
IntroDuction
A set of ‘mn’ elements arranged in the form of rectangular 
array having ‘m’ rows and ‘n’ columns is called an m × n 
matrix (read as ‘m by n matrix’) and is denoted by A = [a

ij
] 

where 1 ≤ i ≤ m; 1 ≤ j ≤ n

or  A

a a a a

a a a a

a a a a

n

n

m m m mn

=
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The element a
ij
 lies in the ith row and jth column.

Type of Matrices
Square Matrix A matrix A = [a

ij
]

m×n
 is said to be a square 

matrix, if m = n (i.e., Number of rows of A = Number of 
columns of A)

The elements a
11

, a
22

, a
33

, . . . , a
nn

 are called ‘DIAGONAL 
ELEMENTS’.

The line containing the diagonal elements is the 
‘PRINCIPAL DIAGONAL’.

The sum of the diagonal elements of ‘A’ is the ‘TRACE’ 
of A.

Row Matrix  A matrix A = [a
ij
]

m×n
 is said to be row matrix, 

if m = 1 (i.e., the matrix has only one row)

General form is A = [a
1
, a

2
, . . ., a

n
] or [a

ij
]

1×n

Column Matrix A matrix which has only one column 

A

a

a

a

a

n

ij n=



















×

1

2
1�

 or [ ]

Diagonal Matrix A square matrix is said to be a diagonal 
matrix if all its elements except those in the principal diago-
nal are zeros. That is, if

 1. m = n (A is a square matrix) and
 2. a

ij
 = 0 if i ≠ j (The non-diagonal elements are zeros)

A diagonal matrix of order ‘n’ with diagonal elements d
1
, 

d
2
, . . . , d

n
 is denoted by Diag [d

1
 d

2
 . . . d

n
].

Scalar Matrix A diagonal matrix whose diagonal elements 
are all equal is called a scalar matrix. That is, if

 1. m = n
 2. a

ij
 = 0 if i ≠ j

 3. a
ij
 = k if i = j for some constant ‘k’.

Unit or Identity Matrix A scalar matrix of order ‘n’ in 
which each diagonal element is ‘1’ (unity) is called a unit 
matrix or identity matrix of order ‘n’ and is denoted by I

n
. 

That is,
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 1. m = n
 2. a

ij
 = 0 if i ≠ j

 3. a
ij
 = 1 if i = j

Example: I I I1 2 31
1 0

0 1

1 0 0

0 1 0

0 0 1

= =








 =

















[ ], ,  

Null Matrix or Zero Matrix A matrix is a ‘null matrix’ or 
zero matrix if all its elements are zeros.

Upper Triangular Matrix A square matrix is said to be an 
upper triangular matrix, if each element below the principal 
diagonal is zero. That is,

 1. m = n
 2. a

ij
 = 0 if i > j

For example,

1 4 3 2

0 1 6 1

0 0 3 2

0 0 0 9 4 4

−

















×

Lower Triangular Matrix A square matrix is said to be a 
lower triangular matrix, if each element above the principal 
diagonal is zero, i.e., if

 1. m = n
 2. a

ij
 = 0 if i < j

For example,

1 0 0 0

2 1 0 0

0 7 8 0

5 4 2 1

−


















Horizontal Matrix If the number of rows of a matrix is less 
than the number of columns, i.e., m < n, then the matrix is 
called horizontal matrix.

Vertical Matrix If the number of columns in a matrix is 
less than the number of rows, i.e., if m > n, then the matrix 
is called a vertical matrix.

Comparable Matrices Two matrices A = [a
ij
]

m×n
 and B 

= [b
ij
]

p×q
 are said to be comparable, if they are of same order, 

i.e., m = p; n = q.

Equal Matrices Two comparable matrices are said to be 
‘equal’, if the corresponding elements are equal, i.e., A 
= [a

ij
]

m×n
 and B = [b

ij
]

p×q
 are equal if

 1. m = p; n = q (i.e., they are of the same order)
 2. a

ij
 = b

ij
 ∀ i, j (i.e., the corresponding elements are 

equal)

Transpose of a Matrix
The matrix obtained by interchanging the rows and the col-
umns of a given matrix ‘A’ is called the ‘transpose’ of A 
and is denoted by AT or A′. If A is an (m × n) matrix, AT will 
be an (n × m) matrix. Thus if A = [a

ij
]

m×n
 then AT = [u

ij
]

n×m
, 

where u
ij
 = a

ji
.

Properties of Transpose
T − 1: (A′)′ = A, for any matrix A
T − 2:  (A + B)′ = A′ + B′, for any two matrices A, B of 

same order
T − 3: (KA)′ = KA′, for any matrix A
T − 4:  (AB)′ = B′A′, for any matrices A, B such that 

number of columns of A = number of rows of B 
(REVERSAL LAW)

T − 5: (An)′ = (A′)n, for any square matrix A

Trace of a Matrix
Let ‘A’ be a square matrix. The trace of A is defined as the 
sum of elements of ‘A’ lying in the principal diagonal.

Thus if A = [a
ij
]

n × n
 then trace of ‘A’ denoted by t

r
 A = a

11
 

+ a
22

 + . . . + a
nn

.

Properties of Trace of a Matrix Let A and B be any two 
square matrices and K any scalar then,

 1. t
r
(A + B) = t

r
A + t

r
B

 2. t
r
(KA) = Kt

r
A

 3. t
r
(AB) = t

r
(BA)

Conjugate of a Matrix
A matrix obtained by replacing each element of a matrix ‘A’ 
by its complex conjugate is called the ‘conjugate matrix’ of 

A and is denoted by A.  If A = [a
ij
]

m×n, 
then A aij= 


where 

aij is the conjugate of ‘a
ij
’.

Properties of Conjugate of a Matrix

C A A− =1: (( )) for any matrix ‘A’

C A B A B− + = +2: ( ) for any matrices A, B of same order.

C − 3 :  ( )KA K A= for any matrix ‘A’ and any Scalar K.

C AB A B− = ⋅4: ( ) ( ) for any matrices A and B with the con-
dition that number of columns of A = number of 
rows of B.

C A An n− = ( )5: ( ) for any square matrix ‘A’.

Tranjugate or Transposed Conjugate  
of a Matrix
Tranjugate of a matrix ‘A’ is obtained by transposing the 

conjugate of A and is denoted by Aq. Thus A A Tθ = ( ) .

Properties of Tranjugate of a Matrix
TC − 1: (Aq )q = A for any matrix A
TC − 2:  (A + B)q = Aq + Bq for any matrices A, B of the 

same order.
TC − 3: (KA)q = KAq for any matrix A and any scalar K.
TC − 4:  (BA)q = BqAq for any matrix A, B with the condi-

tion that number of columns of A = number of 
rows of B.

TC − 5: (An)q = (Aq)n for any square matrix ‘A’.

Symmetric Matrix A matrix A is said to be symmetric, if AT 
= A (i.e., transpose of A = A).
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A symmetric matrix must be a square matrix.
NOTE

Skew-symmetric Matrix A matrix ‘A’ is said to be skew-
symmetric matrix, if AT = (−A), i.e., A = [a

ij
]

m×n
 is skew sym-

metric if

 1. m = n
 2. a

jI
 = − a

ij 
∀ i, j

In a skew-symmetric matrix, all the elements of the prin-
cipal diagonal are zero.

NOTE

Orthogonal Matrix A square matrix ‘A’ of order n × n is 
said to be an orthogonal matrix, if AAT = ATA = I

n
.

Involutory Matrix A square matrix ‘A’ is said to be involu-
tory matrix, if A2 = I (where I is identity matrix).

Idempotent Matrix A square matrix ‘A’ is said to be an 
idempotent matrix, if A2 = A.

Nilpotent Matrix A square matrix ‘A’ is said to be nilpotent 
matrix, if there exists a natural number ‘n’ such that An = O. 
If ‘n’ is the least natural number such that An = O, then ‘n’ 
is called the index of the nilpotent matrix ‘A’. (Where O is 
the null matrix).

Unitary Matrix A square matrix ‘A’ is said to be a unitary 
matrix if, AAq = AqA = I. (Where Aq is the transposed con-
jugate of A.)

Hermitian Matrix A matrix ‘A’ is said to be a hermitian 
matrix, if Aq = A, i.e., A = [a

ij
]

m×n
 is hermitian if

 1. m = n
 2. a a i jij ij= ∀ ,  

The diagonal elements in a hermitian matrix are real numbers.
NOTE

Skew-hermitian Matrix A matrix ‘A’ is said to be a skew-
hermitian matrix, if Aq = −A.

Operations on Matrices
Scalar Multiplication of Matrices
If A is a matrix of order m × n and ‘K’ be any scalar (a 
real or complex number), then KA is defined to be a m × 
n matrix whose elements are obtained by multiplying each 
element of ‘A’ by K, i.e., if A = [a

ij
]

m×n
 then KA = [Ka

ij
]

m×n
 in 

particular if K = −1; then KA = −A is called the negative of 
A and is such that, 
A + (−A) = [a

ij
] + [−a

ij
] = [a

ij
 − a

ij
] = [0] = O (zero matrix)

(−A) + A = [−a
ij
] + [a

ij
] = [−a

ij
 + a

ij
] = [0] = O

That is, A + (−A) = (−A) + A = O.

Properties of Scalar Multiplication
Let A, B are two matrices of same order and a, b are any 
scalars, then 
S − 1: a(A + B) = aA + aB
S − 2: (a + b)A = aA + bA

S − 3: a(bA) = (ab)A
S − 4: 1A = A

Addition of Matrices
If A and B are two matrices of the same order, then they are 
‘conformable’ for addition and their sum ‘A + B’ is obtained 
by adding the corresponding elements of A and B, i.e., if  
A = [a

ij
]

m×n
; B = [b

ij
]

m×n
, then A + B = [a

ij
 + b

ij
]

m×n
.

Properties of Addition Let A, B and C be three matrices of 
same order say m × n, then

A − 1: A + B is also a m × n matrix (CLOSURE)

A − 2: (A + B) + C = A + (B + C) (ASSOCIATIVITY)

A − 3:  If ‘O’ is the m × n zero (null) matrix, then A + O = O 
+ A = A (‘O’ is the ADDITIVE IDENTITY)

A − 4:  A + (−A) = (−A) + A = O (−A is the ADDITIVE 
INVERSE)

A − 5: A + B = B + A (COMMUTATIVITY)

The set of matrices of same order form an ‘Abelian Group’ 
under addition.

NOTE

Multiplication of Matrices
Let A and B be two matrices. A and B are conformable for 
multiplication, only if the number of columns of A is equal 
to the number of rows of B.

Let A = [a
ij
] be an m × n matrix, B = [b

jk
] be an n × p 

matrix. Then the product ‘AB’ is defined as the matrix C = 
[c

ik
] of order m × p where c

ik
 = a

i1
b

1k
 + a b a bi k in nk2 2 + +�

=
=
∑a bij jk
j

n

1

.

c
ij
 calculated for i = 1, 2, . . . m and k = 1, 2, . . ., p will give 

all the elements of the matrix C.

Properties of Multiplication
M − 1:  If A, B, C be m × n, n × p, p × q matrices respec-

tively, then (AB)C = A(BC) (ASSOCIATIVITY).
M − 2:  If A is a m × n matrix, then A I

n
 = A and I

m
 A = A 

and if A is a square matrix, i.e., m = n, then AI = 
IA = A (I is the MULTIPLICATIVE IDENTITY).

M − 3:  If A, B, C be m × n, n × p, p × q matrices respectively, 
then A(B + C) = AB + AC (DISTRIBUTIVE LAW).

M − 4:  Matrix multiplication is NOT COMMUTATIVE 
in general.

M − 5:  The INVERSE of a given matrix may not always exist.

Determinants
Let A = [a

ij
] be a square matrix of order ‘n’. Then the deter-

minant of order ‘n’ associated with ‘A’ is denoted by | A | or 
|a

ij
| or Det(A) or D.

 1.  Determinant of a matrix exists, only if it is a square matrix.
 2. The value of a determinant is a single number.

NOTES
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Determinant of Order 1 (or First 
Order Determinant)
If ‘a’ be any number, then determinant of ‘a’ is of order ‘1’ 
and is denoted by |a|. The value of |a| = a.

Determinant of Order 2 (or Second Order 
Determinant)
If ‘A’ is a square matrix of order 2 given by

A
a b

a b
=










1 1

2 2

then Det ( )A
a b

a b
= 1 1

2 2

is determinant of 

order 2 and its value is D = a
1
b

2
 − a

2
b

1

Minor and Cofactor of a Matrix

Let       A

a b c

a b c

a b c

=
















×
1 1 1

2 2 2

3 3 3

3 3 be a  matrix

Then the minor of an element a
ij
 of ‘A’ is the determinant of 

the 2 × 2 matrix obtained after deleting the i-th row and j-th 
column of A and is denoted by M

ij
.

The cofactor of a
ij
 is denoted by A

ij
 and is defined as 

(−1)i+j M
ij
, i.e., A

ij
 = (−1)i+j M

ij

Determinant of Order 3 (Third 
Order Determinant)
If A is a square matrix of order ‘3’, given by 

A

a b c

a b c

a b c

=
















1 1 1

2 2 2

3 3 3

. Then the determinant of ‘A’ is given by 

∆ = =Det  is aA

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

determinant of order 3 and 

the value is obtained by taking the sum of the products of 
the elements of any row (or column) by their corresponding 
cofactors.

Thus for A, D = a
1
A

1
 + b

1
B

1
 + c

1
C

1

         = − +a
b c

b c
b

a c

a c
c

a b

a b
1

2 2

3 3
1

2 2

3 3
1

2 2

3 3

or also D = a
1
A

1
 + a

2
A

2
 + a

3
A

3

  
= − +a

b c

b c
a

b c

b c
a

b c

b c
1

2 2

3 3
2

1 1

3 3
3

1 1

2 2

(This is by expanding by C
1
) and so on.

The sign to be used before a particular element can be 
judged by using the following rule:

+ − +
− + −
+ − +

The value of the determinants of order 3 can also be evalu-
ated by using ‘Sarrus’ method given as follows:

Let          ∆ =
a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

 

Enter the first column and then the second column after the 
third column and take the product of numbers as shown by 
the arrows, taking care of signs indicated

a1 b1

a3 b3

a2

a1

a3

a2b2

b1

b3

b2

c1

c3

c2

Then
D = a

1
b

2
c

3
 + b

1
c

2
a

3
 + c

1
a

2
b

3
 − a

3
b

2
c

1
 − b

3
c

2
a

1
 − c

3
a

2
b

1

We can now define the cofactor of an element a
ij 
in a 4 × 4 

matrix as (−1)i+j × (Determinant of the 3 × 3 matrix obtained 
by deleting the i-th row and j-th column) and determinant of 
a 4 × 4 matrix to be the sum of products of elements of any 
row (or column) by their corresponding cofactors. We can 
similarly define determinant of a square matrix of any order.

Properties of Determinant

 1. If two rows (or columns) of a determinant are 
interchanged, the value of the determinant is multiplied 
by (−1).

 2. If the rows and columns of a determinant are 
interchanged, the value of the determinant remains 
unchanged, i.e., Det(A) = Det(AT).

 3. If all the elements of a row (or column) of a 
determinant are multiplied by a scalar (say ‘K’), the 
value of the new determinant is equal to ‘K’ times the 
value of the original determinant.

 4. If two rows (or columns) of a determinant are 
identical, then the value of the determinant is zero.

 5. If the elements of a row (or a column) in a determinant 
are proportional to the elements of any other row (or 
column), then the determinant is ‘0’.

 6. If every element of any row (or column) is zero, then 
determinant is ‘0’.

 7. If each element in a row (or column) of a determinant is 
the sum of two terms, then its determinant can be 
expressed as the sum of two determinants of the same 
order.

 8. (The theorem of ‘false cofactor’) The sum of products 
of elements of a row (or column) with the cofactors of 
any other row (or column) is zero. 

  Thus in A

a b c

a b c

a b c

=
















1 1 1

2 2 2

3 3 3

  a
1
A

2
 + b

1
B

2
 + c

1
C

2
 = 0

  a
2
A

1
 + b

2
B

1
 + c

2
C

1
 = 0 and so on in general

  a
r
A

s
 + b

r
B

s
 + c

r
C

s
 = 0 if r ≠ s
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 9. If the elements of a determinant are polynomials in x 
and the determinant vanishes for x = a, then x − a is a 
factor of the determinant.

Singular and Non-singular Matrices
A square matrix ‘A’ is said to be singular, if Det(A) = 0 and 
is non-singular, if Det(A) ≠ 0.

 1. A unit matrix is non-singular (since its Det = 1)
 2.  If A and B are non-singular matrices of the same 

‘type’, then AB is non-singular of the same ‘type’.

NOTES

Inverse of a Matrix
Let ‘A’ be a square matrix. A matrix ‘B’ is said to be an 
inverse of ‘A’, if AB = BA = I.

If B is the inverse of ‘A’, then ‘A’ is the inverse of ‘B’.
NOTE

Some Results of Inverse

 1. Inverse of a square matrix, when it exists, is unique.

 2. The inverse of a square matrix exists, if and only if it 
is non-singular.

 3. If ‘A’ and ‘B’ are square matrices of the same order, 
then ‘AB’ is invertible (i.e., inverse of AB exists) if ‘A’ 
and ‘B’ are both invertible.

 4. If ‘A’ and ‘B’ are invertible matrices of the same 
order, then (AB)−1 = B−1 A−1.

 5. If A is invertible, then so is AT and (AT)−1 = (A−1)T.

 6. If A is invertible, then so is Aq and (Aq)−1 = (A−1)q. 

Adjoint of a Matrix
The adjoint of a square matrix ‘A’ is the transpose of the 
matrix obtained by replacing the elements of ‘A’ by their 
corresponding cofactors.

The adjoint is defined only for square matrices and 
the adjoint of a matrix ‘A’ is denoted by Adj(A). If 

A

a a a

b b b

l l l

n

n

n

=



















1 2

1 2

1 2

�
�

� � � �
�

Adj A

A A A

B B B

L L L

A B L

A B L
n

n

n

T

=



















=

1 2

1 2

1 2

1 1 1

2 2 2

�
�

� � � �
�

�
�

� � � ��
�A B Ln n n



















NOTE

Results

 1. If ‘A’ is of order 3 × 3 and K is any number, then 
Adj(KA) = K ²(Adj A).

 2. A(Adj A) = (Adj A)A = |A| I for any square matrix ‘A’.

 3. Adj I = I; Adj O = O where I is the identity matrix and 
O is the null matrix.

 4. Adj(AB) = (Adj B) (Adj A) if A, B are non-singular 
and are of same type. 

 5. If A = A
n ×n

, then

  det(Adj A) = (det A)n–1.

  Adj(Adj A) = (det A)n–2(A).

  |Adj(Adj A)| = (det A)(n–1)2

Evaluating Inverse of a Square Matrix

If A is a square matrix, then A
A

A− =1 1
( )Adj 

 1. The inverse of an identity matrix is itself.

 2. ( )Adj A
A

A− =1 1

 3.  If A is a non-singular square matrix (say of order 3) 
and K is any non-zero number, then

( )KA
K

A− −=1 11

NOTES

Rank and Nullity of a Matrix

Rank of a Matrix The Matrix ‘A’ is said to be of rank ‘r’, if 
and only if it has at least one non-singular square sub-matrix 
of order ‘r’ and all square sub-matrices of order (r + 1) and 
higher orders are singular. The rank of a matrix A is denoted 
by rank (A) or r(A).

Nullity of a Matrix If A is a square matrix of order ‘n’, then 
n − r(A), i.e., n − rank (A) is defined as nullity of matrix ‘A’ 
and is denoted by N(A).

Remark 1: If there is a non-singular square sub-matrix of 
order ‘K’, then r(A) ≥ K.

Remark 2: If there is no non-singular square sub-matrix of 
order ‘K’, then r(A) < K.

Remark 3: If A′ is the transpose of A, then r(A) = r(A′).
Remark 4: The rank of a null matrix is ‘0’.

Remark 5: The rank of a non-singular square matrix of 
order ‘n’ is ‘n’ and its nullity is ‘0’.

Remark 6: Elementary operations do not change the rank 
of a matrix.

Remark 7: If the product of two matrices A and B is 
defined, then r(AB) ≤ r(A) and r(AB) ≤ r(B). That is, the 
rank of product of two matrices cannot exceed the rank of 
either of them.
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Elementary Operations or Elementary 
Transformations
 1. Elementary row operations 
  (a) R

i
 ↔ R

j
: Interchanging of ith and jth rows

  (b)  R
i
 → KR

i
: Multiplication of every element of ith 

row with a non-zero scalar K

  (c)  R
i
 → R

i
 + kR

j
: Addition of k times the elements of 

jth row to the corresponding elements of ith row.
 2. Elementary column operations
  (a) C

i
 ↔ C

j
: Interchanging of ith and jth columns

  (b)  C
i
 → KC

i
: Multiplication of every element of ith 

column with a non-zero scalar K.
  (c)  C

i
 → C

i
 + KC

j
: Addition of K times the elements 

of jth column to the corresponding elements of 
ith column.

Example: Consider the matrix A =
−















2 3 4 1

3 0 1 5

4 7 1 2

R
2
 → 2R

2
 ∼

2 3 4 1

6 0 2 10

4 7 1 2

−















C
2
 ↔ C

3
 ∼

2 4 3 1

3 1 0 5

4 1 7 2

−















C
1
 → C

1
 − 2C

4
 ∼

0 4 3 1

7 1 0 5

0 1 7 2

−
−
















The rank of a matrix is invariant under elementary operations
NOTE

Row and Column Equivalence Matrices
Row Equivalence Matrix If B is a matrix obtained by 
applying a finite number of elementary row operations 
successively on matrix A, then matrix B is said to be row 
equivalent to A (or a row equivalent matrix of A).

Column Equivalence Matrix If B is obtained by applying a 
finite number of elementary column operations successively 
on matrix A, then matrix B is said to be column equivalent 
to A (or a column equivalent matrix of A ).

Example: A = −
−

















1 3 4

2 5 2

1 4 3

R R R R B2 1 3 12

1 3 4

0 1 10

0 1 7

− − − −
−
















=, ( )∼ say

B is a row equivalent matrix of A.

Example: B = −
















1 3 2

3 4 4

1 1 6

 

C C C C2 1 33
1

2

1 0 1

3 5 2

1 2 6

− − −
−
















=, ( )∼ say

C is a column equivalent to B.

Row Reduced Matrix A matrix A of order m × n is said to 
be row reduced if,

 1. The first non-zero element of a non-zero row is 1.

 2. Every other element in the column in which such 1’s 
occur is 0.

A =
















1 0 2

0 1 3

0 0 0

is a row reduced matrix

B =
















1 0 4

0 5 0

0 0 0

is not a row reduced matrix.

Row Reduced Echelon Matrix A matrix ‘X ’ is said to be 
row reduced echelon matrix if,

 1. X is row reduced.

 2. There exists integer P(0 ≤ p ≤ m) such that first ‘p’ 
rows of X are non-zero and all the remaining rows are 
zero rows.

 3. For the ith non-zero row, if the first non-zero element 
of the row (i.e., 1) occurs in the jth column then, j

1
 < 

j
2
 < j

3 
< . . . < j

p
.

Example: P Q=



















=
















1 0 0 2

0 1 0 3

0 0 1 4

0 0 0 0

0 1 2 0

0 0 0 1

0 0 0 0

;  

are echelon matrices. The number of non-zero rows (i.e., 
value of P and Q) are 3 and 2 respectively. The value of i and 
j are tabulated below

P:
i 1 2 3

j 1 2 3   
Q:

i 1 2

j 2 4

Normal form of a Matrix
By means of elementary transformations, every matrix ‘A’ 
of order m × n and rank r (> 0) can be reduced to one of the 
following forms.

 1. 
Ir 0

0 0









   2. [I

r
/0]  3. [I

r
]  4. 

Ir

0











and these are called the normal forms. I
r
 is the unit matrix 

of order ‘r’.
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If a m × n matrix ‘A’ has been reduced to the normal form 

say
Ir 0

0 0









 then ‘r’ is the rank of A.

NOTE

Systems of Linear Equations
Let     a x a x a X b

a x a x a X b

a x

n n

n n

n

11 1 12 2 1 1

21 1 22 2 2 2

1

+ + + =
+ + + =

�
�  

. . .

. . .

. . .

11 2 2+ + =














a x a x bn nn n n�  

 

(1)

be a system of ‘n’ linear equations in ‘n’ variables x
1
, x

2
, . . . , 

x
n
. The above system of equations can be written as

a a a

a a a

a a a

x

x

x

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

�
�

� � �
�

�





































=



















=

b

b

b

AX B

n

1

2

�
or

where

A

a a a

a a a

a a a

X

x

x

x

n

n

n n nn n

=



















=

11 12 1

21 22 2

1 2

1

2

�
�

� � �
�

�
,  



















=



















,  B

b

b

bn

1

2

�

A is called the co-efficient matrix.

Any set of values of x
1
, x

2
, x

3
, . . . which simultaneously 

satisfy these equations is called a solution of the system. 

When the system of equations has one or more solutions, 
the equations are said to be CONSISTENT and the system 
of equations are said to be INCONSISTENT if it does not 
admit any solution. The system of equations (1) is said to be 

HOMOGENEOUS, if B = 0
NON-HOMOGENEOUS, if B ≠ 0
Let the system of equations be

a
11

x
1
 + a

12
x

2
 + . . . + a

1n
x

n
 = b

1

a
12

x
1
 + a

22
x

2
 + . . . + a

2n
x

n
 = b

2

................................

................................

a
m1

x
1
 + a

m2
x

2
 + . . . + a

mn
x

n
 = b

m

This is a system of ‘m’ equations in ‘n’ variables x
1
, x

2
, . . . , 

x
n
. The system of equations can be written as AX = B where

A

a a a

a a a

a a a

X

x

x

x

n

n

m m mn n

=



















=

11 12 1

21 22 2

1 2

1

2

�
�

� � � �
,  

















=



















,  B

b

b

bm

1

2

�

The matrix 

a a a b

a a a b

a a a b

n

n

m m mn m

11 12 1 1

21 22 2 2

1 2

�
�

� � �
�



















 

is called the augmented 

matrix of the system of equations and is denoted by [A : B].
Let AX = B represents ‘m’ linear equations with ‘n’ 

variables. Let rank of A = r and rank (A, B) = r
1
 [where (A, 

B) is an augmented matrix]. If r
1
 ≠ r, then the system of 

equations are inconsistent.
If r

1
 = r, the table follows:

m = n m > n m < n

r = n r < n r = n r < n r = m r < m

Homo- 
geneous

Only trivial solution Infinite solutions Only trivial solution Infinite solutions Infinite solutions Infinite solutions

Non-homo 
geneous

Unique solution Infinite solutions Unique solution Infinite solutions Infinite solutions Infinite solutions

Solving System of Linear Equations
The following methods of solving system of linear equa-
tions (1) is applicable only when the co-efficient matrix ‘A’ 
is non singular, i.e., | A | ≠ 0.

Cramers Method
Let AX = B represent the system of equations (1) where A, X 
and B are as defined earlier.
Let D be | A | and D

1
, D

2
, . . . , D

n
 be the determinants obtained 

by replacing the elements of 1st, 2nd, . . . , nth column of A 
by the elements of B. Then if D ≠ 0, we have

x
1
 = D

1
/D; x

2
 = D

2
/D; x

3
 

      = D
3
/D; . . .; x

n
 = D

n
/D.

Inverse Method
Let the system of linear equations be AX = B, where A, X, B 
are as defined earlier.

If |A| ≠ 0 then pre-multiplying with A−1, we get A−1 (AX) 
= A−1B.

⇒ X = A−1B which gives the values of the variables.
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Gauss−Jordan Method
Consider the augmented matrix [A : B] of the system of ‘n’ 
non-homogeneous equations (1) in n-variables

a a a b

a a a b

a a a b

n

n

n n nn n

11 12 1 1

21 22 2 2

1 2

�
�

� � �
�



















Reduce this augmented matrix to the standard form

1 0 0

0 1 0

0 0 1

1

2

�
�

� � �
�

d

d

dn



















By applying the elementary operations, the solution of the 
equations is x

1
 = d

1
, x

2
 = d

2
, . . . , x

n
 = d

n
.

Gauss Elimination Method
Let the system of linear equations given by

a x a x a x c

a x a x a x c

a x a x

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

31 1 32 2

+ + + =
+ + + =
+ + +

�
�
� aa x c

a x a x a x c

n n

n n nn n n

3 3

1 1 2 2

=

+ + + =

















. . . .

. . . .

. . . .

�

 (1)

Let a
11

≠ 0 write the above equations in the matrix form AX 
= B

Write the augmented matrix [A B].

Using elementary row operations, eliminate the unknown 
x

1
 from all the equations except the first. Eliminate the 

unknown x
2
 from all the equations except from first and 

second rows, continuing in this way we finally get the fol-
lowing equivalent system of equations at the (n − 1)th step.

a′
11

x
1
 + a′

12
x

2
 + a′

13
x

3
 + . . . + a′

1n
x

n
 = c′

1

             a′
22

x
2
 + . . . + a′

2n
x

n
 = c′

2

             a′
33

x
3
 + . . . + a′

3n
x

n
 = c′

3

                                  a′
nn

x
n
 = c′

n

From the above system of equations we can find the values 
of the unknowns. 

Linear Dependence
A set of vectors of n dimensions is said to be linearly 
dependent if one of these vectors can be expressed as a lin-
ear combination of some other vectors in the set.

If no vector can be expressed as a linear combination 
of the others, then the set of vectors is said to be linearly 
independent.

The maximum number of linearly independent rows or 
columns of a matrix is called the rank of the matrix.

NOTE

LU Decomposition Method of Factorisation 
or Method of Triangularization
Consider the system of equations

        

a x a x a x b

a x a x a x b

a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3

+ + =
+ + =
+ + = bb3









 (1)

In matrix notation, Eq. (1) can be written as AX = B (2)

where A

a a a

a a a

a a a

X

x

x

x

=
















=















11 12 13

21 22 23

31 32 33

1

2

3

,  


=
















 and B

b

b

b

1

2

3

Step 1: Write A = LU, where L → Lower triangular matrix 
with principal diagonal elements being equal to 1 and U → 
Upper triangular matrix.

That is, L l

l l

U

u u u

u u

u

=
















=





1 0 0

1 0

1

0

0 0
21

31 32

11 12 13

22 23

33

 and 










Step 2: Now Eq. (2) becomes LUX = B (3)

Step 3: Let UX = Y (4)

where          Y

y

y

y

=
















1

2

3

Step 4: Combining Eqs. (3) and (4), we get LY = B (5)
On solving Eq. (5) we get y

1
, y

2
, y

3
.

Step 5: Substituting Y in Eq. (4), we get UX = Y
On solving, we get X, i.e., x

1
, x

2
, x

3
.

The Characteristic Equation of a Matrix
Characteristic Matrix If A is any square matrix, the matrix 
A − lI where l is a scalar, is called the characteristic matrix 
of A.

Characteristic Polynomial If A is any square matrix of 
order n, then the determinant | A− lI | yields a polynomial 
f(l) of degree n in l which is known as the characteristic 
polynomial of the matrix A.

Characteristic Equation If f(l) is the characteristic 
polynomial of a matrix A, then f(l) = 0, is called the 
characteristic equation of A.

And the roots of this equation, say l
1
, l

2
, . . . , l

n
 are called 

the characteristic roots or latent roots or eigen values. If l is 
a characteristic root of ordert, then t is called the algebraic 
multiplicity of l.
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Characteristic Vectors Corresponding to each characteristic 
root l, there is a non-zero vector which satisfies the character-
istic equation | A − lI | = 0. These non-zero vectors are called 
the characteristic vectors or eigen vectors or latent vectors.

 1.  The characteristic roots of a matrix and its transpose 
are the same.

 2.  0 is a characteristic roots of a matrix, if the matrix is 
singular.

 3.  The characteristic roots of a triangular matrix are just 
the diagonal elements of the matrix.

 4.  If K is any scalar, the characteristic roots of matrix KA 
are K times the characteristic roots of matrix A.

 5.  If a
1
, a

2
, a

3
, . . ., a

n
 are characteristic roots of matrix 

A and K is a scalar, then the characteristic roots of 
matrix A − KI are a

1
 − K, a

2
 − K, . . ., a

n
 − K.

 6.  If l is a characteristic root of a non-singular matrix, 
then l−1 is a characteristic root of A−1.

 7.  If the eigen values of A are l
1
, l

2
, . . ., l

n
 then the eigen 

values of A² are l
1
2, l

2
2, . . ., l

n
2.

NOTES

Cayley−Hamilton Theorem
Every square matrix satisfies its characteristic equation.

Inverse by Cayley−Hamilton Theorem
Let A be non-singular square matrix of order n

Let the characteristic equation of A be 

|A − lI| = (−1)n ln + C
1
ln–1 + C

2
ln–2 + . . . + C

n–1
 l + C

n
 = 0

Where C
1
, C

2
, . . ., C

n
 are all scalar constants

Then by Cayley−Hamilton theorem

     (−1)nAn + C
1
An–1 + C

2
An–2 + . . . + C

n–1
A + C

n
I = O (1)

Multiplying Eq. (1) throughout by A−1, we have 

A−1[(−1)n An –1 + C
1
 An–1 + C

2
 An–2 + . . . + C

n–1
 A+ C

n
I ] = A−1 . 0

⇒ (−1)nAn–1 + C
1
 An–2 + C

2
 An–3 + . . . + C

n–1
 I + C

n
 A−1

⇒ =
−

− + + + +− − − −
−A

C
A C A C A C I

n

n n n n
n

1 1
1

2
2

3
1

1
1[( ) ]�

Similarly, we can find A−2, A−3, . . . for the matrix A
x
 pro-

vided A is non-singular.

NOTE

Power of a Matrix by 
Cayley−Hamilton Theorem
Cayley−Hamilton theorem is also helpful in finding higher 
powers of a square matrix with least possible number of matrix 
multiplications. This is explained in Examples 11 and 12.

Reduction to Diagonal Form
If A is a square matrix of order n with n linearly independent 
eigen vectors, then A can be reduced to a diagonal matrix, 
called diagonal form of A.

Procedure to Reduce a Square Matrix 
into Diagonal Form
Let A be a square matrix of order n that can be reduced to 
diagonal form 

 1. Find the eigen values and their corresponding eigen 
vectors of A. Let l

1
, l

2
, l

3
, . . . , l

n
 be the eigen values 

and let X
1
, X

2
, X

3
, . . ., X

n
 be their corresponding eigen 

vectors that are linearly independent.
 2. Form the matrix P with X

1
, X

2
, X

3
, . . ., X

n
 as its columns 

i.e., P = [X
1
 X

2
 X

3
 … X

n
] it can be easily observed that 

P is invertible. 
 3. Find the inverse of P (i.e., find P−1) 
 4. The diagonal form of A is given by D = P−1 AP.

Where D

n

=



















λ
λ

λ

1

2

0 0 0

0 0 0

0 0 0

�
�

� � � � �
�

 is a diagonal matrix 

with eigen values of A as its principal diagonal elements. 

Here P is called the modal matrix and D is the spectral 
matrix of the matrix A

NOTE

Power of a Matrix by Using its Diagonal Form
If D is the diagonal form of a square matrix A, then for any 
positive integer n, we have An = P Dn P−1. 

Where P is the modal matrix of A.

SOLVED EXAMPLES

Example 1
Find the value of 

a b c a b

c b c a b

c a c a b

+ +
+ +

+ +

2

2

2

.

Solution
c

1
 → c

1 
+ c

2 
+ c

3

2

2 2

2 2

( )

( )

( )

a b c a b

a b c b c a b

a b c a c a b

+ +
+ + + +
+ + + +

= + + + +
+ +

2

1

1 2

1 2

( )a b c

a b

b c a b

a c a b

R
2
 → R

2
 − R

1
  R

3
 → R

3
 − R

1

2

1

0 0

0 0

( )a b c

a b

a b c

a b c

+ + + +
+ +

= + + = + +2

1

0 1 0

0 0 1

23 3( ) ( ) .a b c

a b

a b c

Chapter 04.indd   79 5/19/2017   5:19:22 PM



2.80 | Part II ■ Engineering Mathematics

Example 2

Find the rank of the matrix 

3 1 2

2 0 1

1 4 1

−
−
















.

Solution
Given

3 1 2

2 0 1

1 4 1

1 4 1

2 0 1

3 1 2
1 3

−
−

















↔ −
−

















R R

R
2
 → R

2
 − 2R

1 
and R

3
 → R

3
 − 3R

1

∼

∼

1 4 1

0 8 3

0 11 5

11

8

1 4 1

0 8 3

0 0
7

8

3 3 2

− −
− −

















→ +
−

− −
−











R R R











which is a row echelon form. The number of non zero rows 
= 3.
The rank of the matrix = The number of non-zero rows in 
it = 3
\ Rank of the matrix = 3.

Example 3
Find whether the vectors given below are linearly dependent 
or independent {(1, 3, 2), (1, −4, 1), (−1, 2, 5)}.

Solution
Let x, y, z ∈ R such that x(1, 3, 2) + y(1, − 4, 1) + z(−1, 2, 
5) = (0, 0, 0) 

              ⇒
+ − =
− + =
+ + =

x y z

x y z

x y z

0

3 4 2 0

2 5 0

}  (1)

The above system of equations when expressed in 
determinant form, we have

1 1 1

3 4 2

2 1 5

1 1 1

0 7 5

0 1 7

1

2 1 3 13 2

3 2
1

7

−
−  →

−
−
−

 →

− −

−

R R R R

R R

, 

11 1

0 7 5

0 0
44

7

−
−

\ Rank = 3 = number of unknowns

\ There exists a unique solution x = 0, y = 0 and z = 0 

⇒ x(1, 3, 2) + y(1, −4, 1) + z(−1, 2, 5) 
= (0, 0, 0) only when x = 0, y = 0, z = 0.
\ The set of vectors are linearly independent.

Example 4
Show that the set of vectors {(2, 3, 9), (3, −2, −6), (−1, 5, 
15)} are linearly dependent.

Solution
Let x, y, z e R such that

x(2, 3, 9) + y(3, −2, −6) + z(−1, 5, 15) = (0, 0, 0)

       

       

2 3 0

3 2 5 0

9 6 15 0

x y z

x y z

x y z

+ − =
⇒ − + =

− + =

The above system when expressed in matrix form we have 
the coefficient matrix

A =
−

−
−

















−
−
−

=

2 3 1

3 2 5

9 6 15

2 3 1

3 2 5

9 6 15

0

as    R R3 23
2 3

3 2
0=

−
≠ and 

\ Rank of A = 2 < the number of variables which is 3. 
\ The system will possess a non-zero solution, i.e., 

2 3 0

3 2 5 0

x y z

x y z

+ − =
− + =

x y z
k

15 2 3 10 4 9−
=
− −

=
− −

= ( )say

⇒ x = 13k, y = −13k and z = −13k

Let k = 1 ⇒ x = 13, y = −13, z = −13 

\ There exists a non-zero solution such that x, y, z e R

x(2, 3, 9) + y(3, −2, −6) + z(−1, 5, 15) = (0, 0, 0)

\ The set of given vectors are linearly dependent.

Example 5
How many solutions are there for the system of linear equa-
tions x + 2y + z = 0, 3x + 2y − z = 0 and 4x + y − 3z = 0?

Solution
Determinant of the co-efficient matrix of the given  equations 

is 

1 2 1

3 2 1

4 1 3

−
−

= 1(−6 + 1) −2(−9 + 4) +1(3 − 8) = 0

\ The system has infinite number of solutions.
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Example 6
Solve the system of equations 

x
1
 + x

2
 + x

3
 = 1, 3x

1
 + x

2
 − 3x

3
 = 5 and x

1
 − 2x

2
 − 5x

3
 = 10 by 

LU decomposition method.

Solution

AX B

x

x

x

= ⇒ −
− −
































=
















1 1 1

3 1 3

1 2 5

1

5

10

1

2

3

Step 1: LU = A

⇒































=

1 0 0

1 0

1

0

0 0
21

31 32

11 12 13

22 23

33

l

l l

u u u

u u

u

11 1 1

3 1 3

1 2 5

−
− −

















Expanding and on solving we get, u
11

 = 1, u
12

 = 1, u
13

 = 1, 

u
22

 = −2, u
23

 = −6, u
33

 = 3, l l l21 31 323 1
3

2
= = =, ,  

Step 2: Now LUX = B

Step 3: Let UX = Y

Step 4: \ LY = B

⇒




































=
















1 0 0

3 1 0

1
3

2
1

1

5

10

1

2

3

y

y

y

On solving, y
1
 = 1, y

2
 = 2 and y

3
 = 6.

Step 5: UX = Y

⇒ − −































=
















1 1 1

0 2 6

0 0 3

1

2

6

1

2

3

x

x

x

On solving we get x
1
 = 6, x

2
 = −7 and x

3
 = 2

\  The solution is (6, −7, 2).

Example 7

Solve: x + y + z = 6, 3x − 2y − z = −4 and 2x + 3y −2z = 2.

Solution

A = − −
−

= − − + + ≠
1 1 1

3 2 1

2 3 2

1 7 1 4 1 9 4 0( ) ( ) ( )

\ The set of given equations are non-homogeneous and the 
number of equations is equal to the number of variables.
\ The given system of equations is consistent and has a 
unique solution.

Augmented matrix,

[ ]AB  is 

1 1 1 6

3 2 1 4

2 3 2 2

− − −
−

















R
2
 → R

2
 −3R

1
, and R

3
 → R

3
 − 2R

1

1 1 1 6

0 5 4 22

0 1 4 10

 
 − − − 
 − − 

∼

R
1 
→ R

1
 + 1

5
R

2
 and R

3
 → R

3
 + 1

5
 R

2

∼

1 0
1

5

8

5
0 5 4 22

0 0
24

5

72

5

− − −

− −





















R R R R R2 3 2 3 3
5

6

5

24
→

−
+ →

−
;  

∼

1 0
1

5

8

5
0 5 0 10

0 0 1 3

− −



















R R R R1 3 2 2
1

5

1

5
→ − →

−
 and 

R R2 2
1

5

1 0 0 1

0 1 0 2

0 0 1 3

→ − ∼
















\ Solution is x = 1, y = 2 and z = 3.

Example 8
Solve 3x + 2y − z = 0, 4x + y + 2z = 0 and x − 5y + 7z = 0.

Solution
Determinant of the co-efficient matrix of the equations 

when written in matrix form is

3 2 1

4 1 2

1 5 7

−

−

= 3(7 + 10) −2(28 − 2) −1(−20 − 1) 

= 51 − 52 + 21 = 20 

\ The given system of equations have only one solution, 
i.e., x = y = z = 0.

Example 9
Determine the eigen values and eigen vectors of 

A =










2 4

3 3
.
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Solution
Characteristic equation of the given matrix is | A − l | = 0

⇒
−

−
=

2 4

3 3
0

λ
λ

⇒ l2 − 5l − 6 = 0

    (l − 6)(l + 1) = 0 

⇒  l = −1 and l = 6 are the eigen values. Eigen vector 
corresponding to l = −1 is obtained as follows:

2 4

3 3
1

1 0

0 1

0

0
1

2









 +




























 =










x

x

⇒

















 =










3 4

3 4

0

0
1

2

x

x

⇒ 3x
1
 + 4x

2
 = 0

3x
1
 + 4x

2
 = 0 ⇒ x

1
 = −

4

3
2x

\ Eigen vector corresponding to l = −1 is,

X
x

x

x

x

x=








 =

−












=

−













1

2

2

2

2

4

3

4

3
1

Similarly eigen vector corresponding to l = 6 is obtained 
as follows:

2 4

3 3
6

1 0

0 1

0

0
1

2









 −




























 =










x

x

⇒
−

−

















 =










4 4

3 3

0

0
1

2

x

x

⇒ − 4x
1
 + 4x

2
 = 0 and 3x

1
 − 3x

2
 = 0

⇒ x
1
 = x

2

Eigen vector corresponding to l = 6 is,

X
x

x

x

x
x=









 =









 =










1

2

2

2
2

1

1
.

Example 10
Find the eigen values of the matrix 

A =
















6 2 2

2 3 1

2 1 3

.

Solution

Characteristic equation of the given matrix is A− =λ 0

⇒
−

−
−

=
6 2 2

2 3 1

2 1 3

0

λ
λ

λ

⇒ l3 − 12l2 + 36l − 32 = 0

l = 2, 2, 8

\ Eigen values are 2, 2, 8.

Example 11

If A =
− −










4 2

7 4
,  then find A16 by using Cayley−Hamilton 

theorem. 

Solution
The characteristic equation of 

A A I=
− −








 − =

⇒
−
− − −









 =

4 2

7 4
0

4 2

7 4
0

 is | |λ

λ
λ

⇒ (4 − l)(− 4 − l) + 14 = 0

⇒ −16 − 4l + 4l + l2 + 14 = 0

⇒ l2 − 2 = 0 (1)

By Cayley−Hamilton theorem, the matrix A satisfies its 
characteristic equation (1).
\ A2 − 2I = O

where I O=








 =











1 0

0 1

0 0

0 0
 and 

⇒ A2 = 2I (2)

Now A16 = (A2)8 = (2I)8 (From Eq. (2))

= = =








2 256 256

1 0

0 1
8 8I I

\          A16 256 0

0 256
=










Example 12

If A = −
















2 0 3

0 4 5

0 1 0

;  then find the value of the 

matrix polynomial 3A9 − 18A8 + 39A7 − 32A6 + 12A5 
− 26A4 + 16A3 + 24A2 − 50A + 40I.

Solution
The characteristic equation of 

A = −
















2 0 3

0 4 5

0 1 0

 is | A − l I | = 0

⇒
−

− −
−

=
2 0 3

0 4 5

0 1

0

λ
λ

λ
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⇒  (2 − l) {(4 − l)(−l) + 5}  = 0
⇒ (2 − l) {(l2 − 4l + 5)} = 0
⇒ 2l2 − 8l + 10 − l3 + 4l2 − 5l = 0.

⇒ − l3 + 6l2 − 13l + 10 = 0

⇒ l3 − 6l2 + 13l − 10 = 0 (1)

By Cayley−Hamilton theorem, the matrix A will satisfy its 
characteristic Eq. (1) 
\ A3 − 6A2 + 13A − 10I = O, 

where l =
















1 0 0

0 1 0

0 0 1

 and O =
















0 0 0

0 0 0

0 0 0

          \ A3 − 6A2 + 13A − 10I = 0 (2)

Now consider the given matrix polynomial 
3A9 − 18A8 + 39A7 − 32A6 + 12A5 − 26A4 + 16A3 + 24A2 − 
50A + 40I
=  3A9 − 18A8 + 39A7 − 30A6 − 2A6 + 12A5 − 26A4 + 20A3 

− 4A3 + 24A2 − 52A + 2A + 40I

=  3A6 (A3 − 6A2 + 13A − 10I ) − 2A3(A3 − 6A2 + 13A − 10I) 
− 4(A3 − 6A2 + 13A − 10I) + 2A

= 3A6 × 0 − 2A3 × 0 − 4 × 0 + 2A 

(From Eq. (2))

= = −















= −
















2 2

2 0 3

0 4 5

0 1 0

4 0 6

0 8 10

0 2 0

A .

Exercises
 1. Which of the following is false?
 (A) Every diagonal matrix is a square matrix.
 (B) Every unit matrix is a scalar matrix.
 (C) Every square matrix is a diagonal matrix.
 (D) Every scalar matrix is a diagonal matrix.

 2. If the trace of the matrix 

1

2
12 1

21 2

1 2

a a

a a

a a n

n

n

n n

�
�

� � � �
�



















 is 55 

then the value of n is
 (A) 10 (B) 11
 (C) 9 (D) Cannot be determined

 3. Which of the following statement is/are false?
 (A)  AT . BT always defined for square matrices of same 

order.
 (B) AT ⋅ B is defined for matrices of the same order.
 (C)  t

r
(AT) + t

r
(BT) is always defined for matrices A, B of 

same order.
 (D)  AT + BT is always defined for matrices A, B of same 

order.

 4. Consider the following statements about two square 
matrices A and B of the same order:

 P: (A + B)2 = A2 + 2AB + B2

 Q: (A + B) (A − B) = A2 − B2  

 Then,
 (A) both P and Q are true.
 (B) both P and Q are false
 (C) both P and Q are true if A and B commute
 (D) P is true but Q is false.

 5. If 

2 1 2

1 0 1

2 2 1

2 3

2 0

2 2

















−
−
− −

















x x

x

x x

= I
3 ×3

, then x =

 (A) −1 (B) 1

 (C) 
1

2
 (D) 2

 6. If D = 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

, then which of the following is 

true? (Here, A
ij
 is the cofactor of the element a

ij
) 

 (A) a
11 

A
11

 + a
21 

A
12

 + a
23 

A
32

 = D
 (B) a

11 
A

11
 + a

12 
A

12
 + a

13 
A

13
 = D

 (C) a
21 

A
12

 + a
23 

A
32

 + a
12 

A
21

 = D
 (D) a

12 
A

21
 + a

21 
A

12
 + a

31 
A

13
 = D

 7. The determinant value of 

2 3 3

1 2 2

7 4 4

−
−

−

















 is

 (A) 0 (B) 10
 (C) −10 (D) 15

 8. The value of 

n n n

n n n

n n n

! ( )! ( )!

( )! ! ( )!

( )! ( )! ( )!

+ +
+ +( ) +
+ + +

1 2

1 2 3

2 3 4

 is

 (A) 2n! (n + 1)!
 (B) 2n! (n + 1)! (n + 2)!
 (C) (2n)! (n + 1)! (n + 2)!
 (D) 2n! (n + 3)!

 9. If f(x) =

x x x

x x x

x x x

C C C

C C C

C C C

0 1
1

1

1 2
1

2

2 3
1

3

2 2 2

6 6 6

+

+

+

( )

( )

, then f (200) is

 (A) 200 (B) −200
 (C) 0 (D) −2001

 10. The determinant 

2 3 1

3 0 1

1 1 1

+ −
− − +
− − −

i

i i

i

 is

 (A) purely imaginary (B) zero

 (C) real (D) 10
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 11. If A = 

x y z

x y z

x y z

2 3

2 2 2



















, then |A| = ______.

 (A) 10xyz (B) 1

 (C) 0 (D) 
1

2
(x3 + y3 + z3 − 3xyz)

 12. If the elements of a row or column of a given square 
matrix is multiplied by 2, then the value of determinant 
is ______ times the original determinant.

 (A) 
1

2
 (B) 1

 (C) 2 (D) 4

 13. If A is a square matrix of order k and det(kA) = 27 
det(A), then k = ______.

 (A) 9 (B) 1
 (C) 2 (D) 3

 14. If A and B are two square matrices of order 4 such that 
|A| = −2 and |B| = 5, then |4AB| is

 (A) −80 (B) −160
 (C) −2560 (D) −256

 15. I.  (a − b), (b − c), (c − a) are factors of the determinant 

1 1 1

2 2 2

a b c

a b c

.

 II.  If the elements of a determinant are functions of x 
and its two rows or columns become identical (i.e., 
determinant equals zero,) when we substitute x = k, 
then (x − k) is a factor of the determinant.

 Which of the following is correct? 
 (A) Both I and II true. (B) Both I and II false.
 (C) I is true, II is false  (D) I is false, II is true

 16. A lower triangular matrix A = (a
ij
)

n × n
 is singular if and 

only if
 (A) a

ii
 = 0 for all i = 1, 2, … n

 (B) a
ii
 = 0 for atleast one i = 1, 2, … n

 (C) a
ii
 ≠ 0 for all i = 1, 2, … n

 (D) a
ii
 ≠ 0 for atleast one i, i = 1, 2, … n

 17. Inverse of the matrix 

2 1 0

1 2 3

4 1 1

−

− −

















 is

 (A) 

− −
− −
− −

















5 11 9

1 2 2

3 6 5

 (B) 

− − −
− − −
















5 1 3

11 2 6

9 2 5

 

 (C) 

5 11 9

1 2 2

3 6 5

−
−

















 (D) 

5 1 3

11 2 6

9 2 5− −

















 

 18.   I. If A =























1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

, then A−1 is symmetric.

 II.  If a non-singular matrix A is symmetric, then A−1 is 
also symmetric.

 Which of the following is correct?

 (A) Both I and II true. (B) Both I and II false.

 (C) I is true, II is false. (D) I is false, II is true.

 19. A is a third order matrix. If the value of the square of the 
determinant of the matrix of co-factors of A is 28561, 
then |A| equals

 (A) 25 (B) ±13
 (C) 120 (D) ±169

 20. If A is a square matrix of order 3, then the product of A 
and its transpose is 

 (A) unit matrix. (B) zero matrix.
 (C) identity matrix. (D) symmetric matrix.

 21. If A and B are two skew symmetric matrices of the 
same order then AB is skew symmetric if and only if

 (A) AB + BA = O (B) AB − BA = O

 (C) AB + BA = I (D) AB − BA =  I

 22. Rank of the matrix A =










1 2 3

4 5 6
 is

 (A) 1 (B) 2
 (C) 3 (D) 4

 23. The rank of the matrix 

2 1 3

4 2 6

10 5 15

− −
−
−

















 is 

 (A) 0 (B) 1
 (C) 2 (D) 3

 24. If A = (1 2 3) and B = 

1

2

3

















 then r(AB) is

 (A) 0 (B) 1
 (C) 2 (D) 4

 25. Which of the following matrix is row echelon form?

 (A) 

1 0 1 2

0 1 0 3

0 0 1 2

0 0 0 0

−

−



















 (B) 

0 1 2

1 0 1

0 1 0

−
















 

 (C) 

1 0 0 0

0 2 1 3

0 0 1 4

0 0 0 0

−
−



















 (D) 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 2
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 26. Which of the following set of vectors are linearly 
dependent?

 (A) (2, 3, 3), (3, −1, 3), (4, −2, 5)
 (B) (3, 4, −1), (−1, 3, 1), (−2, −7, −2)
 (C) (2, 1, 4), (1, −2, 2), (−3, 1, −6)
 (D) (1, 3, −5), (−5, −1, 3), (4, −2, −2)

 27. The system of equations 2x − y + 3z = 9, x + y + z = 0 
and x − y + z = 0 has/is

 (A) unique solution.
 (B) infinite solutions.
 (C) only zero solution.
 (D) inconsistent.

 28. The system of equations 6x + 7y + 8z = 1, 13x + 14y + 
15z = 2 and x + 2y + 3z = 2 is

 (A) consistent with unique solution.
 (B) consistent with infinite solutions.
 (C) inconsistent.
 (D) None of these

 29. The value of l for which the following system of equa-
tion does not have a solution is

 x + y + z = 6
 4x + ly − lz = 0
 3x + 2y − 4z = −8

 (A) 3 (B) −3
 (C) 0 (D) 1

 30. If the number of variables in the linear homogeneous 
system AX = O is n, then the system will have exactly 
one solution X = O, if the rank of the matrix A is

 (A) 1 (B) < n
 (C) ≤ n (D) n

 31. If the equations 2x − y − z = 0, kx − 3y + 2z = 0 and −3x 
+ 2y + kz = 0 have a non-zero solution, then the value 
of k is

 (A) 2 (B) 1
 (C) 7 (D) Both 1 and 7

 32. The system of equations a + 3y + 5z = 0, 2x − 4ay + a 
z = 0, −4x + 18y + 7z = 0 has only trivial solution if a is

 (A) −1 or −3 (B) 1 or −3
 (C) not equal to 1, −3 (D) not equal to −1 and 3

 33. The eigen values of 
2 1 0

0 1 1

0 0 3

−
−

















 is

 (A) 0, 0, 0 (B) 0, 1, 0
 (C) 2, 1, 3 (D) −2, −1, −3

 34. The characteristic roots of the inverse of the matrix 
2 2 1

1 3 1

1 2 2

















 are

 (A) −1, −1, 5 (B) 1, 1, 5

 (C) 1, 1, 
1

5
 (D) −1, −1, 

1

5

 35. The sum and product of the eigen values of the matrix 

2 0 1

0 4 2

1 3 5

−
−
−

















 is respectively

 (A) 0, 24 (B) 1, −24
 (C) 2, 20 (D) 4, −24

 36. The eigen values of a matrix A p

q

=
















2 0 1

0 2

1 0

 are 1, 2, 

and 3. Then the values of p and q are ______.
 (A) p = 0, q = 0
 (B) p = any real number, q = 2
 (C) p = 2, q = 0
 (D) p = 2, q = 2

 37. The eigen values of the matrix 

0 1 2 3

1 0 4 6

2 4 0 5

3 6 5 0

− −

− −
− −



















 is

 (A) real only (B) imaginary

 (C) zero only (D) imaginary or zero

 38. The number of linearly independent eigen vectors of 
5 2

2 1−








  is ______.

 (A) 0   (B) 1   (C) 2   (D) infinite 

 39. Which of the following is an eigen vector for the matrix 

1 4

2 1−








 ?

 (A) 
1

3








  (B) 

−









1

1

 (C) 
3

1








  (D) 

−
−










2

2
 

 40. For a matrix A = 

6 6 2

6 5 4

2 4 1

−
− −

−

















, X = 

−

−

















2

2

1

  is an eigen 

vector. The corresponding eigen value is ______.
 (A) −2 (B) 1
 (C) 2 (D) 13

 41. Let A be a 2 × 2 square matrix with l
1
 = −2 and l

2
 = 

−3 as its eigen values and x1
4

4
=

−
−








 , x2 6

7
=







  as its 

eigen vectors then A is given by

 (A) 
0 2

4 5−








  (B) 

4 6

7 9

−
−









  

 (C) 
−

−










2 6

7 3
 (D) 

2 6

4 3−
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 42. Consider the matrix A =
− −

















2 5 4

0 1 0

0 3 2

 let B = A−1, then 

B = ______

 (A) 
−1

4
[A2 − A − 4I] (B) 

1

4
[A2 − A − 4I]

 (C) 
1

4
[A2 + A − 4I] (D) 

−1

4
[A2 − A + 4I]

 43. If A =










2 3

4 6
, then A15 = 

 (A) 814A (B) 815A
 (C) 816A (D) 15A

 44. If A =
















2 0 0

3 6 7

9 0 1

, then the value of the matrix poly-

nomial 2A10 − 18A9 + 40A8 − 25A7 + 9A6 − 20A5 + 13A4 
− 9A3 + 20A2 − 10A is ______.

 (A) 

2 0 0

3 6 7

9 7 1

















 (B) 

4 0 0

6 12 14

18 0 2

















 

 (C) 

1 0 0

0 1 0

0 0 1

















 (D) 

0 0 0

0 0 0

0 0 0

















 

 45. For the matrix A =
− −

− −
−

















3 1 1

1 3 1

1 1 1

, consider the fol-

lowing statements
 (P) The characteristic equation of A is l3 − 5l2 + 4l = 0
 (Q) A−1 exists
 (R) The matrix A is diagonalizable 
 Which of the above statements are TRUE?
 (A) P, Q and R
 (B) P and R but not Q
 (C) P and Q but not R
 (D) Q and R but not P

 46. If P is a modal matrix and D is a spectral matrix of a 
diagonalizable matrix A, then which of the following 
relations is NOT TRUE among A, P and D?

 (A) PD = AP (B) DP−1 = P−1A
 (C) A2P = PD2 (D) DP = PA

 47. If A is a 3 × 3 square matrix with eigen values 0, 2, 3 
with P as its modal matrix, then the eigen values of the 
matrix P−1 AP are _______.

 (A) 0, 2, 3
 (B) 0, 4, 6

 (C) 0, 
1

2
, 

1

3

 (D) 1, 
1

2
, 

1

3

Previous Years’ Questions
 1. For what value of a and b, the following simultaneous 

equations have an infinite number of solutions?
 x + y + z = 5; x + 3y + 3z = 9; x + zy + az = b 
 [GATE, 2007]
 (A) 2, 7 (B) 3, 8
 (C) 8, 3 (D) 7, 2

 2. The product of matrices (PQ)−1P is [GATE, 2008]
 (A) P−1 (B) Q−1

 (C) P−1 Q−1P (D) PQP−1

 3. The following simultaneous equations 
 x + y + z = 3
 x + 2y + 3z = 4
 x + 4y + kz = 6
 will NOT have a unique solution for k equal to 
 [GATE, 2008]
 (A) 0 (B) 5
 (C) 6 (D) 7

 4. A square matrix B is skew-symmetric if 
 [GATE, 2009]

 (A) BT = −B (B) BT = B

 (C) B−1 = B (D) B−1 = BT

 5. The inverse of the matrix 
3 2

3 2

+
− −











i i

i i
is  

 [GATE, 2010]

 (A) 
1

12

3 2

3 2

+ −
− −











i i

i i

 (B) 
1

12

3 2

3 2

− −
+











i i

i i

 (C) 
1

14

3 2

3 2

+ −
−











i i

i i

 (D) 
1

14

3 2

3 2

− −
+











i i

i i

 6. [A] is a square matrix which is neither symmetric nor 
skew-symmetric and [A]T is its transpose. The sum 
and difference of these matrices are defined as [S] = 
[A] + [A]T and [D] = [A] − [A]T, respectively. Which of 
the following statements is TRUE? [GATE, 2011]
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 (A) Both [S] and [D] are symmetric.
 (B) Both [S] and [D] are skew-symmetric.
 (C) [S] is skew-symmetric and [D] is symmetric.
 (D) [S] is symmetric and [D] is skew-symmetric.

7. The eigen vales of matrix 
9 5

5 8









 are  [GATE, 2012]

 (A) −2.42 and 6.86 (B) 3.48 and 13.53

 (C) 4.70 and 6.86  (D) 6.86 and 9.50

 8. What is the minimum number of multiplications 
involved in computing the matrix product PQR? 
Matrix P has 4 rows and 2 columns, matrix Q has 
2 rows and 4 columns, a matrix R has 4 rows and 1 
column? 
 [GATE, 2013]

 9. Given the matrices J =
















3 2 1

2 4 2

1 2 6

 and K =
−

















1

2

1

 

the product KT JK is. [GATE, 2014]

 10. The determinant of matrix 

0 1 2 3

1 0 3 0

2 3 0 1

3 0 1 2



















 is.  

 [GATE, 2014]

 11. The rank of the matrix 

6 0 4 4

2 14 8 18

14 14 0 10

−
− −

















is. 

 [GATE, 2014]

 12. The sum of Eigen values of the matrix [M] is.

 Where [M] = 

215 650 795

655 150 835

485 355 550

















 [GATE, 2014]

 (A) 915 (B) 1355

 (C) 1640 (D) 2180

 13. Let A = [a
ij
], 1 ≤ i, j ≤ n with n ≥ 3 and a

ij
 = i ⋅ j. The 

rank of A is [GATE, 2015]
 (A) 0 (B) 1
 (C) n − 1 (D) n

 14. For what value of p the following set of equations will 
have no solution?

 2x + 3y = 5
 3x + py = 10
 [GATE, 2015]

 15. The smallest and largest eigen values of the following 

matrix are: 

3 2 2

4 4 6

2 3 5

−
−
−

















 [GATE, 2015]

 (A) 1.5 and 2.5 (B) 0.5 and 2.5
 (C) 1.0 and 3.0 (D) 1.0 and 2.0

 16. The two eigen values of the matrix 
2 1

1 p









  have a 

ratio of 3 : 1 for p = 2. What is another value of p for 

which the eigen values have the same ratio of 3 : 1? 
 [GATE, 2015]

 (A) −2 (B) 1

 (C) 
7

3
 (D) 

14

3

17. Consider the following linear systems:
 x + 2y − 3z = a
 2x + 3y + 3z = b
 5x + 9y − 6z = c

  This system is consistent if a, b and c satisfy the  
equation [GATE, 2016]

 (A) 7a − b − c = 0 (B) 3a + b − c = 0

 (C) 3a − b + c = 0 (D) 7a − b + c = 0

 18. If the entries in each column of a square matrix M add 
up to 1, then an eigen value of M is [GATE, 2016]

 (A) 4 (B) 3
 (C) 2 (D) 1

Answer Keys

Exercises
 1. C 2. A 3. C 4. C 5. B 6. B 7. A 8. B 9. C 10. C
 11. C 12. C 13. D 14. C 15. A 16. B 17. B 18. D 19. B 20. D
 21. A 22. B 23. B 24. B 25. A 26. C 27. A 28. C 29. A 30. D
 31. D 32. C 33. C 34. C 35. B 36. B 37. B 38. B 39. B 40. D
 41. B 42. A 43. A 44. B 45. B 46. D 47. A

Previous Years’ Questions
 1. A 2. B 3. D 4. A 5. B 6. D 7. B 8. 16 9. 23 10. 88
 11. 2 12. A 13. B 14. 4.49 to 4.51 15. D 16. D 17. B 18. D
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