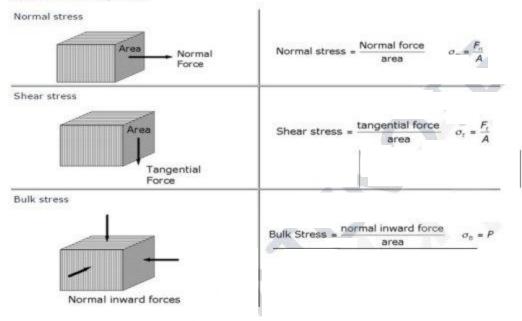
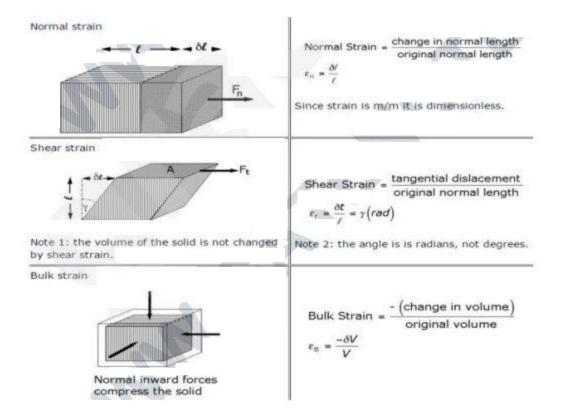
Formula & Short Notes for Strength of Materials

Stress and strain



Tension strain(e) =
$$\frac{\Delta L}{L}$$
 = $\frac{Change \ in \ length}{L}$
Initial length



Brinell Hardness Number (BHN)

$$HB = \frac{\text{Load (kgf)}}{\text{Surface Area of Indentation (mm}^2)} = \frac{P}{\frac{\pi D}{2} \left(D - \sqrt{D^2 - d^2}\right)}$$

where D: Diameter of the ball indenter,

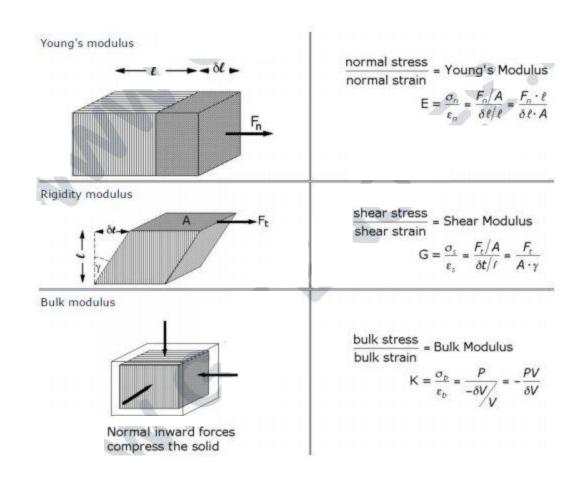
d: Diameter at the rim of the permanent impression,

P. Load.

Elastic constants:

$$\frac{\text{Stress}}{\text{Strain}} = \text{Elastic Modulus} = \frac{\sigma}{\varepsilon}$$

where, P = Standard load, D = Diameter of steel ball, and d = Diameter of the indent.



Axial Elongation of Bar Prismatic Bar Due to External Load

$$\Delta = \frac{PL}{AE}$$

Elongation of Prismatic Bar Due to Self Weight

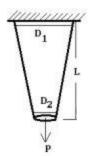
$$\Delta = \frac{PL}{2AE} = \frac{\gamma L^2}{2E}$$

Where γ is specific weight

Elongation of Tapered Bar

· Circular Tapered

$$\Delta = \frac{4PL}{\pi D_1 D_2 E}$$



Rectangular Tapered

$$\Delta = \frac{PLlog_e\left(\frac{B_2}{B_1}\right)}{E.t(B_2 - B_1)}$$

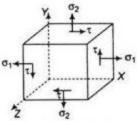
Stress Induced by Axial Stress and Simple Shear

Normal stress

$$\sigma_n = \sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta + \tau \sin 2\theta$$

· Tangential stress

$$\sigma_1 = -\left(\frac{\sigma_1 + \sigma_2}{2}\right) \sin 2\theta + \tau \cos 2\theta$$



Induced stress body diagram

Principal Stresses and Principal Planes

· Major principal stress

$$\sigma_{1}^{'} = \frac{\sigma_{1} + \sigma_{2}}{2} + \sqrt{\frac{(\sigma_{1} - \sigma_{2})^{2}}{2} + \tau^{2}}$$

· Major principal stress

$$\sigma_{2}' = \frac{\sigma_{1} + \sigma_{2}}{2} - \sqrt{\frac{(\sigma_{1} - \sigma_{2})^{2}}{2} + \tau^{2}}$$

$$\tan 2\theta_p = \frac{2\tau}{\sigma_1 - \sigma_2}$$

$$\sigma_1' + \sigma_2' = \sigma_1 + \sigma_2$$

$$when 2\theta_p = 0$$

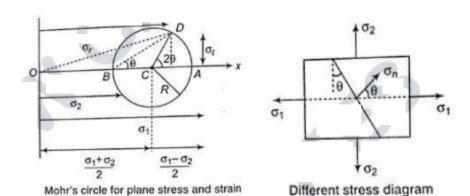
$$\Rightarrow \sigma_1' = \sigma_1 \text{ and } \sigma_2' = \sigma_2$$

Principal Strain

$$\varepsilon_{I} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{1}{2} \sqrt{\left(\varepsilon_{x} - \varepsilon_{y}\right)^{2} + \gamma_{xy}^{2}}$$

$$\varepsilon_{II} = \frac{\varepsilon_x + \varepsilon_y}{2} - \frac{1}{2} \sqrt{\left(\varepsilon_x - \varepsilon_y\right)^2 + \gamma_{xy}^2}$$

Mohr's Circle-



STRAIN ENERGY Energy Methods:

(i) Formula to calculate the strain energy due to axial loads (tension):

$$U = \int P^2 / (2AE) dx$$
 limit 0 toL

Where, P = Applied tensile load, L = Length of the member, A = Area of the member, and E = Young's modulus.

(ii) Formula to calculate the strain energy due tobending:

$$U = \int M^2 / (2EI) dx$$
 limit 0 toL

Where, M = Bending moment due to applied loads, E = Young's modulus, and I = Moment of inertia.

(iii) Formula to calculate the strain energy due totorsion:

$$U = \int T^2 / (2GJ) dx$$
 limit 0 toL

Where, T = Applied Torsion, G = Shear modulus or Modulus of rigidity, and J = Polar moment ofinertia

(iv) Formula to calculate the strain energy due to pureshear:

$$U = K \int V^2 / (2GA) dx$$
 limit 0 to L

Where, V= Shearload

G = Shear modulus or Modulus of rigidity

A = Area of cross section.

K = Constant depends upon shape of cross section.

(v) Formula to calculate the strain energy due to pure shear, if shear stress isgiven:

$$U = \tau^2 V / (2G)$$

Where, $\tau = ShearStress$

G = Shear modulus or Modulus of rigidity

V = Volume of the material.

(vi) Formula to calculate the strain energy , if the moment value isgiven:

$$U = M^2 L / (2EI)$$

Where, M = Bending moment

L = Length of the beam

E = Young'smodulus

I = Moment ofinertia

(vii) Formula to calculate the strain energy, if the torsion moment value isgiven:

$$U = T^2L/(2GJ)$$

Where, T = AppliedTorsion

L = Length of the beam

G = Shear modulus or Modulus of rigidity

J = Polar moment of inertia

(viii) Formula to calculate the strain energy, if the applied tension load isgiven:

$$U = P^2L / (2AE)$$

Where,

P = Applied tensile load.

L = Length of the member

A = Area of the member

E = Young's modulus.

(ix) Castigliano's first theorem:

$$\delta = \partial U / \partial P$$

Where, δ = Deflection, U= Strain Energy stored, and P = Load

(x) Formula for deflection of a fixed beam with point load at centre:

$$\delta = - wl^3 / 192EI$$

This defection is ¼ times the deflection of a simply supported beam.

(xi) Formula for deflection of a fixed beam with uniformly distributed load:

$$\delta = - wl^4 / 384EI$$

This defection is 5 times the deflection of a simply supported beam.

(xii) Formula for deflection of a fixed beam with eccentric point load:

$$\delta = -wa^3b^3/3EII^3$$

Stresses due to

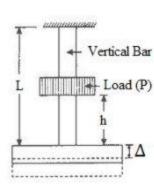
Gradual Loading:-

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{2F}{A}$$

Sudden Loading:-

$$\sigma = 2F/A$$



· Impact Loading:-

$$\sigma = \frac{P}{A} \left(1 + \sqrt{1 + \frac{2AEh}{PL}} \right)$$
 Deflection,
$$If \ \triangle_{st} = \frac{PL}{AE}$$

$$\triangle = \triangle_{st} + \sqrt{\left(\triangle_{st}\right)^2 + 2h \triangle_{st}}$$
 if h is very small then $\triangle \approx \sqrt{2h \triangle_{st}}$

Thermal Stresses:-

$$\Delta \mathbf{L} = \alpha \mathbf{L} \Delta \mathbf{T}$$
$$\sigma = \alpha \mathbf{E} \Delta \mathbf{T}$$

When bar is not totally free to expand and can be expand free by "a"

$$\sigma = \mathbf{E}\alpha\Delta\mathbf{T} - \frac{\mathbf{a}\mathbf{E}}{\mathbf{L}}$$

Temperature Stresses in Taper Bars:-

$$Stress = \alpha L \Delta T = \frac{4PL}{\pi d_1 d_2 E}$$

Tempertaure Stresses in Composite Bars

$$\delta t_2 = \delta_{t1} + \delta_{p1} + \delta_{p2}$$

$$\delta t_2 - \delta_{t1} = \delta_{p1} + \delta_{p2}$$

$$\Delta t \left(\alpha_1 L_1 - \alpha_2 L_2\right) = P\left(\frac{L_1}{A_1 E_1} + \frac{L_2}{A_2 E_2}\right)$$

$$P = \frac{\Delta t \left(\alpha_2 - \alpha_1\right)}{\left(\frac{1}{A_1 E_1} + \frac{1}{A_2 E_2}\right)}$$
c) the final position

Hooke's Law (Linear elasticity):

Hooke's Law stated that within elastic limit, the linear relationship between simple stress and strain for a bar is expressed by equations.

$$o \in \mathcal{E}$$
,
 $o = E \mathcal{E}$
 $\frac{P}{A} = E \frac{\Delta L}{L}$

Where, E = Young's modulus of elasticity

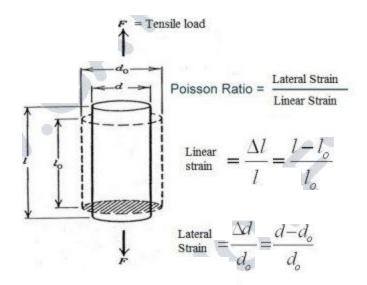
P = Applied load across a cross-section

P = Applied load across a cross-sectional area

 Δl = Change in length

l = Original length

Poisson's Ratio:



Volumetric Strain:

$$\begin{split} & \epsilon_1 = \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E} - \mu \frac{\sigma_3}{E} \\ & \epsilon_2 = \frac{\sigma_2}{E} - \mu \frac{\sigma_1}{E} - \mu \frac{\sigma_3}{E} \\ & \epsilon_3 = \frac{\sigma_3}{E} - \mu \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E} \\ & \text{Futher Volumetric strain } = \epsilon_1 + \epsilon_2 + \epsilon_3 \\ & = \frac{(\sigma_1 + \sigma_2 + \sigma_3)}{E} - \frac{2\mu(\sigma_1 + \sigma_2 + \sigma_3)}{E} \\ & = \frac{(\sigma_1 + \sigma_2 + \sigma_3)(1 - 2\mu)}{E} \\ & \text{hence the} \end{split}$$

Volumetric strain =
$$\frac{(\sigma_1 + \sigma_2 + \sigma_3)(1 - 2μ)}{E}$$

Relationship between E, G, K and µ:

· Modulus of rigidity:-

Modulus of rigidity,
$$G = \frac{shear\ stress}{shear\ stress} = \frac{\tau}{\gamma}$$

Bulk modulus:-

$$K = \frac{\text{Volumetric stress}}{\text{Volumetric strain}}$$

$$K = -\frac{dP}{\frac{dV}{V}} = -V \frac{dP}{dV}$$

Negative sign shows decrease in volume.

$$E = 2G(1 + \mu) = 3K(1 - 2\mu)$$

$$E = \frac{9KG}{G + 3K}$$

$$\mu = \frac{3K - 2G}{G + 3K}$$
Shear
Stress
in
Rectang
ular
Beam

Compound Stresses

· Equation of Pure Bending

$$\frac{\sigma_a}{y} = \frac{M}{I} = \frac{E}{R}$$

· Section Modulus

$$\begin{split} z &= \frac{I}{y_{\max}} \Rightarrow \frac{M}{I} = \frac{\sigma}{y} \\ M &= \sigma_{\max} \frac{I}{y_{\max}} \Rightarrow M = \sigma_{\max} xz \end{split}$$

· Shearing Stress

$$\tau = \frac{VA\overline{y}}{Ib}$$

Where,

V = Shearing force

Ay=First moment of area

$$\tau_{\text{max}} = \frac{3 \ V}{2 \ A}$$

$$\tau_{\text{max}} = 1.5 \tau_{\text{avg}}$$

· Shear Stress Circular Beam

$$\tau_{\text{max}} = \frac{4V}{3A} = \frac{4}{3}\tau_{\text{xv}}$$

Moment of Inertia and Section Modulus

Table 11.2.1					
Type of section	Moment of Inertia	Ymex	Section modulas (Z) $Z_{xx} = \frac{bd^2}{6}$ $Z_{yy} = \frac{db^2}{6}$		
Rectangle or paralleogram	$I_{xx} = \frac{bd^3}{12}$ $I_{yy} = \frac{db^3}{12}$	d 2 b 2			
Hollow rectangular section y N d d 1	$I_{xx} = \frac{bd^3}{12} - \frac{b_1d_1^3}{12}$ $I_{yy} = \frac{db^3}{12} - \frac{d_1b_1^3}{12}$		$Z_{xx} = \frac{1}{6d} (bd^3 - b_1 d_1^3)$ $Z_{yy} = \frac{1}{6b} (db^3 - d_1 b_1^3)$		
Circular section	$I_{xx} = \frac{p}{64} d^4$ $I_{yy} = \frac{p}{64} d^4$	g N g N	$Z_{xx} = \frac{p}{32} d^3$ $Z_{yy} = \frac{p}{32} d^3$		
Hollow curcular section	$I_{xx} = I_{yy} = 1$ $I_{yy} = \frac{p}{64} (D^4 - d^4)$	D 2	$Z_{xx} = Z_{yy} = Z$ $Z = \frac{p}{32D} (D^4 - d^4)$		
I-section $y = \frac{b_1}{2} \cdot \frac{d_1}{d_2} \cdot \frac{d_2}{d_3} \cdot \frac{d_3}{d_4} \cdot \frac{d_4}{d_5} \cdot \frac{d_5}{d_5} \cdot $	$I_{xx} = \frac{bd^3}{12} - \frac{b_1d_1^3}{12}$ $I_{yy} = \frac{db^3}{12} - \frac{d_1b_1^3}{12}$ or $I_{xx} = \frac{1}{12} (bd^3 - (b - 1) d_1^3)$		$Z_{xx} = \frac{1}{6d} (bd^3 - b_1d_1^3)$ $Z_{yy} = \frac{1}{6b} (db^3 - d_1b_1^3)$		
Triangle 2h N G N h	$I_G = \frac{bh^3}{36}$	2 3 h	$Z_G = \frac{bh^2}{24}$		

Direct Stress

$$\sigma = \frac{P}{A}$$

where P = axial thrust, A = area of cross-section

$$\sigma_b = \frac{My}{I}$$

where M = bending moment, y- distance of fibre from neutral axis, I = moment of inertia.

$$\tau = \frac{Tr}{J}$$

where T = torque, r = radius of shaft, J = polar moment of inertia.

Equivalent Torsional Moment

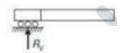
$$\sqrt{M^2 + T^2}$$

$$M + \sqrt{M^2 + T^2}$$

Support: Supports are used to provide suitable reactions (Resisting force) to beams or any body. Following types of supports are used

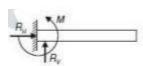
1. Simple support

Roller support



3. Hinged (Pin) support

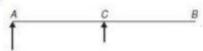
4. Fixed support



Types of Beams

1. Simply supported beams

2. Over hanging beam

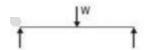


3. Cantilever beams

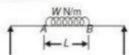
4. Continuous beams

Types of Loads

1. Point load



2. Uniformly distributed load (UDL)



Value of UDL = w × L KN point of application → mid point of AB

3. Uniformly varying load (UVL)



Value of UVL = 1/2 × W × L KN point of application = CG of triangle formed

$$\Rightarrow$$
 $\frac{2}{3}$ L from A, $\frac{L}{3}$ from B

Shear force and Bending Moment Relation $\frac{dV}{dx} = -M$

$$\frac{dV}{dx} = -M$$

Load	0	0	Constant
Shear	Constant	Constant	Linear
Moment	Linear	Linear	Parabolic
Load	0	Constant	Linear
Shear	Constant	Linear	Parabolic
Moment	Linear	Parabolic	Cubic

Euler's Buckling Load

$$P_{Critical} = \frac{\pi^2 EI}{l_{equi}^2}$$

For both end hinged $l_{equi} = l$

For one end fixed and other free $l_{equi} = 21$

For both end fixed $l_{equi} = 1/2$

For one end fixed and other hinged $l_{equi} = l/\sqrt{2}$

Slenderness Ratio (λ)

$$\lambda = \frac{L_{\theta}}{r_{min}}$$

 $L_{\theta} = Effective\ length$

 $r_{min} = \sqrt{(I_{min}/A)}$

 r_{min} = Least radius of gyration

Rankine's Formula for Columns

$$\frac{1}{P_R} = \frac{1}{P_{cs}} + \frac{1}{P_E}$$

- P_R = Crippling load by Rankine's formula
- $P_{cs} = \sigma_{cs} A = Ultimate crushing load for column$

$$P_{E} = \frac{\pi^{2}El}{l_{\text{eff}}^{2}} = C$$

Crippling load obtained by Euler's formula

Deflection in different Beams

End Slope	Max Deflection	Max bending moment
ML EI	ML ² 2EI	М
$\frac{WL^2}{2EI}$	$\frac{WL^3}{3EI}$	WL
$\frac{wL^3}{6EI}$	wL ⁴ 8EI	$\frac{wL^2}{2}$
ML 2EI	ML ² 8EI	М
WL ² 16EI	WL ³ 48EI	$\frac{WL}{4}$
wL ³ 24EI	5wL ⁴ 384EI	wL ²
$\theta_B = \frac{Wac^2}{2LEI}$ $L + b$	Wac ³ 3LEI	Wab L (under load
	$ \frac{ML}{EI} $ $ \frac{WL^{2}}{2EI} $ $ \frac{wL^{3}}{6EI} $ $ \frac{ML}{2EI} $ $ \frac{WL^{2}}{16EI} $ $ \frac{wL^{3}}{24EI} $ $ \frac{W}{4}$	$ \begin{array}{c cccc} $

Torsion

$$\frac{\tau_l}{r} = \frac{T}{J} = \frac{G\theta}{l}$$

Where, T = Torque,

- J = Polar moment of inertia
 G = Modulus of rigidity,
 θ = Angle of twist
 L = Length of the second of the s
- L = Length of shaft,

Total angle of twist

$$\theta = \frac{Tl}{GJ}$$

- GJ = Torsional rigidity
- $\frac{GJ}{l}$ = Torsional stiffness $\frac{l}{GJ}$ = Torsional flexibility
- $\frac{EA}{I}$ = Axial stiffness
- $\frac{l}{l}$ = Axial flexibility

Moment of Inertia About polar Axis

Moment of Inertia About polar Axis

$$J = \frac{\pi d^4}{32}, \tau_{\text{max}} = \frac{16T}{\pi d^3}$$

For hollow circular shaft

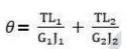
$$J = \frac{\pi}{32} (d_0^4 - d_i^4)$$

Compound Shaft

Series connection

$$\theta = \theta_1 + \theta_2$$

$$T = T_1 = T_2$$

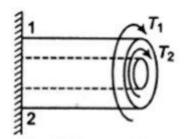


Where,

 θ_1 = Angular deformation of 1st shaft

 θ_2 = Angular deformation of 2^{nd} shaft

Parallel Connection



Parallel connection

$$\theta_1 = \theta_2$$

$$T = T_1 + T_2$$

$$\frac{T_{1L}}{G_1J_1} = \frac{T_{2L}}{G_2J_2}$$

Strain Energy in Torsion

$$U = \frac{1}{2}T\theta = \frac{1}{4}\frac{T^2L}{GJ}$$

For solid shaft,

$$U = \frac{\tau^2}{4G} \times \text{Volume of shaft}$$

For hollow shaft,

$$U = \frac{\tau^2}{4G} \left(\frac{D^2 + d^2}{D^2} \right) \times \text{Volume of shaft}$$

Thin Cylinder

Circumferential Stress /Hoop Stress

$$\sigma_h = \frac{pd}{2t} = > \sigma_h = \frac{pd}{2tn}$$

η = Efficiency of joint

Longitudinal Stress

$$\sigma_t = \frac{pd}{4t} \Rightarrow \sigma_t = \frac{pd}{4t\eta}$$

· Hoop Strain

$$\varepsilon_h = \frac{pd}{4tE} \left(2 - \mu \right)$$

· Longitudinal Strain

$$\varepsilon_L = \frac{pd}{4tE} \left(1 - 2\mu \right)$$

· Ratio of Hoop Strain to Longitudinal Strain

$$\varepsilon_v = \frac{pd}{4tE} (5-4\mu)$$

Stresses in Thin Spherical Shell

· Hoop stress/longitudinal stress

$$\sigma_L = \sigma_h = \frac{pd}{4t}$$

· Hoop stress/longitudinal strain

$$\varepsilon_L = \varepsilon_h = \frac{pd}{4tE} (1 - \mu)$$

· Volumetric strain of sphere

$$\varepsilon_{V} = \frac{3pd}{4tE} (1 - \mu)$$

Thickness ratio of Cylindrical Shell with Hemisphere Ends

$$\frac{t_2}{t_1} = \frac{1-\nu}{2-\nu}$$

Where v=Poisson Ratio