
- (4) (A) is false, (R) is false
 - KEY

01.3	02.3	03.3	04.3	05.3	
06.4	07.2	08.1	09.3	10.2	
11.1	12.4	13.1	14.4	15.1	
16.1	17.2	18.3	19.3	20.1	
21.2	22.2	23.1	24.2	25.4	
LEVEL-5					

Q 1: The radical axis of two non concentric circles id the

locus of a point, which moves so that its power w.r.to the two circles are

equal, and the point of concurrence of the radical axes of 3 circles, whose centres are non collinear taken in pairs is the radical centre.

1) The perpendicular distance of radical axis determind by the circles

 $x^{2} + y^{2} + 2x + 4y - 7 = 0$ and

 $x^2 + y^2 - 6x + 2y - 5 = 0$ from the origin is

1)
$$\frac{1}{\sqrt{17}}$$
 2) $\frac{1}{4}$ 3) $\frac{1}{5}$ 4) $\frac{2}{17}$

2) The radical axis of two circles divides the lines segment joining the centre of circles in the ratio of their

1) areas 2) radii 3) 1:1 4) none

- 3) Circles with radical centre as centre and radius equals to length of tangent from radical centre to any of the three circles will
 - 1) Bisects the circumference of all the three circles
 - 2) Bisects the circumference of at least one of the circle
 - 3) Orthogonal to all the three circles
 - 4) Orthogonal to at least one of the circle
- 4) From any point P tangents of length t_1 and t_2 are

drawn to two circles with centre A,B and if PN is the perpendicular from P to the radical axis then

3) 2

$$t_1^2 - t_2^2 = K$$
. PN.AB then K =

2)1

1)0

4)
$$\frac{1}{2}$$

Q 2: The system of circles is called a coaxal system of circles if any two members of the system have the same radical axis. The point circles belongs to the coaxal system are called its limiting points.

1) If A,B,C are centres and r_1, r_2, r_3 are the radii of three circles belongs to the coaxal system then

the value of $r_1^2 BC + r_2^2 CA + r_3^2$ AB + AB.BC.CA =1) $(r_1 + r_2 + r_3)^2$ 2) $(AB + BC + CA)^2$

3)
$$r_1r_2 + r_2r_3 + r_3r_1$$
 4) zero

2) One of the limiting point of the coaxal system determined by the circles $x^2 + y^2 + 2x - 6y = 0$ and

 $2x^2 + 2y^2 - 10y + 5 = 0$ is

- $1) (1,2) \quad 2) (3,-1) \quad 3) (-3,1) \quad 4) (-3,-1)$
- Every circle through the limiting points
 - 1) belongs to the coaxal system
 - 2) is bisected by the radical axis
 - 3) orthogonal to every circle belongs to the system

4) none of these

4) Equation of circle passing through (0,0) and belongs to the system having limiting points (1,2) and (4,3) is

1)
$$2x^{2} + 2y^{2} - x - 7y = 0$$

2) $x^{2} + y^{2} - 2x - 7y = 0$
3) $2x^{2} + 2y^{2} + 2x - 7y = 0$
4) $x^{2} + y^{2} + 2x - 7y = 0$

KEY

Q 1:			
1) 1	2)2	3) 3	4) 3
Q 2:			
1) 4	2) 1	3) 3	4) 1

PREVIOUS EAMCET

3)

If x-y+1=0 meets the circles $x^{2}+y^{2}+y-1=0$ at *A*, *B*, then the equation of

the circle with AB as diameter is

(*Eamcet* – 2005)

 $1)2(x^{2} + y^{2}) + 3x - y + 1 = 0$ 3) (-1, 1), (1/5, 8/5) 4) (-1, 1), (-1/5, 8/5) 08. If (1, 2) is a limiting point of a coaxal system of $2)2(x^{2} + y^{2}) + 3x - y + 2 = 0$ circles containing the circle $x^2 + y^2 + x - 5y + 9 =$ 0, then the equation of radical axis is $\Im 2(x^2 + y^2) + 3x - y + 3 = 0$ (EAMCET 91)(2000) 1) x + 3y + 9 = 02) 3x - y + 4 = 0 $4) x^{2} + y^{2} + 3x - y + 1 = 0$ 3) x + 9y - 4 = 04) 3x - y - 1 = 002. The equation of the circle whose diameter is the 09. The number of common tangents that can be common chord of the circles drawn to the circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 2x$ $x^{2} + v^{2} + 2x + 3v + 2 = 0$ 6y + 6 = 0 is (EAMCET 2000) $x^{2} + v^{2} + 2x - 3v - 4 = 0$ is 3) 3 1)1 2) 2 4)4 (Eamcet - 2005)10. Two circles of equal radius 'r' cut orthogonally. If their centres are (2, 3) and (5, 6), then r =1) $x^2 + y^2 + 2x + 2y + 2 = 0$ (EAMCET 2000) $2x^{2} + v^{2} + 2x + 2v - 1 = 0$ 1)1 2) 2 3) 3 4)4 The slope of the radical axis of the circles $x^2 + y^2$ 11. $\Im x^2 + v^2 + 2x + 2v + 1 = 0$ + 3x + 4y - 5 = 0 and $x^2 + y^2 - 5x + 5y - 6 = 0$ is 4) $x^{2} + v^{2} + 2x + 2v + 3 = 0$ (EAMCET 99) 1)1 2) 3 3) 5 4)8 03. The equation of the radical axis of the two circles 12. If the circle $x^2 + y^2 + 2x - 2y + 4 = 0$ cuts the circle $7x^2 + 7y^2 - 7x + 14y + 18 = 0$ and $x^2 + y^2 + 4x + 2fy + 2 = 0$ orthogonally, then f = $4x^{2} + 4y^{2} - 7x + 8y + 20 = 0$ is given by: (EAMCET 99) 1)12) 2 3) -1 4) -2 (REE-1989) The radical axis of the circles $x^2+y^2-6x-4y-44=0$ 13. (1) $3x^2 + 3y^2 - 6y - 2 = 0$ and $x^2 + y^2 - 14x - 5y - 24 = 0$ is (EAMCET 98) (2) 21x - 68 = 01) 8x + y - 30 = 02) 8x + y + 20 = 0(3) x - 2y - 5 = 03) 8x + 3y - 20 = 04) 8x + y - 20 = 0(4) None The radical axis of the coaxal system having the 14. 04. The two circles $x^2 + y^2 - 2x - 4y = 0$ and limiting points (1, 2) and (4, 3) is (EAMCET 97) 1) 3x - y + 10 = 02) 3x + y - 10 = 0 $x^{2} + y^{2} - 8y - 4 = 0$ (REE-1990) 3) 3x + y + 10 = 04) x + 3y - 10 = 0(1) Intersect each other 15. If (0, 0) is one limiting point of the coaxal system (2) Touch each other internally with radical axis x + y = 1, then the other (3) Touch each other externally limitingpoint is (4) None of these (EAMCET 96) If the circle $x^2 + y^2 + 6x - 2y + k = 0$ bisects the 05 1) (-1, 1) 2) (1, -1) 3) (-1, -1) 4) (1, 1)circumference of the circle 16. If the circles of same radius 'a' and centres at (2, 3), (5, 6) cut orthogonally then a= $x^{2} + y^{2} + 2x - 6y - 15 = 0$ then k= (EAMCET 96) (2003)2) $4\sqrt{2}$ 3) $3\sqrt{2}$ (2) -21 (4)-231)44) 3 (1)21(3) 23The radical axis of circles $x^2 + y^2 + 3x + 4y - 5 = 0$ 06. 17. Limiting points of the coaxal system determined and $x^2 + y^2 - 5x + 5y - 6 = 0$ is (EAMCET 2001) by the circles $x^2 + y^2 + 14x - 8y - 5 = 0$, 1) 8x + y + 1 = 02) 8x - y + 1 = 0 $x^{2} + y^{2} + 4x + 2y + 5 = 0$ are 3) 8x - 8y + 1 = 04) -8x + y + 1 = 0(EAMCET 96) 07. The limiting points of a coaxal system containing 1)(0, -3), (2, 1)2)(-2, -1), (0, -3)the two circles $x^{2} + y^{2} + 2x - 2y + 2 = 0$ and (-2, -1), (0, 3)(2, 1), (0, -3) $25x^2 + 25y^2 - 10x - 80y + 65 = 0$ are 18. The distance of (1, -2) from the common chord of (EAMCET 2001) $x^2 + y^2 - 5x + 4y - 2 = 0$ and 2) (1, -1), (-1/5, -8/5) 1)(1, -1), (-5, -40)SR. MATHEMATICS SYSTEM OF CIRCLE 314

	$x^2 + y^2 - 2x + 8y + 3 = 0$ is	27.	The number of common tangents to the circles x^2
	x + y - 2x + 8y + 5 = 0 is (EAMCET 96)	27.	$+y^2 + 2x + 8y - 23 = 0, x^2 + y^2 - 4x - 10y + 19 =$
	1) 2 2) 1 3) 0 4) 3		0 (EAMCET 87)
19.	Radical centre of $x^2 + y^2 - x + 3y - 3 = 0$, $x^2 + y^2$		1) 4 2) 2 3) 3 4) 1
	$-2x + 2y + 2 = 0$ and $x^2 + y^2 + 2x + 3y - 9 = 0$ is	28.	The equation of the circle passing through $(0, 0)$
	(EAMCET 96)		and cutting the circles $x^2 + y^2 + 6x - 15 = 0$,
	1) (2, 3) 2) (3, 2) 3) (-2, 3) 4) (-3, -2)		$x^2 + y^2 - 8y + 10 = 0$ orthogonally is
20.	If the chords of contact of points on $x^2 + y^2 = a^2$ with respect to the circle $x^2 + y^2 = b^2$ touch the		(EAMCET 86)
	circle $x^2 + y^2 = c^2$ then a, b, c are in		, , , , , , , , , , , , , , , , , , ,
	(EAMCET 95)		1) $(x - 5/2)^2 + (y - 5/4)^2 = \frac{125}{16}$
	1) AP 2) GP 3) HP 4) AGP		10
21.	Number of common tangents to $x^2 + y^2 - x = 0$ and		2) $x^2 + y^2 - 5x - 5y = 0$ 2) $2(x^2 + x^2) - 10x - 5x = 0$
21.	$x^2 + y^2 + x = 0$ is		3) $2(x^2 + y^2) - 10x - 5y = 0$ 4) $x^2 + x^2$ for $y = 0$
	(EAMCET 94)	20	4) $x^2 + y^2 - 5x + 5y = 0$
	1) 2 2) 1 3) 4 4) 3	29.	Number of circles that can be drawn touching all the three lines $x + y - 2 = 0$, $3x + 4y + 7 = 0$ and
22.	The circles $x^2 + y^2 - 4x + 6y + 8 = 0$ and		$\frac{1}{2x + 2y - 3} = 0$
	$x^2 + y^2 - 10x - 6y + 14 = 0$		2x + 2y - 5 = 0 (EAMCET 86)
	(EAMCET 91)		$\begin{array}{c} (111111111111111111111111111111111111$
	1) touch externally 2) touch internally	30.	Number of circles that can be drawn touching all
	3) intersect 4) do not meet	50.	the three lines $x + y - 1 = 0$, $x - y - 1 = 0$ and
23.	The equation of the circle passing through the origin		y + 1 = 0
	and the points of intersection of the circles		(EAMCET 85)
	$x^2 + y^2 - 4x - 6y - 3 = 0, x^2 + y^2 + 4x - 2y - 4 = 0$		1) 0 2) 2 3) 3 4) 4
	(EAMCET 91)	31.	If the circles $(x + a)^2 + (y + b)^2 = a^2$, $(x + \alpha)^2 + b^2$
	1) $x^2 + y^2 + 28x + 18y = 0$		$(y + \beta)^2 = \beta^2$ cut orthogonally then $\alpha^2 + b^2$
	2) $x^2 + y^2 - 18x - 28y = 0$		(EAMCET 85)
	3) $x^2 + y^2 - 28x + 18y = 0$		
	4) $x^2 + y^2 - 28x - 18y = 0$		1) $a\alpha + b\beta$ 2) $a^2 + \beta^2$
24.	Equation to the circle whose one of the diameters		3) $-2(a\alpha + b\beta)$ 4) $2(a\alpha + b\beta)$
	is the common chord of	Eam	ncet-2007
	$(x - a)^2 + y^2 = a^2, x^2 + (y - b)^2 = b^2$ is	32.	The condition for the coaxial system
	(EAMCET 89)		$x^{2} + y^{2} + 2\lambda x + c = 0$, where λ is a parameter
	1) $(a^2 + b^2) (x^2 + y^2) = 2ab(bx + ay)$ 2) $(a^2 + b^2) (x^2 + y^2) = 2ab (ax + by)$		and 'c' is a constant, to have distinct limiting points is
	2) $(a^2 + b^2) (x^2 + y^2) = 2ab (ax + by)$ 3) $x^2 + y^2 = 2ab / (a^2 + b^2) (ax - by)$		E-2007
	$3) x^{2} + y^{2} = 2ab / (a^{2} + b^{2}) (ax - by)$ $4) x^{2} + y^{2} = ab / (a^{2} + b^{2}) (ax + by)$		1) $c = 0$ 2) $c < 0$ 3) $c = -1$ 4) $c > 0$
25.	If the circles of equal radius and centres at (2, 3),		KEY
	(5, 6) cut orthogonally, then the radius of one of		01.1 02.3 03.2 04.2 05.4
	the circles is (EAMCET 88)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1) 3 2) $3\sqrt{2}$ 3) 6 4) 4		11.4 12.3 13.4 14.2 15.4
26.	The angle at which the circles $x^2 + y^2 + 8x - 2y$ -		16.3 17.2 18.3 19.1 20.2
	$9 = 0, x^2 + y^2 - 2x + 8y - 7 = 0$ intersect is		21.4 22.1 23.4 24.1 25.1
	(EAMCET 87)		26.4 27.3 28.3 29.3 30.4
	1) obtuse 2) $\pi/6$ 3) $\pi/3$ 4) $\pi/2$		31.4 32.4
	ATHEMATICS 3	15	SYSTEM OF CIRCLE