Vector Algebra

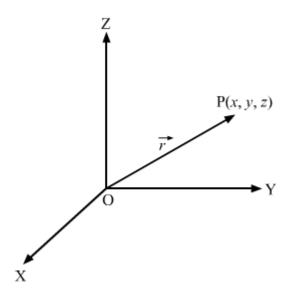
Vector and Its Related Concepts

Vector

- The quantity that involves only magnitude (a value) is called a scalar quantity. Example: Length, mass, time, distance, etc.
- The quantity that involves both magnitude and direction is called a vector. Example: Acceleration, momentum, force, etc.
- Vector is represented as a directed line segment (line segment whose direction is given by means of an arrowhead).
- In the following figure, line segment AB is directed towards B.

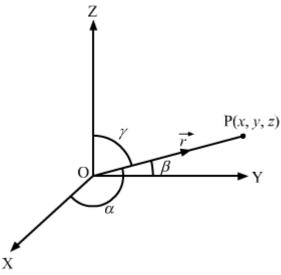
Hence, the vector representing directed line segment AB is \overline{AB} or simply \vec{a} . Here, the arrow indicates the direction of AB. In \overline{AB} , A is called the initial point and B is called the terminal point.

• The position vector of a point P in space having coordinates (x, y, z) with respect to origin 0 (0, 0, 0) is given by \overrightarrow{OP} or \vec{r} .



• Here, the magnitude of \vec{r} i.e., $|\vec{r}|$ is given by $\sqrt{x^2 + y^2 + z^2}$.

• If a position vector \vec{r} of point P (*x*, *y*, *z*) makes angles α , β , and γ with the positive directions of *x*-axis, *y*-axis and *z*-axis respectively, then these angles are called direction angles.

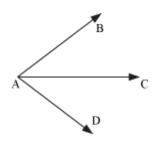


- The cosine values of direction angles are called direction cosines of \vec{r} . This means that direction cosines (d.c.s.) of \vec{r} are $\cos \alpha$, $\cos \beta$, and $\cos \gamma$. We may write the d.c.s of \vec{r} as *l*, *m*, *n* where *l* = $\cos \alpha$, *m* = $\cos \beta$ and *n* = $\cos \gamma$.
- The direction ratios of \vec{r} will be *lr*, *mr*, and *nr*. We may write the direction ratios (d.r.s.) of \vec{r} as *a*, *b*, *c*, where a = lr, b = mr and c = nr.
- If *l*, *m*, *n* are the d.c.s. of a position vector \vec{r} , then $l^2 + m^2 + n^2 = 1$

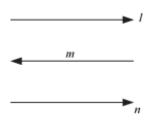
Types of Vectors

- A vector whose initial and terminal points coincide is called a zero vector or a null vector.
- It is represented as $\vec{0}$.
- A zero vector cannot be assigned in a definite direction since its magnitude is zero or it may be regarded as having any direction.
- The vector \overrightarrow{PP} , \overrightarrow{AA} , etc. represents a zero vector.
- A vector whose magnitude is unity or 1 unit is called a unit vector.
- A unit vector in the direction of a position vector \vec{r} is given as \hat{r} .

- Two or more vectors having the same initial point are called co-initial vectors.
- In the following figure, vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are called initial vectors as each vector has the same initial point i.e., A.



- Two or more vectors are said to be collinear if they are parallel to the same line irrespective of their magnitudes and directions.
- In the following figure, \vec{l} , \vec{m} and \vec{n} are collinear vectors.



- Two vectors are said to be equal if they have the same magnitude and direction regardless of the positions of their initial points.
- For two equal vectors \vec{a} and \vec{b} , we write $\vec{a} = \vec{b}$
- A vector whose magnitude is the same as that of a given vector but whose direction is opposite to that of the given vector is called the negative of the given vector.
- The negative vector of \overrightarrow{PQ} is \overrightarrow{QP} and it is written as $\overrightarrow{PQ} = -\overrightarrow{QP}$.

Solved Examples

Example 1

Find the direction cosines and direction ratios of the position vector of point P(8, -4, 1).

Solution:

Let O be the origin. The position vector of point P(8, -4, 1) with respect to origin will be OP.

$$\therefore r = \sqrt{x^2 + y^2 + z^2} = \sqrt{(8)^2 + (-4)^2 + (1)^2} = 9$$

The direction cosines of \overrightarrow{OP} are

 $l, m, n = \frac{x}{r}, \frac{y}{r}, \frac{z}{r} = \frac{8}{9}, \frac{-4}{9}, \frac{1}{9}$

The direction ratios of \vec{r} are

 $lr, mr, nr = \frac{8}{9} \times 9, -\frac{4}{9} \times 9, \frac{1}{9} \times 9 = 8, -4, 1$

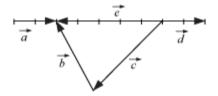
Example 2

In the following figure, which of the vectors are

(i) Collinear

(ii) Equal

(iii) Co-initial



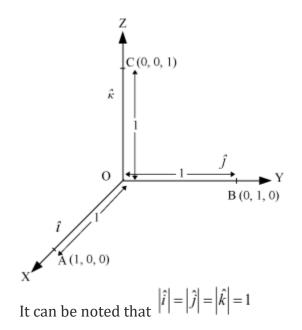
Solution:

- (i) Collinear vectors: \vec{a}, \vec{e} and \vec{d}
- (ii) Equal vectors: \vec{a} and \vec{d}
- (iii) Co-initial vectors, \vec{c} , \vec{d} and \vec{e} .

Component Form of a Vector

Key Concept0073

• In a space, the unit vectors along the *x*-axis, *y*-axis and *z*-axis are denoted by \hat{i} , \hat{j} , and \hat{k} respectively.



- The position vector (\vec{r}) of any point (x, y, z) in a space is given by $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
- The scalar components of \vec{r} are *x*, *y* and *z*.
- The vector components of \vec{r} are $x_i^{\hat{i}}, y_j^{\hat{j}}$ and $z_k^{\hat{k}}$, which are along the *x*, *y* and *z*-axes respectively.
- If the position vector (\vec{r}) of a point is $x\hat{i} + y\hat{j} + z\hat{k}$, then $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$
- Two vectors \vec{a} and \vec{b} given by $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are equal if $a_1 = b_1$, $a_2 = b_2$, and $a_3 = b_3$.

Solved Examples

Example 1

Find the value of x if $5|\vec{a}| = 3|\vec{b}|$, where $\vec{a} = 7\hat{i} + (x-2)\hat{j} + 4\hat{k}$ and $\vec{b} = 9\hat{i} - 12\hat{j} + (x+2)\hat{k}$.

Solution:

We have

$$\vec{a} = 7\hat{i} + (x-2)\hat{j} + 4\hat{k}$$

$$\vec{b} = 9\hat{i} - 12\hat{j} + (x+2)\hat{k}$$

$$\therefore |\vec{a}| = \sqrt{(7)^2 + (x-2)^2 + (4)^2} = \sqrt{x^2 - 4x + 69}, |\vec{b}| = \sqrt{(9)^2 + (-12)^2 + (x+2)^2} = \sqrt{x^2 + 4x + 229}$$

It is given that

$$5 |\vec{a}| = 3 |\vec{b}|$$

$$\Rightarrow 25 |\vec{a}|^{2} = 9 |\vec{b}|^{2}$$

$$\Rightarrow 25(x^{2} - 4x + 69) = 9(x^{2} + 4x + 229)$$

$$\Rightarrow 25x^{2} - 100x + 1725 = 9x^{2} + 36x + 2061$$

$$\Rightarrow 16x^{2} - 136x - 336 = 0$$

$$\Rightarrow 2x^{2} - 17x - 42 = 0$$

$$\Rightarrow 2x^{2} + 4x - 21x - 42 = 0$$

$$\Rightarrow 2x(x + 2) - 21(x + 2) = 0$$

$$\Rightarrow (x + 2) (2x - 21) = 0$$

$$\Rightarrow (x + 2) = 0 \text{ or } (2x - 21) = 0$$

$$\Rightarrow x = -2 \text{ or } x = \frac{21}{2}$$

Thus, the required value of *x* is -2 or $\frac{21}{2}$.

Example 2

Find the values of *x*, *y* and *z* if $\vec{a} = \vec{b}$, where $\vec{a} = (x+y)\hat{i} + (7-2x)\hat{j} + (z-2)\hat{k}$ and $\vec{b} = (2y-1)\hat{i} + (2-y)\hat{j} + 2\hat{k}$.

Solution:

It is given that

$$\vec{a} = (x+y)\hat{i} + (7-2x)\hat{j} + (z-2)\hat{k}$$

$$\vec{b} = (2y-1)\hat{i} + (2-y)\hat{j} + 2\hat{k}$$

$$\vec{a} = \vec{b}$$

$$\Rightarrow x + y = 2y - 1, 7 - 2x = 2 - y \text{ and } z - 2 = 2$$

$$\Rightarrow x - y + 1 = 0 \dots (1)$$

$$2x - y - 5 = 0 \dots (2)$$

$$z = 4 \dots (3)$$

On subtracting (2) from (1), we obtain

$$-x + 6 = 0$$

$$\Rightarrow x = 6$$

On substituting x = 6 in equation (1), we obtain

6 - y + 1 = 0

 $\Rightarrow y = 7$

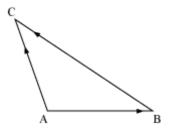
Hence, x = 6, y = 7, and z = 4.

Addition and Difference of vectors

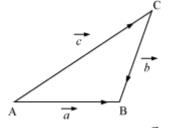
Triangle Law and Parallelogram Law of Vector Addition

• Let points *A*, *B*, *C* form a triangle. If one person goes from *A* to *B* (represented by vector \overrightarrow{AB}) and *B* to *C* (represented by \overrightarrow{BC}), then the net displacement of the person from *A* to *C* (\overrightarrow{AC}) is given by $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$.

This is known as the triangle law of vector addition.



- To add two vectors \vec{a} and \vec{b} , they are positioned in such a manner that the initial point of one coincides with the terminal point of the other.
- In the following figure, the initial point of \vec{b} and the final point of \vec{c} coincide at *C*.

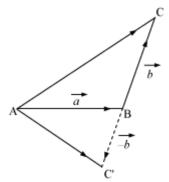


Hence, we write: $\vec{c} + \vec{b} = \vec{a}$

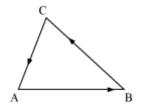
• In the following figure,

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{a} + \overrightarrow{b}$$
$$\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{BC'} = \overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{a} - \overrightarrow{b}$$

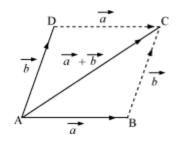
Here, the vector \overrightarrow{AC} ' is said to represent the difference between vectors \overrightarrow{a} and \overrightarrow{b} .



- When the sides of a triangle are taken in order, then their resultant vector is $\vec{0}$ because the initial and terminal points coincide.
- In $\triangle ABC$, if $\overrightarrow{AB}, \overrightarrow{BC}$, and \overrightarrow{CA} are in the same order, then $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \vec{0}$



• If two vectors \vec{a} and \vec{b} represent the adjacent sides of a parallelogram in magnitude and direction, then their sum i.e., $\vec{a} + \vec{b}$ represents the magnitude and direction of the vector through their common point. This is known as the parallelogram law of vector addition.



Addition and Difference of Vectors

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then
 $\vec{a} + \vec{b} = (a_1 + b_1) \hat{i} + (a_2 + b_2) \hat{j} + (a_3 + b_3) \hat{k}$
 $\vec{a} - \vec{b} = (a_1 - b_1) \hat{i} + (a_2 - b_2) \hat{j} + (a_3 - b_3) \hat{k}$

Here, $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are called the sum and difference of vectors \vec{a} and \vec{b} respectively.

- Properties of vector addition
- Commutative Law: For any two vectors \vec{a} and \vec{b} , $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- Associative Law: For any three vectors \vec{a} , \vec{b} and \vec{c} $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- The existence of additive identity: For any vector \vec{a} , we find $-\vec{a}$ (negative of vector \vec{a}) such that $\vec{a} + (-\vec{a}) = 0$ Here, $(-\vec{a})$ is called the additive inverse of \vec{a} .

Here, Staried the additive inverse

Solved Examples

Example 1

If
$$\vec{a} = 9\hat{i} - 3\hat{j} - 3\hat{k}$$
 and $\vec{b} = -\hat{i} + 7\hat{j} + 2\hat{k}$, then find the value of $\|\vec{a} - \vec{b}\| - 2|\vec{a} + \vec{b}\|$.

Solution:

We have,
$$\vec{a} = 9\hat{i} - 3\hat{j} - 3\hat{k}$$
 and $\vec{b} = -\hat{i} + 7\hat{j} + 2\hat{k}$
 $\therefore \vec{a} + \vec{b} = [9 + (-1)]\hat{i} + [(-3) + 7]\hat{j} + [(-3) + (2)]\hat{k}$
 $= 8\hat{i} + 4\hat{j} - \hat{k}$
And, $\vec{a} - \vec{b} = [9 - (-1)]\hat{i} + [(-3) - 7]\hat{i} + [(-3) - 2]\hat{k}$
 $= 10\hat{i} - 10\hat{j} - 5\hat{k}$
Hence, $|\vec{a} + \vec{b}| = \sqrt{(8)^2 + (4)^2 + (-1)^2} = 9$
And, $|\vec{a} - \vec{b}| = \sqrt{(10)^2 + (-10)^2 + (-5)^2} = 15$
Hence, $||\vec{a} - \vec{b}| - 2||\vec{a} + \vec{b}|| = |15 - 2 \times 9||$
 $= |15 - 18||$
 $= |-3||$
 $= 3$

Example 2

Find x + 5y if $|\vec{a} + \vec{b}| = 6\sqrt{10}$ and $\vec{a} = x\hat{i} + 3x\hat{j} + \sqrt{xy}\hat{k}$ and $\vec{b} = 9y\hat{i} + 13y\hat{j} + \sqrt{xy}\hat{k}$ such that both x and y are positive integers.

Solution:

We have:

$$\vec{a} = x\hat{i} + 3x\hat{j} + \sqrt{xy}\hat{k}$$

and $\vec{b} = 9y\hat{i} + 13y\hat{j} + \sqrt{xy}\hat{k}$
Hence, $\vec{a} + \vec{b} = (x + 9y)\hat{i} + (3x + 13y)\hat{k} + 2\sqrt{xy}\hat{k}$
 $\therefore |\vec{a} + \vec{b}| = \sqrt{(x + 9y)^2 + (3x + 13y)^2 + (2\sqrt{xy})^2}$
 $= \sqrt{(x^2 + 81y^2 + 18xy) + (9x^2 + 169y^2 + 78xy) + 4xy}$
 $= \sqrt{10(x^2 + 25y^2 + 10xy)}$
 $= \sqrt{10}\sqrt{(x + 5y)^2}$
 $= \sqrt{10}(x + 5y)$

It is given that

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = 6\sqrt{10}$$
$$\Rightarrow \sqrt{10}(x + 5y) = 6\sqrt{10}$$
$$\Rightarrow x + 5y = 6$$

`Multiplication of a Vector with a Scalar

Key Concepts:

• If λ is any scalar and $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ is any vector, then the multiplication of scalar λ with this vector \vec{a} , denoted by $\lambda \vec{a}$, is given by: $\lambda \vec{a} = \lambda \left(a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \right) = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k}$

• For example:
$$5(2\hat{i} - \hat{j} + 4\hat{k}) = (5 \times 2) \hat{i} - 5\hat{j} + (5 \times 4)\hat{k} = 10\hat{i} - 5\hat{j} + 20\hat{k}$$

- If \vec{a} is any vector and λ is any scalar, then $|\lambda \vec{a}| = |\lambda| |\vec{a}|$.
- The unit vector in the direction of vector \vec{a} is denoted by \hat{a} and it is given by: $\hat{a} = \frac{1}{|\hat{a}|}\vec{a}$

• If
$$\vec{a} = 9\hat{i} - 8\hat{j} - 12\hat{k}$$
, then $\hat{a} = \frac{1}{|\vec{a}|}\vec{a}$
= $\frac{1}{\sqrt{(9)^2 + (-8)^2 + (-12)^2}} (9\hat{i} - 8\hat{j} - 12\hat{k})$
= $\frac{1}{17} (9\hat{i} - 8\hat{j} - 12\hat{k})$
= $\frac{9}{17}\hat{i} - \frac{8}{17}\hat{j} - \frac{12}{17}\hat{k}$

- Two vectors \vec{a} and \vec{b} are said to be collinear vectors, if there exists a scalar λ such that $\vec{b} = \lambda \vec{a}$
- In this case, if $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then \vec{a} and \vec{b} are collinear, $\frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda$ provided
- If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, then a_1, a_2, a_3 are called direction ratios of \vec{a} .

• $\frac{a_1}{|\vec{a}|}, \frac{a_2}{|\vec{a}|}, \frac{a_3}{|\vec{a}|}$ are called direction cosines of \vec{a} .

- Some properties of multiplication of a scalar with a vector: If \vec{a} and \vec{b} are any two vectors and k and m are any scalars, then
- $(k+m)\vec{a} = k\vec{a} + m\vec{a}$
- $k\left(\vec{a}+\vec{b}\right) = k\vec{a}+k\vec{b}$
- $k(m\vec{a}) = (km)\vec{a}$

Solved Examples:

Example 1:

If
$$\vec{a} = 5\hat{i} - 3\hat{j} + \hat{k}$$
 and $\vec{b} = -2\hat{i} + \hat{j} - \hat{k}$, then find the value of λ , such that

$$\lambda \left| \frac{\left(2\vec{a}+3\vec{b}\right)}{\left|\vec{a}+\vec{b}\right|} \right| + \mu \left| 2\sqrt{35}\hat{a} + \sqrt{6}\hat{b} \right| = 4\sqrt{2} + 3\sqrt{10}$$

Solution:

$$\vec{a} = 5\hat{i} - 3\hat{j} + \hat{k}$$
$$\vec{b} = -2\hat{i} + \hat{j} - \hat{k}$$
$$\therefore |\vec{a}| = \sqrt{(5)^2 + (-3)^2 + (1)^2} = \sqrt{35}$$
$$|\vec{b}| = \sqrt{(-2)^2 + (1)^2 + (-1)^2} = \sqrt{6}$$

Now,

$$2\vec{a} + 3\vec{b} = 2(5\hat{i} - 3\hat{j} + \hat{k}) + 3(-2\hat{i} + \hat{j} - \hat{k}) = (10 - 6)\hat{i} + (-6 + 3)\hat{j} + (2 - 3)\hat{k} = 4\hat{i} - 3\hat{j} - \hat{k}$$
$$\vec{a} + \vec{b} = (5\hat{i} - 3\hat{j} + \hat{k}) + (-2\hat{i} + \hat{j} - \hat{k}) = (5 - 2)\hat{i} + (-3 + 1)\hat{j} + (1 - 1)\hat{k} = 3\hat{i} - 2\hat{j}$$
$$\therefore |\vec{a} + \vec{b}| = \sqrt{(3)^2 + (-2)^2} = \sqrt{13}$$

Therefore,

$$\left|\frac{2\vec{a}+3\vec{b}}{\left|\vec{a}+\vec{b}\right|}\right| = \left|\frac{4\hat{i}-3\hat{j}-\hat{k}}{\sqrt{13}}\right| = \left|\frac{1}{\sqrt{13}}\right| \left|4\hat{i}-3\hat{j}-\hat{k}\right| = \frac{1}{\sqrt{13}}\sqrt{\left(4\right)^2 + \left(-3\right)^2 + \left(-1\right)^2}$$
$$= \frac{1}{\sqrt{13}}\sqrt{26} = \sqrt{2}$$

Then,

$$2\sqrt{35}\hat{a} + \sqrt{6}\hat{b} = 2\sqrt{35} \times \frac{1}{|\vec{a}|}\vec{a} + \sqrt{6} \times \frac{1}{|\vec{b}|}\vec{b} = 2\sqrt{35} \times \frac{1}{\sqrt{35}} \left(5\hat{i} - 3\hat{j} + \hat{k}\right) + \sqrt{6} \times \frac{1}{\sqrt{6}} \cdot \left(-2\hat{i} + \hat{j} - \hat{k}\right)$$

= $2\left(5\hat{i} - 3\hat{j} + \hat{k}\right) + \left(-2\hat{i} + \hat{j} - \hat{k}\right)$
= $(10 - 2)\hat{i} + (-6 + 1)\hat{j} + (2 - 1)\hat{k}$
= $8\hat{i} - 5\hat{j} + \hat{k}$
 $\therefore \left|2\sqrt{35}\hat{a} + \sqrt{6}\hat{b}\right| = \sqrt{\left(8\right)^2 + \left(-5\right)^2 + \left(1\right)^2} = \sqrt{90} = 3\sqrt{10}$

It is given that,

$$\lambda \left| \frac{2\vec{a} + 3\vec{b}}{\left| \vec{a} + \vec{b} \right|} \right| + \mu \left| 2\sqrt{35}\hat{a} + \sqrt{6}\hat{b} \right| = 4\sqrt{2} + 3\sqrt{10}$$
$$\Rightarrow \lambda\sqrt{2} + \mu \times 3\sqrt{10} = 4\sqrt{2} + 3\sqrt{10}$$

Comparing the co-efficients of $\sqrt{2}$ and $\sqrt{10}$, we obtain λ = 4 and 3μ = 3 Thus, λ = 4 and μ = 1

Example 2:

If for a vector
$$\vec{a}$$
, $\hat{a} = \frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + x\hat{k}$ and $|\vec{a}| = 12$, then find \vec{a} .

Solution:

$$\hat{a} = \frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + x\hat{k}$$

Since is a unit vector, we must have $|\vec{a}| = 1$

$$\begin{aligned} |\vec{a}| &= 1 \\ \Rightarrow \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{3}}\right)^2 + x^2} = 1 \\ \Rightarrow \sqrt{\frac{1}{2} + \frac{1}{3} + x^2} = 1 \\ \Rightarrow \sqrt{\frac{1}{2} + \frac{1}{3} + x^2} = 1 \\ \Rightarrow \frac{5}{6} + x^2 = 1 \\ \Rightarrow x^2 &= \frac{1}{6} \\ \Rightarrow x &= \pm \frac{1}{\sqrt{6}} \\ \therefore \hat{a} &= \frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} \pm \frac{1}{\sqrt{6}} \hat{k} \end{aligned}$$

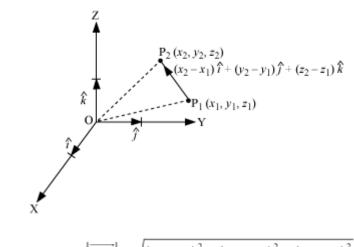
We know that,

$$\hat{a} = \frac{1}{|\vec{a}|}\vec{a}$$
$$\therefore \vec{a} = |\vec{a}|\hat{a}$$
$$\Rightarrow \vec{a} = 12\left(\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} \pm \frac{1}{\sqrt{6}}\hat{k}\right) = 6\sqrt{2}\hat{i} - 4\sqrt{3}\hat{j} \pm 2\sqrt{6}\hat{k}$$

Vector Joining Two Points and Section Formula

Vector Joining Two Points

• The vector joining two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, represented as $\overline{P_1P_2}$, is calculated as $\overline{P_1P_2} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$



• The magnitude of $\overrightarrow{P_1P_2}$ is given by $\left|\overrightarrow{P_1P_2}\right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Section Formula

• If point *R* (position vector \vec{r}) lies on the vector \overrightarrow{PQ} joining two points *P* (position vector \vec{a}) and *Q* (position vector \vec{b}) such that *R* divides \overrightarrow{PQ} in the ratio *m*: $n \begin{bmatrix} i.e. \frac{\overrightarrow{PR}}{\overrightarrow{RQ}} = \frac{m}{n} \end{bmatrix}$

then
$$\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$$

• Internally, then m+1

Externally, then
$$\vec{r} = \frac{m\vec{b} - n\vec{a}}{m - n}$$

• If the position vectors of points *P*, *Q* and *R* are \vec{a}, \vec{b} and \vec{r} respectively such that *R* is the mid-point of \overrightarrow{PQ} , then $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$.

Solved Examples

Example 1

Using the concept of vectors, find the area of ΔABC formed by the vertices

$$A(-2\hat{i}-4\hat{j}+2\hat{k}), B(-3\hat{i}-3\hat{j}+4\hat{k})$$
 and $C(2\hat{j}+3\hat{k})$

Solution:

We have

$$\overline{AB} = \left[-3 - (-2)\right]\hat{i} + \left[(-3) - (-4)\right]\hat{j} + (4-2)\hat{k}$$

$$= -\hat{i} + \hat{j} + 2\hat{k}$$

$$\overline{BC} = \left[0 - (-3)\right]\hat{i} + \left[2 - (-3)\right]\hat{j} + (3-4)\hat{k}$$

$$= 3\hat{i} + 5\hat{j} - \hat{k}$$

$$\overline{CA} = (-2 - 0)\hat{i} + (-4 - 2)\hat{j} + (2 - 3)\hat{k}$$

$$= -2\hat{i} - 6\hat{j} - \hat{k}$$

$$\therefore \left|\overline{AB}\right| = \sqrt{(-1)^2 + (1)^2 + (2)^2} = \sqrt{6}$$

$$\left|\overline{BC}\right| = \sqrt{(3)^2 + (5)^2 + (-1)^2} = \sqrt{35}$$

$$\left|\overline{CA}\right| = \sqrt{(-2)^2 + (-6)^2 + (-1)^2} = \sqrt{41}$$
We know that, $\left(\sqrt{41}\right)^2 = \left(\sqrt{35}\right)^2 + \left(\sqrt{6}\right)^2$

we know that,

$$\Rightarrow \left| \overrightarrow{CA} \right|^2 = \left| \overrightarrow{BC} \right|^2 + \left| \overrightarrow{AB} \right|^2$$

Hence, $\triangle ABC$ is right-angled at B.

Thus, area (
$$\Delta ABC$$
) = $\frac{1}{2}BC \cdot AB$

$$= \frac{1}{2}\sqrt{35} \cdot \sqrt{6}$$
$$= \frac{1}{2}\sqrt{210} \text{ sq.units}$$

Example 2

If *P* is the mid-point of the line segment joining the points $A(3\hat{i}-6\hat{j}+5\hat{k})$ and $B(-7\hat{i}+\hat{k})$, *Q* is the mid-point of the line segment joining the points $C(-i-2\hat{j}+3\hat{k})$ and $D(\hat{i}+5\hat{k})$, and *R* is a point on \overrightarrow{PQ} such that it divides *PQ* externally in the ratio 2:3, then find the position vector of point *R*.

Solution:

It is given that *P* is the mid-point of the line segment joining the points $A(3\hat{i}-6\hat{j}+5\hat{k})$ and $B(-7\hat{i}+\hat{k})$.

 \therefore Position vector of $\ {P(\vec{p})}$ is given by

$$\vec{p} = \frac{\left(3\hat{i} - 6\hat{j} + 5\hat{k}\right) + \left(-7\hat{i} + \hat{k}\right)}{2}$$
$$= \frac{-4\hat{i} - 6\hat{j} + 6\hat{k}}{2}$$
$$= -2\hat{i} - 3\hat{j} + 3\hat{k}$$

It is also given that Q is the mid-point of the line segment joining the points $C(-i-2\hat{j}+3\hat{k})$ and $D(\hat{i}+5\hat{k})$.

$$\mathcal{Q}(\vec{q}) = \frac{\left(-i - 2\hat{j} + 3\hat{k}\right) + \left(\hat{i} + 5\hat{k}\right)}{2}$$

 \therefore Position vector of

$$=\frac{-2\hat{j}+8\hat{k}}{2}$$
$$=-\hat{j}+4\hat{k}$$

Now, *R* divides line segment *PQ* externally in the ratio 2:3.

: Position vector \vec{r} of point *R* is given by

$$\overrightarrow{r} = \frac{2 \overrightarrow{q} - 3 \overrightarrow{p}}{2 - 3}$$

$$= \frac{2 \left(-\hat{j} + 4\hat{k} \right) - 3 \left(-2\hat{i} - 3\hat{j} + 3\hat{k} \right)}{2 - 3}$$

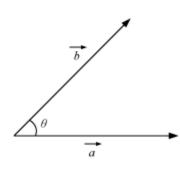
$$= \frac{-\widehat{2}\hat{j} + 8\hat{k} + 6\hat{i} + 9\hat{j} - 9\hat{k}}{-1}$$

$$= -6\hat{i} - 7\hat{j} + \hat{k}$$

Scalar (or Dot) Product of Vectors and Projection of a Vector on a Line

Scalar (or Dot) Product of Vectors

• The scalar (or dot) product of two non-zero vectors \vec{a} and \vec{b} (denoted by $\vec{a} \cdot \vec{b}$) is given by the formula $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$.



- If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a}\cdot\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$.
- Some observations on scalar product of \vec{a} and \vec{b} :
- $\vec{a} \cdot \vec{b}$ is a real number
- The angle between \vec{a} and \vec{b} is given by

$$egin{aligned} & heta = \cos^{-1}\left(rac{ec{a}\cdotec{b}}{\leftec{a}
ightec{b}
ightec{b}}
ight) ext{ or } heta = \cos^{-1}\left(rac{a_1b_1+a_2b_2+a_3b_3}{\sqrt{a_1^2+a_2^2+a_3^2}\sqrt{b_1^2+b_2^2+b_3^2}}
ight) \ & ext{ where, } \overrightarrow{a} = a\,\widehat{i}+a\,\widehat{j}+a\,\widehat{k}, \ \overrightarrow{b} = b\,\widehat{i}+b\,\widehat{j}+b\,\widehat{k} \end{aligned}$$

- If $\vec{a} \cdot \vec{b} = 0$, then $\vec{a} \perp \vec{b}$
- If the angle between \vec{a} and \vec{b} is 0, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$
- If the angle between \vec{a} and $\vec{b}_{is \pi}$, then $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$
- $\hat{i}\cdot\hat{i}=\hat{j}\cdot\hat{j}=\hat{k}\cdot\hat{k}=1,\ \hat{i}\cdot\hat{j}=\hat{j}\cdot\hat{k}=\hat{k}\cdot\hat{i}=0$
- Some important properties of scalar product:

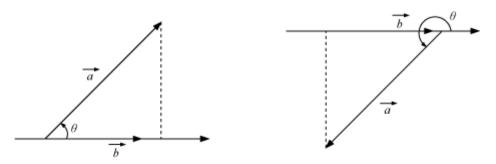
- Commutativity: If \vec{a} and \vec{b} are two vectors, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- Distributivity: If \vec{a} , \vec{b} and \vec{c} are any three vectors, then $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- If \vec{a} and \vec{b} are any two vectors and λ be any scalar, then $(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$
- (Triangle inequality): For any two vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$
- (Cauchy-Schwarz inequality): For any two vectors \vec{a} and \vec{b} , $|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|$

Projection of a Vector on a Line

• If \hat{b} is the unit vector along \vec{b} , then the projection of a vector \vec{a} on \vec{b} is given by

$$\vec{a} \cdot \hat{b} \text{ or } \vec{a} \cdot \left(\frac{\vec{b}}{\left|\vec{b}\right|}\right) \text{ or } \frac{1}{\left|\vec{b}\right|} \left(\vec{a} \cdot \vec{b}\right) \text{ or } \frac{\left|\vec{a}\right| \left|\vec{b}\right| \cos \theta}{\left|\vec{b}\right|} \text{ or } \left|\vec{a}\right| \cos \theta$$

where θ is the angle between \vec{a} and \vec{b} measured anti-clockwise, $0 \le \theta < 2\pi$.



- Some observations on projection of vector \vec{a} on \vec{b} :
- If $\theta = 0$, then projection of \vec{a} on \vec{b} is $|\vec{a}|\cos 0 = |\vec{a}|$
- If $\theta = \frac{\pi}{2} \operatorname{or} \frac{3\pi}{2}$, then projection of \vec{a} on \vec{b} is $|\vec{a}| \cos \frac{\pi}{2} \left(\operatorname{or} |\vec{a}| \cos \frac{3\pi}{2} \right) = \vec{0}$
- If $\theta = \pi$, then projection of \vec{a} on \vec{b} is $\vec{a} \cos \pi = \vec{a}(-1) = -\vec{a}$

Solved Examples

Example 1

If vectors $\vec{a} = 2\hat{i} - (x-2)\hat{j} - \hat{k}$ and $\vec{b} = (x-1)\hat{i} - 3\hat{j} + 3x\hat{k}$ are perpendicular to each other, then find the value of *x*.

$$\frac{\left|\vec{a} + \vec{b}\right|}{\left|\vec{a}\right| + \left|\vec{b}\right|}$$

Also, find |a|+|b|.

Solution:

The given vectors are

$$\vec{a} = 2\hat{i} - (x-2)\hat{j} - \hat{k}$$

$$\vec{b} = (x-1)\hat{i} - 3\hat{j} + 3x\hat{k}$$

Since $\vec{a} \perp \vec{b}, \ \vec{a} \cdot \vec{b} = 0,$

$$\Rightarrow \left[2\hat{i} - (x-2)\hat{j} - \hat{k}\right] \cdot \left[(x-1)\hat{i} - 3\hat{j} + 3x\hat{k}\right] = 0$$

$$\Rightarrow 2(x-1) + 3(x-2) - 3x = 0$$

$$\Rightarrow 2x - 8 = 0$$

$$\Rightarrow x = 4$$

$$\vec{a} = 2\hat{i} - 2\hat{j} - \hat{k}$$

$$\vec{b} = 3\hat{i} - 3\hat{j} + 12\hat{k}$$

$$\therefore \vec{a} + \vec{b} = 5\hat{i} - 5\hat{j} + 11\hat{k}$$

$$\left|\vec{a}\right| = \sqrt{(2)^2 + (-2)^2 + (-1)^2} = 3$$

$$\left|\vec{b}\right| = \sqrt{(3)^2 + (-3)^2 + (12)^2} = 9\sqrt{2}$$

$$\left|\vec{a} + \vec{b}\right| = \sqrt{(5)^2 + (-5)^2 + (11)^2} = 3\sqrt{19}$$

Thus, $\frac{\left|\vec{a} + \vec{b}\right|}{\left|\vec{a}\right| + \left|\vec{b}\right|} = \frac{3\sqrt{19}}{3 + 9\sqrt{2}} = \frac{\sqrt{19}}{1 + 3\sqrt{2}}$

Example 2

For two vectors \vec{a} and \vec{b} , the product of the projection of \vec{a} on \vec{b} with the projection of \vec{b} on \vec{a} is half of the dot product of \vec{a} and \vec{b} . Find the angle between \vec{a} and \vec{b} .

Solution:

Let θ be the angle between \vec{a} and \vec{b} .

Then, the projection \vec{a} on \vec{b} is $\frac{1}{\left|\vec{b}\right|} \left(\vec{a} \cdot \vec{b}\right)$.

The projection of \vec{b} on \vec{a} is $\frac{1}{|\vec{a}|} (\vec{a} \cdot \vec{b})$.

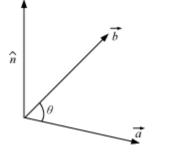
According to the given condition,

$$\begin{bmatrix} \frac{1}{|\vec{b}|} (\vec{a} \cdot \vec{b}) \end{bmatrix} \begin{bmatrix} \frac{1}{|\vec{a}|} (\vec{a} \cdot \vec{b}) \end{bmatrix} = \frac{1}{2} (\vec{a} \cdot \vec{b})$$
$$\Rightarrow \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{1}{2}$$
$$\Rightarrow \frac{|\vec{a}| |\vec{b}| \cos \theta}{|\vec{a}| |\vec{b}|} = \frac{1}{2}$$
$$\Rightarrow \cos \theta = \frac{1}{2}$$
$$\Rightarrow \theta = \cos^{-1} \left(\frac{1}{2}\right) = 60^{\circ}$$

Thus, the angle between the vectors \vec{a} and \vec{b} is 60°.

Vector Product of Vectors

• The vector product (cross product) of two non-zero vectors \vec{a} and \vec{b} is denoted by $\vec{a} \times \vec{b}$ and defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ where, θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$ and \hat{n} is a unit vector, which is perpendicular to both \vec{a} and \vec{b} such that \vec{a} , \vec{b} , and \hat{n} form a right hand system (i.e., the system moves in the direction of \hat{n} , when it is rotated from \vec{a} to \vec{b})



• Some observations of vector product of \vec{a} and \vec{b} :

(a) $\vec{a} \times \vec{b}$ is a vector. (b) If $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then θ is not defined. In this case, we define $\vec{a} \times \vec{b}$ as 0. (c) If $|\vec{a} \times \vec{b}|$ are non-zero vectors such that $\vec{a} \cdot \vec{b}$ or \vec{a} and \vec{b} are collinear, then $\vec{a} \times \vec{b} = 0$. In particular, $\vec{a} \times \vec{a} = \vec{0}$ and $\vec{a} \times (-\vec{a}) = \vec{0}$ (d) If $\theta = \frac{\pi}{2}$, then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \hat{n}$ (e) For mutually perpendicular unit vectors \hat{i} , \hat{j} , and \hat{k}_{j} , $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$ $\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$ $\hat{i} \times \hat{i} = -\hat{k}, \hat{k} \times \hat{i} = -\hat{i}, \hat{i} \times \hat{k} = -\hat{i}$ (f) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (g) The angle between \vec{a} and \vec{b} in terms of vector product is given as $\sin\theta = \frac{\left|\vec{a} \times \vec{b}\right|}{\left|\vec{a}\right|\left|\vec{b}\right|}$ (h) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

(i) If \vec{a} and \vec{b} represent the adjacent sides of a triangle, then its area is given as $\frac{1}{2} |\vec{a} \times \vec{b}|$. (j) If \vec{a} and \vec{b} represent the adjacent sides of a parallelogram, then its area is given as $|\vec{a} \times \vec{b}|$. • Distributive property of vector product over addition – If \vec{a} , \vec{b} , and \vec{c} are any three vectors and λ be a scalar, then

(i)
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

(i) $\lambda (\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$

Solved Examples

Example 1:

For what integral value of x, $0 \le x \le 5$, the area of the parallelogram whose adjacent sides are determined by the vectors, $\vec{a} = \hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 7\hat{i} + (1-x)\hat{j} - x\hat{k}$, is $15\sqrt{2}$ square units? Also, find the angle between \vec{a} and \vec{b} .

Solution:

The adjacent sides of the parallelogram are determined by the vectors

$$\vec{a} = \hat{i} - 3\hat{j} - \hat{k} \text{ and}$$
$$\vec{b} = 7\hat{i} + (1 - x)\hat{j} - x\hat{k}$$

 \therefore Area of the parallelogram $\left| \vec{a} \times \vec{b} \right|$

Now,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & -1 \\ 7 & 1-x & -x \end{vmatrix} = (3x+1-x)\hat{i} + (-7+x)\hat{j} + (1-x+21)\hat{k}$$
$$= (2x-1)\hat{i} + (-7+x)\hat{j} + (22-x)\hat{k}$$

Therefore, area of the parallelogram is

$$\begin{aligned} \left| \vec{a} \times \vec{b} \right| &= \sqrt{(2x+1)^2 + (-7+x)^2 + (22-x)^2} \\ \left| \vec{a} \times \vec{b} \right| &= \sqrt{4x^2 + 4x + 1 + 49 + x^2 - 14x + 484 + x^2 - 44x} \\ \Rightarrow 15\sqrt{2} &= \sqrt{6x^2 - 54x + 534} \\ \Rightarrow 450 &= 6x^2 - 54x + 534 \\ \Rightarrow 6x^2 - 54x + 84 &= 0 \\ \Rightarrow x^2 - 9x + 14 &= 0 \\ \Rightarrow (x-2)(x-7) &= 0 \\ \Rightarrow x &= 2, x = 7 \end{aligned}$$

Since $0 \le x \le 5$,

$$x = 2$$

Now,

$$\vec{a} = \hat{i} - 3\hat{j} - \hat{k}$$

And, $\vec{b} = 7\hat{i} - \hat{j} - 2\hat{k}$

$$\therefore |\vec{a}| = \sqrt{(1)^{2} + (-3)^{2} + (-1)^{2}} = \sqrt{11}$$
$$|\vec{b}| = \sqrt{(7)^{2} + (-1)^{2} + (-2)^{2}} = 3\sqrt{6}$$
$$\therefore \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} = \frac{15\sqrt{2}}{\sqrt{11} \times 3\sqrt{6}} = \frac{5}{\sqrt{33}}$$
$$\Rightarrow \theta = \sin^{-1}\left(\frac{5}{\sqrt{33}}\right)$$

Therefore, angle between $\vec{a}_{and} \vec{b}_{is} \sin^{-1} \left(\frac{5}{\sqrt{33}} \right)$.

Example 2:

For two vectors \vec{a} and \vec{b} , if $|\vec{a}| = \sqrt{29}$, $|\vec{b}| = \sqrt{13}$, and $|\vec{a} \cdot \vec{b}| = 16$, then find $|\vec{b} \times 2\vec{a}|$. Solution:

$$\begin{aligned} \left| \vec{a} \cdot \vec{b} \right| &= \left| \vec{a} \right| \left| \vec{b} \right| \left| \cos \theta \right| \\ \Rightarrow \left| \cos \theta \right| &= \frac{\left| \vec{a} \cdot \vec{b} \right|}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{16}{\sqrt{29} \times \sqrt{13}} = \frac{16}{\sqrt{377}} \\ \therefore \left| \sin \theta \right| &= \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{16}{\sqrt{377}} \right)^2} \\ &= \sqrt{1 - \left(\frac{256}{377} \right)^2} \\ &= \sqrt{\frac{121}{377}} \\ &= \frac{11}{\sqrt{377}} \end{aligned}$$

Now,

$$\begin{vmatrix} \vec{b} \times 2\vec{a} \end{vmatrix} = 2 \begin{vmatrix} \vec{b} \times \vec{a} \end{vmatrix} = 2 \begin{vmatrix} \vec{b} \end{vmatrix} \begin{vmatrix} \vec{a} \end{vmatrix} \cdot |\sin \theta|$$
$$= 2 \times \sqrt{13} \times \sqrt{29} \times \frac{11}{\sqrt{377}} = 22$$