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1.4 UNIVERSAL GRAVYITATION

1.200 We have

M2 YMm, o vm
3
Thus o= 2 v =t

r ym /v ym,
(Here m, is the mass of the Sun.)

2nym, 2xx667x10 M x197x10%
So T= - I
v (349 x 10%

(The answer is incorrectly written in terms of the planetary mass M)

= 194 x 107 sec = 225 days.

1.201 For any planet

M
MR(DI-Y s or @= Yms
R3
So, T—z—u:!— 2:1,'1{3/2/\/-\,33_T
372
I, (R
a} Thus == |==
® 7 (R]
R 23 23
So - (TJ/TE) = {(12)"" = 5:24,
Rg
2/3
2 Ym, - va
(b) V; K , and R, = (T—"—ZIt )
s (yml)ya(Zn)M 2rym, ¥
So V] = ———'}—Fg—‘—"‘—" or, f T

where T= 12 years. m_ = mass of ths Sun,

Putting the values we get V, = 1297 km/s

273

Acceleration _1—1, 2nym, X 2
R, T T\/Ym,

= 215 x 107 km/s?
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Semi-major axis= (r + R}/2
It is sufficient to consider the motion be along a circle of semi-major axis L ;R forT
does not depend on eccentricity.
r+R b
2 n( 2 )

=7 V(r-t-R)s/ZYm,

Hence T= —‘/—Y_m—

5

(again m_ is the mass of the Sun)

We can think of the body as moving in a very elongated orbit of maximum distance R
and minimnum distance 0 so semi major axis = R/2. Hence if 1 is the time of fall then

2 3
2t R/2 2
(T’] (Tz ) or = T%/32

or 1= T/4V2 = 365/ 4V2 = 645 days.

T=2xR**/Vym,

If the distances are scaled down, R decreases by a factor nyzand so does m, . Hence
T does not change.

m om
1.205 The double star can be replaced by a single star of mass — +nl; moving about the centre
1+ m,
of mass subjected to the force y m, m, / 7. Then
2 - 2nr¥?
Vel
Ymm m +m,
So P -*—\f M
T -V v
or, Ul (yM) YyM(T/2n)
(a) The gravitational potential due to m1 at the point of location of m, :
m m
f(; dr=f—7—1dx= Y
r
mm
Se, Uzl---szz-—.Y ,1_ 2
Similarly U= - ymymy

r
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1.207

Hence mr Ty

ymom; e - - }p—=2>%
Up= Upy= U= -——2 r_ x H:_
dx

(b} Choose the location of the point mass as the origin. Then the potential effergy di/ of

an element of mass dM -ﬁ—{dx of the rod in the field of the point mass is
dU = —ym de 1
I x

where x is the distance between the element and the point. (Note that the rod and the
point mass are on a straight line.) If then @ is the distance of the nearer end of the rod
from the point mass.

< l >
{ 1% | F - >
5| le - x >Mm x
dx

a+l

T 5re{d)

U-—‘r—l— . —J-c—--'ym-[-ln

The force of interaction is

Fe-

-mM — -
L IEY] R ala + 1)

1 !) ymM
1+ ¢
a

Minus sign means attraction.

As the planet is under central force (gravitational interaction), its angular momientum is
conserved about the Sun (which is situated at one of the focii of the ellipse)
2 %57
So, mvri=mv,r, or, V= —72—- (1)
1
From the conservation of mechanical energy of the system (Sun + planet),
LAGICLNE Y JR S N
Ty 2T r, T2mh
2
? m, 1 Ty b m H +
o, -1 +2v§r3-- |34 [Using 1)
Thus, va= V2ymr [ r,(ri+1y) @

Hence M=mv,r,= M'\/z'i’m,ﬁ"z/(ﬁ""z)
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From the previous problem, if r, , r, are the maximum and minimum distances from the
sun to the planet and v, , v, are the corresponding velocities, then, say,

mm
E-lmvzz—Y 2

2 n
ymm, vy ymmg o ymmg o ymmg
rAr, o, n, rtt, 24 [Using Eq. (2) of 1.207]

where 24 = major axis =r; + 7, The same result can also be obtained directly by writing

an equation analogous to Eq (1) of problem 1.191,
1 ., M ymm,
E=mré+—5-

2 Iyt T

(Here M is angular momentum of the planct and m is its mass). For extreme position

r=0 and we get the quadratic
2

Er2+7mm,r-%-0

The sum of the two roots of this equation are
ymm_

r+rye—

ymms
Thus Em- 7

= constant

From the conservtion of angular momentum about the Sun.
mvyrysina= mviry=mvyr, of, V1= V,F= VyF;sina 1
From conservation of mechanical energy,
1 Ymm 1
—mVE -

2 T, -—z—mvi— r

v% ym, vorgsmu Ym,

or, - —(Using 1
A 1(U“g)

2ym
or, (vﬁ- ; = rf+2ym5r1—v§r§sina- 0

0

27”’;)

-2ym. = V‘” my +4( psin a)( ry
2ym,

2(1% ]
o

vl_vgrgsinza (Z__V_zl}J ro[lt\/l-—(2—n)'r|sin2a]

o rm
- -

(2 Vu) 2-m)

where 1 = v%(o {y¥m, (m_is the mass of the Sun).
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1.21¢ At the minimum separation with the Sun, the cosmic body’s velocity is perpendicular to

1.211

its position vector relative to the Sun. If r_; be the sought minimum distance, from con-
servation of angular momentum about the Sun (C).
Vol

myylm mvr,, or, ve (1)
min
From conservation of mechanical energy of the system (sun + cosmic body),

1, _Ymm 1

5"“’0 - — + 2mv
o _Im W

So, it (using 1)

Fmin 2rm
or, viriov2ymorl -vii*=0

«-27m_,s:\/472m2+4v02v312 —ymVyimZivii?

So, Fiin ™ x = 3

2v, Yy

Hence, taking positive root

r. - (ym,/vg)[\/u(lvg/ym,)’ -1]

Suppose that the sphere has a radius equal to . We may imagine that the sphere is made
up of concentric thin spherical shells (layers) with radii ranging from O to a4, and each
spherical Jayer is made up of elementry bands (rings). Let us first calculate potential due
to an elementry band of a spherjcal layer at the point of location of the point mass m (say
point P) (Fig.). As all the points of the band are located at the distance I from the point
P, so,

dp= -Ial—M (where mass of the band) )
aM=(4dM2](2nasin9)(adB)
na
- (%ﬂ]sine 0 ®

And %= a’+r?-2arcost 3
Differentiating Eq. (3), we get
Idl = ar sinf d0 C)]

Hence using above equations

atp--(lzi‘:—’";]di ©)
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Now integrating this Eq. over the whole spherical layer

to=fov- 3ot [

So dpa -1 ©)

r

Equation (6) demonstrates that the potential produced by a thin uniform spherical Iayer
outside the layer is such as if the whole mass of the layer were concentrated at it’s centre;

Hence the potential due to the sphere at point P;
- --1 -
@ fdtp ; f dM - ™
This expression is similar to that of Eq, (6)
Hence thte sought potential energy of gravitational interaction of the particle m and the
sphere,

Us mp= _r@

() Using the Eq., G- -22
M .
G, = '??T (using Eq. 7)
So G- -I%F'md Fu m&’-—m—?i? (3

(The problem has already @ clear hint in the answer sheet of the problem book). Here we
adopt a different method.

Let m be the mass of the spherical layer, wich
is imagined to be made up of rings. Ata point
inside the spherical layer at distance r from
the centre, the gravitational potential due to a
ring element of radius 4 equals,

do= - % dl (see Eq. (5) of solution of 1.211)

arr

Hence G = —ﬂ— 0.
or

Hence gravitational field strength as well as ficld force becomes zero, inside a thin sphereical
layer.

One can imagine that the uniform hemisphere is made up of thin hemispherical layers of
radii ranging from O to R. Let us consider such a layer (Fig.). Potential at point O, due
to this layer is,
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1.214

2
do= _ydm —-%#rdr, where dm = M 3 dor dr
r R (2/3)rR 2

(This is because all points of each hemispherical shell are equidistant from O.)

R

WM M

e, o fio- 22 - 208
0

M

Hence, the work done by the gravitational field ar

force on the particle of mass m, to remove it

to infinity is given by the formula ml 0 / i -
A= mq, since @ = 0 at infinity. ’

Hence the sought work,

v

ymM
2R

(The work done by the external agent is - A.)

In the solution of problem 1.211, we have obtained ¢ and G due to a uniform shpere, at
a distance r from it’s centre outside it. We have from Eqs. (7) and (8) of 1.211,

g= -Yrﬂand 6=~1’§M? (A

AO-w- -

Accordance with the Eq. (1) of the solution of 1.212, potential due to a spherical shell of
radius a, at any point, inside it becomes

o= 1o Const and G, = -2%- 0 (®)
a ar
For a point (say P) which lies inside the uniform solid sphere, the potential @ at that point
may be represented as a sum.
Posize ™ P12
where ¢, is the potential of a solid sphere having radius r and @, is the potential of the
layer of radii r and R. In accordance with equation (A)
o= 1M 4.3\ 1M 2
r{@/3)aRr’3 R
The potential ¢, produced by the layer (thick shell) is the same at all points inside it. The
potential @, is easiest to calculate, for the point positioned at the layer’s centre. Using

Eq. (B)

R
- aM_ 3 yM 2 2
%"‘?f r 2 R3 (R. r)
r
where dM = ———M——34nr2dr= —3—-‘:{ P dr
{4/3)rR R

is the mass of a thin layer betveen the radii » and r+dr.

M r?
Thus ipmide= P+, = (E_R)(S_I_{—'] ©
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From the Eq. G = _—;‘?-
YMr
G =

r R3

O M 4

or G PE r 73npr

M .
(where p = ) , is the density of the sphere) D)
gﬂ:Ra

The plots ¢ (r) and G (r) for a uniform sphere of radius R are shown in figure of answersheet.
Alternate : Like Gauss’s theorem of electrostatics, one can derive Gauss’s theorem for

gravitation in the formf G-dS= -4nxym,,, .. - For calculation of Gata point

inside the sphere at a distance r from its centre, let us consider a Gaussian surface of
radius r, Then,

G,4:rcr2- -4ny fg)rs or, G,= -—%r

g M —» 4 M
Hence, G= -I—r-— —Tnprlas pm= ———
enc I'E 13 PA( P (4/3)3”23]
® R =
So, tp=fG,dr=f—-I—A3£rdr+f-y—gdr
R r
4 r R
Integrating and summing up, we get,
2
. IM(s T

And from Gauss’s theorem for outside it :
M

G,4nr’= —4ayM or G, = _Yr_z

Thus (p(r)-fG,drs _Xr_M

r
Treating the cavity as negative mass of density — p in a uniform sphere density + p and
using the superposition principle, the sought field strength is :

—-_— — =

G= G +G,
or G= —%xwﬂ' * -;—’yu(—p) v

(where 7, and r_ are the position vectors of

an orbitrary point P inside the cavity with
respect to centre of sphere and cavity
respectively.)

—

Thus G= —%nyp(?’—?_’)s -%nypl

+
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1.216

1.217

We partition the solid sphere into thin spherical layers and consider a layer of thickness
dr lying at a distance r from the centre of the ball. Each spherical layer presses on the
layers within it. The considered layer is attracted to the part of the sphere lying within it
(the outer part docs not act on the layer). Hence for the considered layer

dpdnri=dF

4 3
, Y3 Pj@=ridrp
of, dP4nr = "

where p is the mean density of sphere
P y P

or, dp= gnypzrdr
R

Thus p-fdp- 22y 2w -rY
r

(The pressure.must vanish at r = R.)
o, p= %(1 - G*/R?) y MY % R*, Putiing p = M/(4/3) xR
Putting r = O, we have the pressure at sphere’s centre, and treating it as the Earth where

mean density is equal to p = 55 x 10° kg/m3 and R = 64x 10°km
we have, p=173%x10"Pa or 172 x 10% atms.

{a) Since the potential at each point of a spherical surface {shell) is constant and is equal

0op= - y}?-, [as we have in Eq. (1) of solution of problem 1.212]

We obtain in accordance with the equation
1 1
v->famo= 2o f dm

L ymy  ym?
2(‘3)”’ 2R

(The factor %is nceded otherwise contribution of different mass elements is counted twice.)
(b) In this case the potential inside the sphere depends only on r (sce Eq. (C) of the

solution of problem 1.214)

2
A L. PR
@ 2R 1 332)

Here dm is the mass of an elementry spherical layer confined between the radii
rand r+dr:

dm= (4nr2drp)- (%—?—)rzdr
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R

L (3m) 3ym( r?
0
After integrating, we get
2
-_2lm
v R

njw

1218 Letw =Y T—sg = circular frequency of the satellite in the outer orbit,
.

wy = V - L/ S circular frequency of the satellite in the inner orbit.

(r-an?

So, relative angular velecity = w, + « where - sign is to be taken when the satellites are
moving in the same sense and + sign if they are moving in opposite sense.
Hence, time between closest approaches

2x 2n 1 { 45 days (0 = 0)
= = ® 1 080 hour (6 = 2
Wyt © \/Y—M;/"M 32Arr+6 ( )

where & is O in the first case and 2 in the second case.

_YM_ 667x 107" x 596 x 10

w = 9-8 m/s?
1219 ®u= g7 (637 % 10°

2

2
2 2n 2x22 s 6 y 2
®,= 0°R (—T)R (——_24x3 x‘T) 6:37 x 10" = 0-034 m/s

YMs  667x 107" x 197 x 10%

- T = 5% 107 m/s?
Rl (14950 x 105 x 10°)

and Wy

Then Wy Wy 0y = 1:0-0034: 00006

1.220 Let A be the sought height in the first case. so

23,,_?_11‘;
100°  (R+n)
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1.221

1.222

1.223

2

or —9—?— = |1+ L} )
100 R
From the statement of the problem, it is obvious that in this case A << R
99 2h R 6400
Thus 100=(1—R) or h= 200-(200]km- 32km

In the other case if /' be the sought height, than
-2

-2
g, ¥ 1_ (. K
2 g(1+R) or 3 (1+R
From the language of the problem, in this case &’ is not very small in comparision with R.
Therefore in this case we cannot use the approximation adopted in the previous case.

¥ 2 ’
Here, (1+%) =2 So,%-: 2-1
As —ve sign is not acceptable

W= (V2 -1)R= (¥2 -1) 6400 km = 2650 km

Let the mass of the body be m and let it go upto a height A,
From conservation of mechanical energy of the system

__-me 1 2 -yMm
R +2mvo (R+h)+0

Using %n g, in above equation and on solving we get,

RY
2gR-v;

Gravitational pull provides the reguired centripetal acceleration to the satelite, Thus if A

be the sought distance, we have
2

myv ymM 2
50, - o, R+h)vi= yM
R+B) - Rapp o ErRV=Y
or, RV+hvi= gR?, as g-%
2 2
Hence h= &_B___;;_IS__L_R{E‘_;ZE__I]

A satellite that hovers above the earth’s equator and corotates with it moving from the
west to east with the diurnal angular velocity of the earth appears stationary to an observer
on the earth. It is called geostationary. For this calculation we may neglect the annual
motion of the earth as well as all other influences. Then, by Newton’s law,
yMm _ ,,,( P23 )2,
” T
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where M = mass of the earth, T = 86400 seconds = period of daily rotation of the ecarth
and r = distance of the satellite from the centre of the earth. Then

2
r=.43 T
()
Substitution of M = 596 x 10%* kg gives

re 4220 x 10* km
The instantancous velocity with respect to an incrtial frame fixed to the centre of the earth
at that moment will be

2%‘- r= 307 km/s

and the acceleration will be the centripetal acceleration.
2

( 3"-) r= 0223 m/s?
T
We know from the previous problem that a satellite moving west to cast at a distance
R = 2:00 x 10* km from the centre of the earth will be revolving round the earth with an
angular velocity faster than the earth’s diurnal angualr velocity, Let

w = angular velocity of the satellite

wy = % = anuglar velocity of the earth. Then

0 ay= 2=
L
as the relative angular velocity with respect to earth. Now by Newton’s law
-7% = w’R
K

3 2
So, M_R_(éﬂ_+_2=_¢.)
¥yl T T
2

42° R 1.1
ﬂe( ‘)

Substitution gives
M= 627x10% kg

The velocity of the satellite in the inertial space fixed frame is \/ IR£ cast to west. With

respect to the Earth fixed frame, from the \71' S (W x 1) the velocity is

228 A,
v T + R 703 km/s

Here M is the mass of the carth and T is its period of rotation about its own axis.
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It would be - 2—’;-,5-+‘\/ YR—M , if the satejlite were moving from west to east.
To find the acceleration we note the formula
> — 25
mw =F+2m(v xo)+mw'R
Here F - - lf—smﬁ. and 7 Laand v x @is directed towards the centre of the Earth.
2

ra 1M 5| 27R \/r_M 2z (2%
Thus w R? +2 { T + R T T R
toward the earth’s rotation axis

™M 2 2J'I:R
TE'T

= 494 m/s” on substitution.

1.226 From the well known relationship between the velocities of a particle w.r.t a space fixed

frame (K) rotating frame (K') 7= " + (Wx 7}
Vi=v- ( 2—;5) R
Thus kinetic energy of the satellite in the earth’s frame
2
re L2l 2nR
T i—mv i Em(v- T )

Obviously when the sateilite moves in opposite sense comared to the rotation of the Earth
its velocity relitive to the same frame would be

v=ve ( ZTE) R
And kinetic energy

2
1o 2 1 2xR
Tz-fmv2 -2—m( *=rF ) (2)
From (1) and (2)
), 2aRY
T
T' = ———— &)
V_ZRR
T
Now from Newton’s second law
Tﬂ- T orve \/ = VgR (@)

RZ
Using (4) and (3) -

(@5

== ———= = 127 nearly (Using Appendices)

T‘( Eal
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1227 For a sateliite in a circular orbit about any massive body, the following reiation helds

1.228

between kinetic, potential & total energy :
Tw—-FE U=2E (1)

Thus since total mechanical encrgy must decrease due to resistance of the cosmic dust,
the kintetic energy will increase and the satellite will ‘fall’, We see then, by work energy
theorm

dT w —dE = - ‘ﬂfr
S0, mvdy = ovtvdt ar, % - d_:.
m oy

Now from Netow’s law at an arbitray radivs r from the moon’s centre.

vV M M
T-—P— or v= ,

{M is the mass of the moon.) Then

V.= M’vf- M
VnR V&

where R= moon’s radius. So

dv o av
vz'mfd‘-m
vy 0
ot t,”’l_l _..___'L‘__..(‘fﬁ_l)_
’ aly, v a\/;ﬂ' ay
R

where g is moon’s gravity. The averaging implied by Eq. (1) (for noncircular orbits) makes
the result approximate.

From Newton’s second law

mV
Mm Lo - 167 km/s o)
R? 0"

From conservation of mechanical energy

.;.mvf-'f“;"' = 0or, v,= ﬁ’Rﬂ « 237 km/s? @)
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1.229

1230

1.231

1232

In Eq. (1) and (2), M and R are the mass of the moon and its radius. In Eq. (1) if M and
R represent the mass of the carth and its radius, then, using appendices, we can easily get

vo= 79 km/s and v = 112 km/s.
In a parabolic orbit, E = 0

1,2 Mm -viy i1
So Smy - == 0or, v, V2 R

whete M = mass of the Moon, R = its radius. (This is just the escape velocity.)
On the other hand in orbit

mvf2R= 1};{2_’" or ve= V XRM
Thus Av=(1—-ﬁ)‘\/x£!— = - 070 km/s.

From 1.228 for the Earth surface

vo-‘\/?and v, = @

Thus the sought additional velocity

Av= v, -vo="\/ XR—M (VZ-1)=gR(V2-1)

This ‘kick’ in velocity must be given along the direction of motion of the satellite in its
orbit.

Let r be the sought distance, then

or Vir=(nR-r) orr-%- 38 x 10* xm.

Between the earth and the moon, the potential energy of the spaceship will have a maximum
at the point where the atiractions of the earth and the moon balance each other. This
maximum PE. is approximately zero. We can also neglect the contribution of either body
to the p.E. of the spaceship sufficiently near the other body. Then the minimum energy
that must be imparted to the spaceship to cross the maximum of the P.E. is clearly (using
E to denote the earth)
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YMgm
RE

With this energy the spaceship will cross over the hump in the PE. and coast down the
hill of p.E. towards the moon and crashiand on it. What the problem seeks is the minimum
energy reguired for softianding. That reguies the use of rockets to loving about the braking
of the spaceship and since the kinetic energy of the gases ejected from the rocket will
always be positive, the total energy required for softlanding is greater than that required
for crashlanding. To calculate this energy we assume that the rockets are used fairly ciose

to the moon when the spaceship has nealy attained its terminal velocity on the moon

4 /2 M,
; 2 where M, is the mass of the moon and R, is its radius. In general
0

dE = vdp and since the speed of the ejected gases is not less than the speed of the rocket,
and momentum transfered to the ejected gases must equal the momentum of the spaceship

the energy E of the gass ¢jected is not less than the kinetic energy of spaceship

yMym
Ry

Addding the two we get the minimum work done on the ejected gases to bring about
the softlanding.

My M,
Ry Ry

A, m~ym (— + =
On substitution we get 1-3 x 10° k.

Assume first that the attraction of the earth can be neglected. Then the minimum velocity,
that must be imparted to the body to escape from the Sun’s pull, is, as in 1-230, equal to

(V2-1)v,

where "12 = yM_ /7, r = radius of the carth’s orbit, M, = mass of the Sun.

In the actual case near the earth, the pull of the Sun is small and does not change much
over distances, which are several times the radius of the Earth. The velocity v, in question
is that which overcomes the earth’s pull with sufficient velocity to escape the Sun’s puil.
Thus

1, WMy i 2.2
«2-mv3 —T -i—m(\/f 1) vy

where R = radius of the earth, M, = mass of the earth,

Writing vf = yMy /R, we get

vam V2024 (VZ-1)’v} = 166 km/s



