
Chapter 2

Project Management
and Maintenance

  Project management

  Software design

  Modeling component level design

  SRS

  Software testing

  White-box testing

  Black box testing

  Implementation maintenance

  Software quality assurance

  Software Re-engineering

  COCOMO MODEL

LEARNING OBJECTIVES

proJeCt management
Project management is a technique used to ensure successful com-
pletion of a project by the project managers.

The functions included in project management are:

 • Estimating resource requirements
 • Scheduling tasks and events
 • Providing training and site preparation
 • Selecting qualifi ed staff and supervising their work
 • Monitoring the projects program
 • Documenting
 • Periodic evaluation
 • Contingency planning

Project management involves planning, organization and con-
trol projects. It uses tools and software packages for planning and
managing projects.

Project planning involves plotting project activities against time
frame.

proJeCt planning toolS
 • Tools used during software planning
 • Helps the top level managers to take critical decisions during

planning stage

Gantt Charts
This activity scheduling method introduced in 1914 by Henry L.
Gantt, uses horizontal bars to show the duration of actions or tasks.

The left end marks the beginning of the task and the right end its
fi nish. Earlier tasks appear in the upper left and later ones in the
lower right.

In real-life applications, an allowance for contingencies is pro-
vided. This is called slack time. Each project allows between 5 to
25 percent slack time for completion.

Program Evaluation and Review
Technique (Pert)
Gantt charts do not show precedence relationships among the tasks
and milestones of a project.

A PERT chart is a project management tool used to schedule,
organize and coordinate tasks within a project.

A PERT chart presents a graphic illustration of a project as a net-
work diagram consisting of numbered nodes (either circles or rec-
tangles) representing events, or milestones in the project linked by
labelled vectors (directional lines) representing tasks in the project.
The direction of the arrows on the lines indicates the sequence of tasks.

or

A B
t

Span time

Event (Milestone or
Deliverable)

8.90  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

Scenario-based
elements

Use cases–text
use case diagrams
Activity diagrams

Class-based elements

Class diagram
CRC models

Analysis packages

Flow-oriented
elements

Data flow diagrams
control flow diagrams

Behavioral
elements

State diagrams
Sequence diagrams

Analysis model

Component
level design

Interface
design

Architectural
design

Data/class
design

Figure 1  Design model.

In the diagram, shown below the tasks between nodes 1,
2, 4, 8 and 10 must be completed in sequence and are called
dependent or serial tasks. The tasks between nodes 1 and
2 and nodes 1 and 3 are not dependent on the completion
of one to start the other and can be undertaken simultane-
ously. These tasks are called parallel or concurrent tasks.
Tasks that must be completed in sequence but don’t require
resources or completion time are represented by dotted lines

with arrows and are called dummy activates (Example:
dashed arrow linking 6 and 9).

Numbers on the opposite sides of the vectors indicate the
time allotted for the task.

The PERT chart is preferred over Gantt chart since
it clearly illustrates task dependencies. But on complex
projects, PERT chart may be much more difficult to
interpret.

Create
schedule

Buy
hardware

Programming Test code

Conversion

Test system

Training User test

Dummy
activity

Write user
manual

Installation

20 20 10

15

10

10

10

5

55
5

2

1

3

8

9 117

6

5

4

Thus in short,
Dependency diagrams can be defined as a formal notation

to help in the construction and analysis of complex schedules.
Dependency diagrams are drawn as a connected graph of nodes
and arrows. Dependency diagrams consists of three elements:

•• Event–A significant occurrence in the life of a project.
•• Activity–Amount of work required to move from one

event to the next.
•• Span time–Actual calendar time required to complete an

activity.

Software Design
Software design is the process in which requirements are
translated into a blue print for constructing the software.

Once software requirements have been analyzed and
modelled, software design is the last software engineering
action within the modelling activity and sets the stage for
construction (code generation and testing).

Architectural design defines the relationship between
major structural elements of the software, the architectural

styles and design patterns, that can be used to achieve the
requirements defined for the system, and the constraints that
affect the way in which architecture can be implemented.

The interface design describes how the software com-
municates with systems that interoperate with it, and with
humans who use it.

The component-level design transforms structural ele-
ments of the software architecture into a procedural descrip-
tion of software components.

The major goals of the design process are:

•• The design must implement all of the explicit require-
ments contained in the requirements model, and it must
accommodate all the implicit requirements, desired by
stakeholders.

•• The design must be a readable, understandable guide for
those who test and subsequently support the software.

•• The design should provide a complete picture of the
software, addressing the data, functional and behavioral
domains from an implementation perspective.

Chapter 2  •  Project Management and Maintenance  |  8.91

Software design sits at the technical kernel of software
engineering and is applied regardless of the software pro-
cess model that is used. In the beginning, once the software
requirements have been analyzed and modeled, software
design is the last software engineering action within the mod-
eling activity and sets the stage for construction (code gen-
eration and testing).

•• The data/class design transforms analysis–class models
into design class realizations and the requisite data struc-
tures required to implement the software.

•• The architectural design defines the relationship between
major structural elements of the software, the architec-
tural styles and design patterns that can be used to achieve
the requirements defined for the system.

•• The interface design describes how the software commu-
nicates with systems that interoperate with it, and with
humans who use it. An interface implies a flow of infor-
mation (data/control) and a specific type of behavior.

•• The component-level design transforms structural ele-
ments of the software architecture into a procedural
description of software components.

Design Concepts
Important software design concepts:

Abstraction  Many levels of abstraction can be posed while
considering a modular solution to any problem. At highest
level of abstraction, a solution is stated in broad terms and
at lower levels, a more detailed description of the solution is
provided. At the lowest level of abstraction, the solution is
stated in a manner that can be directly implemented.

Architecture  Architecture is the structure or organization of
program components (modules), the manner in which these
components interact, and the structure of data that are used
by components.

Patterns  The intent of each design pattern is to provide a
description that enables a designer to determine:

	 1.	 whether the pattern is applicable to current work.
	 2.	 whether the pattern can be reused.
	 3.	 whether the pattern can serve as a guide for developing a

similar, but functionally or structurally different pattern.

Separation of concerns  Separation of concerns is a design
concept that suggests that any complex problem can be
more easily handled if it is subdivided into pieces that can
be solved and/or optimized independently.

A concern is a feature or behaviour that is specified as
part of the requirement model for the software.

Modularity  common manifestation of separation of con-
cerns. Software is divided into separately named and
addressable components (modules) that are integrated to
satisfy problem requirements.

Information hiding  Modules should be specified and
designed so that information (algorithm and data) contained
within a module is inaccessible to other modules that have
no need for such information.

Functional independence  Software should be designed in
such a way that each module addresses a specific subset of
requirements and has a simple interface when viewed from
other parts of the program structure.

Functional independence is achieved by developing
modules, which can perform a single function.

Refinement  Refinement is a process of elaboration, begins
with a statement or function defined at a high level of
abstraction and then elaborates the original statement, pro-
viding more and more details as each successive refinement
(elaboration) occurs.

Refactoring  Refactoring is the process of changing a soft-
ware system in such a way that it does not alter the exter-
nal behaviour of the code (design), yet improves its internal
structure.

When software is refactored, the existing design is exam-
ined for redundancy, unused design elements, inefficient or
unnecessary algorithms, poorly constructed or inappropri-
ate data structures or any other design failures that can be
corrected to yield a better design.

Modeling Component Level Design
Component level design occurs after the first iteration of
architectural design has been completed. At this stage the
overall data and program structure of the software has been
established.

Component  A component is a modular building block for
computer software.

Cohesion  Cohesion implies that a component or class
encapsulates only attributes and operations that are closely
related to one another and to the class or component itself.
Cohesion is a measure of internal relative strength of a mod-
ule. It should be more. Different types of cohesion are:

	 1.	 Coincidental cohesion: If elements of a module are
unrelated, then it is coincidental cohesive.

	 2.	 Logical cohesion: If elements of a module are
related, then it is logical cohesion.

	 3.	 Temporal cohesion: If the elements of a module are
elated and the elements are confined to initialization
or time, it is temporal cohesion.

	 4.	 Procedural cohesion: If the elements are confined to
one name and if they perform a set of operations, then
the module is said to be procedural cohesive.

	 5.	 Communicational cohesion: If the elements in a
module interact through data declared in it, then the
module is said to be communicational cohesion.

8.92  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

	 6.	 Sequential cohesion: If the elements are related and
if they perform a set of operations in which the output
of one operation is the input for another operation.

	 7.	 Functional cohesion: If the elements are related and
if they are confined to one name and if they perform

one and only one task, the module is functional
cohesive.

	 8.	 Informational cohesion: If the elements of a module
are confined to abstraction, it is informational cohesion.

Cohesion spectrum

Low High

Coincidental
cohesion

Temporal
cohesion

Procedural
cohesion

Communicational
cohesion

Sequential
cohesion

Functional
cohesion

Informational
cohesion

Note: Cohesion metric should be high.

Coupling  Coupling is a qualitative measure of the degree
to which classes are connected to one another. As classes
and components become more interdependent, coupling
increases. In component-level design coupling is to be kept
as low as possible. It includes:

	 1.	 Procedural or routine call coupling: A form of
coupling in which modules interact nominally more
or less they are almost independent.

	 2.	 Low coupling: Form of coupling in which modules
interact minimally. In extreme case there is no
coupling between them.

	 3.	 Inclusion coupling: A coupling in which source
code of one module is included into another
module.

	 4.	 Import coupling: A coupling in which one module is
declared in another module for its functionality.

	 5.	 External coupling: A coupling in which modules
interact with modules written by some third party,
which may include specific hardware or software.

	 6.	 Data coupling: Occurs when operations pass long
strings of data arguments.

	 7.	 Stamp coupling: Occurs when a class is declared as a
type for an argument of an operation of another class.

	 8.	 Control coupling: Coupling in which one module
controls the order of execution of other module by
using flags.

	 9.	 Common coupling: If the components make use
of a global variable, it can lead to uncontrolled
error propagation and unforeseen side effects when
changes are made.

	 10.	 Content coupling: Type of coupling in when one
module refers to other module, in extreme case, it
changes internal structure of other modules for its
functionality.

Cohesion spectrum

Low High

Inclusive
coupling

External
coupling

Import
coupling

Data
coupling

Stamp
coupling

Control
coupling

Common
coupling

Content
coupling

Note: Coupling metric should be low.

Coding
Coding may be

	 1.	 The direct creation of programming language source
code (e.g., Java, C).

	 2.	 The automatic generation of source code using
an intermediate design like representation of the
component to be built or

	 3.	 The automatic generation of executable code using
a ‘fourth generation programming language’ (e.g.,
VC++).

Chapter 2  •  Project Management and Maintenance  |  8.93

The principles that guide the coding task are closely aligned
with programming style, programming languages and pro-
gramming methods.

The fundamental principles are:
•• Understand the problem you are trying to solve.
•• Understand basic design principles and concepts.
•• Pick a programming language that meets the needs of the

software to be built and the environment in which it will
operate.

•• Select a programming environment that provides tools
that will make the work easier.

Create a set of unit tests that will be applied once the com-
ponent code is completed.

Characteristics of Good Srs
The characteristics of good SRS are

	 1.	 Correctness: The requirements specified in the soft-
ware should meet, then the SRS is correct.

	 2.	 Unambiguous: The SRS is said to be unambiguous if
every specified requirement can be interpreted in only
one way.

	 3.	 Completed: The SRS is said to be complete, if and
only if it has all significant requirements, definition of
software responses to input data and labels and refer-
ences to tables, figures and diagrams.

	 4.	 Consistent: The SRS is said to be consistent if the indi-
vidual requirements are not defined in a conflict way
and the SRS should be a high level document.

	 5.	 Stability: The SRS is said to be stable (or) ranked for
the importance if each requirement has a preference.
All the requirements may not have same importance;
identify the requirements which are essential and
requirements having least preference.

	 6.	 Verifiable: If each requirement is verifiable then the
SRS is said to be verifiable.

	 7.	 Modifiable: The SRS is said to be modifiable, if the
changes to the requirements can be made easily,
consistent.

	 8.	 Traceable: Requirements should be clear so that each
requirement can be referenced for enhancement, (or)
future developments, which makes the SRS traceable.

Validation of SRS   Validation of SRS is done to check
whether the SRS is reflection of actual requirements and
also to check the SRS documents is of good quality.

Testing
Testing is the process of executing a program with the intent
of finding an error.

A good test case is one that has a high probability of
finding an as-yet-undiscovered error. A successful test is
one that uncovers an as-yet-undiscovered error.

Software
product

Evaluations

Reliability
model

Debugging
Correction

Reliability

Output
test resultsInput Errors

Error data rate

Figure 2  Formal technical review committee (FTR)

FTR

Process model Measurements

SQA
and
SCM

Standards and
procedures

Validation

Information engineering

Requirements

Design

Code

Unit
testing

Integration testing

Validation testing

System testing

Figure 3  Verification

There are four software testing strategies:
	 1.	 Unit testing
	 2.	 Integration testing
	 3.	 Validation testing
	 4.	 System testing

Unit testing
Unit testing concentrates on each unit (e.g., class, component,
etc). Unit test focuses on the internal processing logic and
data structures within the boundaries of a component.
Important control paths are tested to uncover errors within
the boundary of the module, using component-level design
description as a guide.

Integration testing
Integration testing focuses on design and construction of
the software architecture. Integration testing is a systematic
technique for constructing the software architecture while at the
same time conducting tests to uncover errors associated with
interfacing. The objective is to take unit-tested components
and build a program structure that has been dictated by design.

8.94  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

•• Top-down integration Modules are integrated by moving
downward through the control hierarchy, beginning with
the main control module (main program). Modules sub-
ordinate to the main control module are incorporated into
the structure in either a depth-first or breadth-first manner.

•• Bottom-up Integration begins construction and testing
with the components at the lowest levels in the program
structure.

•• Regression testing in the context of an integration test
strategy, regression testing is the re-execution of some
subset of tests that have already been conducted to ensure
that changes have not propagated unintended side effects.

•• Smoke testing is an integration testing approach that is
designed as a pacing mechanism for time-critical pro-
jects, allowing the software team to assess the project on
a frequent basis.

Validation testing
Validation succeeds when software functions in a manner
that can be reasonably expected by the customer.

In validation testing, the requirements established as part
of requirements modeling are validated against the software
that has been constructed.

Software validation is achieved through a series of tests
that demonstrate conformity with requirements.

Alpha and beta testing can be used to uncover errors that
occur only at the end user.

The alpha test is conducted at the developer’s site by a
representative group of end users. The software is used in a
natural setting by end users in the presence of the developer
and the developer records usage problems.

The beta test is conducted at one or more end user sites
in the absence of developer. Therefore, beta test is a ‘live’
application of the software in an environment that cannot be
controlled by the developer. The customer records all prob-
lems and reports to developer.

System testing
In system testing, the software and other system elements
are tested as a whole.

System testing is a series of different tests whose primary
purpose is to fully exercise the computer-based system. The
types of system tests used for software-based systems are:
•• Recovery testing is a system test that forces the software

to fail in a variety of ways and verifies that recovery is
properly performed.

•• Security testing attempts to verify that protection mech-
anisms built into a system will protect it from improper
penetration.

•• Stress testing executes a system in a manner that
demands resources in abnormal quantity, frequency or
volume. A variation of stress testing called sensitivity
testing attempts to uncover data combinations within
valid input classes that may cause instability or improper
processing.

•• Performance testing is designed to test the run-time per-
formance of software within the context of an integrated
system.

•• Deployment testing also called configuration testing
exercises the software in each environment in which it
is to operate. It also examines all installation procedures
and specialized installation software that will be used by
customers, and all documentation that will be used to
introduce the software to end users.

Software Testing
The goal of testing is to find errors and a good test is one
that has a high probability of finding an error.

The two ways of testing a software:
	 1.	 White-box testing (Internal testing)
	 2.	 Black-box testing (External testing)

White-box Testing
In white-box testing (also called glass-box testing) of soft-
ware, tests are conducted to ensure that all internal opera-
tions are performed according to specifications and all
internal components have been adequately exercised.

White-box testing methods should guarantee that:
	 1.	 All independent paths, within a module are exercised

at least once.
	 2.	 Exercise all logical decisions on their true or false

sides.
	 3.	 Execute all loops at their boundaries and within their

operational bounds and
	 4.	 Exercise internal data structures to ensure their validity.

Basis path testing
Basis path testing is a white-box testing technique. This
method enables the test case designer to derive a logical
complexity measure of a procedural design and uses this
measure as a guide for defining a basis set of execution
paths. Test cases derived are guaranteed to execute every
statement in the program at least one time during testing.

Flow graphs can be used for better understanding the
control flow and thus helps basis path testing to execute
every statement in the program at least once.

The flow graph symbols are:

Sequence If

While

Until Case

Each circle represents one or more non-branching PDL
(Program Design Language) or source code statements.

Chapter 2  •  Project Management and Maintenance  |  8.95

Example: 

Flowchart

1

2

3

4

5

6

7

8 9
10

11
12

Corresponding flow graph is

5, 6

3, 4

1, 2

7

R4

Regions

Nodes

Predicate
nodes Edges

R3

R2

R1

9

10

12

11

8

Each node that contains a condition is called a predicate node.
Independent paths (any path through the program that intro-
duces at least one new set of processing statements or a new
condition) in the above example are:

Path 1: 1-2-12

Path 2: 1-2-3-4-5-6-11-2-12

Path 3: 1-2-3-4-7-8-10-11-2-12

Path 4: 1-2-3-4-7-9-10-11-2-12

Thus if tests can be designed to force execution of these
paths (a basis set), every statement in the program will have
been guaranteed to be executed at least one time, and every
condition will have been executed on its true and false sides.

Cyclomatic complexity is a software metric that provides a
quantitative measure of the logical complexity of a program.
When used in the context of basis path testing method, the
value computed for cyclomatic complexity defines the number
of independent paths in the basis set of a program and provides
an upper bound for the number of tests that must be conducted
to ensure that all statements have been executed at least once.

Complexity is calculated in one of the three ways:

	 1.	 The number of regions of the flow graph corresponds
to the cyclomatic complexity. (i.e., four Regions R1,
R2, R3, R4 in the above case)

	 2.	 Cyclomatic complexity V(G) for a flow graph G is
defined as V(G) = E – N + 2, when E is the number of
flow graph edges and N is the number of flow graph
nodes (i.e., in the above case, there are 11 edges and
9 nodes. Thus V(G) = 11 – 9 + 2 = 4)

	 3.	 Cyclomatic complexity V(G) for a flow graph G is
also defined as V(G) = P + 1, where P is the number
of predicate nodes contained in the flow Graph G. In
the above flow graph, there are 3 predicate nodes.

\  V(G) = 3 + 1 = 4

Control structure testing
Some of the variations on control structure testing to
improve the quality of white-box testing are:

Condition testing
Condition testing is a test-case design method that exercises
the logical conditions contained in a program module. This
method focuses on testing each condition in the program to
ensure that it does not contain errors.

Control Structure Testing
Condition testing
A simple condition is a Boolean variable or a relational
expression, possibly preceded with one NOT (¬) operator.
A compound condition is composed of two or more simple
conditions, Boolean operators and parentheses. The possible
types of elements in a condition include a Boolean operator,
a Boolean variable, a pair of parentheses (surrounding
a simple or compound Boolean condition), a relational
operator, or an arithmetic expression.

Dataflow testing
This method selects test paths of a program according to the
locations of definitions and use of variables in the program.

Loop testing
Loop testing is a white-box testing technique that focuses
exclusively on the validity of loop constructs. Four classes
of loop can be defined as:

Simple loops
The following set of tests can be applied to simple loops,
where n is the maximum number of allowable passes
through the loop.
	 1.	 Skip the loop entirely.
	 2.	 Only one pass through the loop.
	 3.	 Two passes through the loop
	 4.	 m passes through the loop where m < n
	 5.	 n - 1, n, n + 1 passes through the loop.

Figure 4  Simple loop.

8.96  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

Nested loops
Here the number of possible tests grows geometrically as
the level of nesting increases. This results in an impractical
number of tests.

Figure 5  Nested loops.

Concatenated loops
Concatenated loops can be tested using approach of simple
loops, if each of the loops is independent of the other. If two
loops are concatenated and the loop counter for loop 1 is used as
the initial value for loop 2, than the loops are not independent.

Figure 6  Concatenated loops.

Unstructured loops
Whenever possible, this class of loops should be redesigned
to reflect the use of the structured programming constructs.

Figure 7  Unstructured loop.

Black-box Testing
Black-box testing, also called behavioral testing, focuses on
the functional requirements of the software.

Black-box testing attempts to find errors in the following
categories:
	 1.	 Incorrect or missing functions
	 2.	 Interface errors
	 3.	 Errors in data structures or external database access
	 4.	 Behaviour or performance errors and
	 5.	 Initialization and termination errors

By applying black-box techniques, we derive a set of test
cases that satisfy the following criteria:

	 1.	 Test cases that reduce, by a count that is greater than
one, the number of additional test cases that must be
designed to achieve reasonable testing.

	 2.	 Test cases that tell something about the presence
or absence of classes of errors, rather than an error
associated only with the specific test at hand.

In graph-based black-box testing methods, software test-
ing begins by creating a graph of important objects and
their relationships and then devising a series of tests that
will cover the graph so that each object and relationship is
exercised and errors are uncovered.

Graph-based testing methods
To accomplish these steps, the software engineer begins
by creating a graph – a collection of nodes that represent
objects; links that represent the relationships between
objects; node weights that describe the properties of a node
and link weights that describe some characteristic of a link.

The symbolic representation of a graph is as shown in
the figure.

Undirected link Parallel link

Directed link
(link weight)

Node weight
(value)

Object
1

Object
2

Object
3

•• Nodes are represented as circles connected by links that
take a number of different forms.

•• A directed link indicates that a relationship moves in only
one direction.

•• A bidirectional link (symmetric link) implies that the
relationship applies in both directions.

•• Parallel links are used when a number of different rela-
tionships are established between graph nodes.

Equivalence partitioning
is a black-box testing method that divides the input domain
of a program into classes of data from which test cases can
be derived.

Equivalence partitioning strives to define a test case that
uncovers classes of errors, thereby reducing the total num-
ber of test cases that must be developed.

Chapter 2  •  Project Management and Maintenance  |  8.97

Test case design for equivalence partitioning is based
on an evaluation of equivalence classes for an input condi-
tion. An equivalence class represents a set of valid or invalid
states for input conditions.

Boundary value analysis (BVA)
It is developed as a testing technique used to test bounding
values since a greater number of error occurring at the
boundaries of the input domain than at the centre.

Boundary value analysis is a test case design technique
that complements equivalence partitioning. Rather than
selecting any element of an equivalence class, BVA leads
to the selection of test cases at the ‘edges’ of the class. BVA
derives test cases from the input conditions as well as from
the output domain.

Orthogonal array testing
The orthogonal array testing method is useful in finding
region faults; an error category associated with faulty logic
within a software component.

Orthogonal array testing can be applied to problems in
which the input domain is relatively small.

When orthogonal array testing occurs, an Lg orthogonal
array of test cases is created. This array has a ‘balancing
property’, i.e., test cases are dispersed uniformly through-
out the test doming.

Model-based testing (MBT)
It is a black-box testing technique that uses information
contained in the requirements model as the basis for the
generation of test cases.

White-box testing is usually performed at the early
stages of testing process, while black-box testing tends to
be applied during later stages of testing.

Implementation and Maintenance
System Implementation
Implementation is the process of converting a new or
a revised system design into an operational one. Major
aspects of implementation are conversion, post-implemen-
tation review and software maintenance.

There are three types of implementations:

	 1.	 Implementation of a computer system to replace a
manual system.

	 2.	 Implementation of a new computer system to replace
an existing one.

	 3.	 Implementation of a modified application to replace
an existing one using the same computer.

Conversion
Conversion means changing from one system to another.
The objective of conversion is to put the tested system
into operation, while holding into costs, risks and personal
irritation to a minimum.

It involves:
	 1.	 Creating computer-compatible files
	 2.	 Training the operating staff
	 3.	 Installing terminals and hardware

A very important aspect of conversion is not disrupting
the functioning of the organization.

File conversion involves capturing data and creating a
computer file from existing files.

Post implementation review
Every system requires periodic evaluation after
implementation. A post-implementation review measures
the system’s performance against predefined requirements.

Unlike system testing, which determines where the sys-
tem fails so that the necessary adjustments can be made, a
post-implementation review determines how well the sys-
tem continues to meet performance specifications. Post-
implementation review is done after design and conversion
are completed.

Software Project Estimation
Software is the most expensive element of virtually all com-
puter-based systems. For complex, custom systems, a large
cost estimation error can make the difference between profit
and loss.

Software project estimation is a form of problem solv-
ing, and in most cases, the problem to be solved (i.e., devel-
oping a cast and effort estimate for a software project) is
too complex to be considered in one piece. For this reason,
we decompose the problem recharacterizing it as a set of
smaller problems.

Problem-based estimation
Lines of code (LOC) and function point (FP) are used in
two ways during software project estimation.

	 1.	 As an estimation variable to ‘size’ each element of the
software.

	 2.	 As baseline metrics collected from past projects
and used in conjunction with estimated variables to
develop cost and effort projections.

The project planner begins by estimating a range of val-
ues of each information domain value. Using the historical
data, the planner estimates an optimistic, most likely, and
pessimistic size value for each function or count for each
information domain value.

The expected value for the estimation variables is com-
puted as

S =
optimistic Most likely pessimistic+ ∗ +4

6

Empirical estimation models
An estimation model for computer software uses empiri-
cally derived formulas to predict effort as a function of LOC

8.98  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

or FP. The model should be tested by applying data collected
from completed projects, plugging the data into the model
and then comparing actual to predicted results.

Some of the LOC-oriented estimation models are
E = 5.2 × (KLOC)0.91		 Walston-Felix model
E = 5.5 + 0.73 × (KLOC)1.16	 Bailey-Basili model
E = 3.2 × (KLOC)1.05		 Boehm simple model
E = 5.288 × (KLOC)1.047		 Doty model for KLOC > 9

The software equation  The software equation is a multi-
variable model that assumes a specific distribution of effort
over the life of a software development project.

E = [LOC × B0.333/P]3 × (1/t 4)
where
E = effort in person – months or person – years
t = project duration in months or years
B = Special spills factor
P = Productivity parameter that reflects overall process

maturity and management practices, the extent to which
good software engineering practices are used, the level of
programming languages used, the state of software environ-
ment, the skills and experience of the software team, and
the complexity of the application.
Note:  B increases slowly as ‘the need for integration, test-
ing, quality assurance, and documentation and management
skills grows’. For small programs KLOC = 5 to 15, B = 0.16.

For programs greater than 70 KLOC, B = 0.39
Putnam and Myers suggest a set of equations derived

from the software equation.
Minimum development time is defined as
tmin = 8.14 (LOC/P)0.43 in months for tmin > 6 months
E = 180 B t3 in person – months for E ≥ 20 person – months

Software Maintenance
Maintenance means restoring something to its original
condition.

Maintenance is actually the implementation of the post-
implementation review plan.

Maintenance is classified into corrective, adaptive or
perfective maintenance.

Corrective maintenance repairs processing or perfor-
mance failures or make changes because of previously
uncorrected problems or false assumptions.

Adaptive maintenance means changing the program
function.

Perfective maintenance enhances the performance or
modify the programs to respond to the user’s additional or
changing needs.

About 50–80% of the total system development cost
accounts for maintenance. Analysts and programmers spend
far more time maintaining programs than they do writing them.

A manufacturer wants to minimize the variation among
the products that are produced by maintaining the quality.

User satisfaction = compliant product + good quality +
delivery within budget and schedule.

Software Quality Assurance (SQA)
Software Quality is defined as conformance to explicitly
stated functional and performance requirements, explicitly
documented development standards, and implicit charac-
teristics that are points regarding quality is expected of all
professionally developed software. In addition to the above
definition some important

	 1.	 Software requirements are the foundation from
which quality is measured. Lack of conformance to
requirements is lack of quality.

	 2.	 If software conforms to its explicit requirements but
fails to meet implicit requirements, software quality
is suspect.

Activities performed by SQA group:

	 1.	 Prepares an SQA plan for a project.
	 2.	 Participates in the development of the project’s

software process description
	 3.	 Reviews software engineering activities to verify

compliance with the defined software process.
	 4.	 Ensures that deviations in software work and work

products are documented and handled according to a
documented procedure.

	 5.	 Records any non-compliance and reports to senior
management.

Software Reliability
Software reliability is defined as the probability of failure-
free operation of a computer program in a specified environ-
ment for a specified time.
Measures of reliability and availability:

•• A simple measure of reliability is mean-time-between-
failure (MTBF).

	 MTBF = MTTF + MTTR
	 where
	 MTTF = mean-time-to-failure
	 MTTR = mean-time-to-repair

Although debugging (and related corrections) may be
required as a consequence of failure, in many cases the
software will work properly after a restart with no other
change.
•• In addition to a reliability measure, we must develop a

measure of availability. Software availability is the prob-
ability that a program is operating according to require-
ments at a given point in time and is defined as
Availability = [MTTF/(MTTF + MTTR)] × 100%

Software Safety
•• Software safety is a software quality assurance activ-

ity that focuses on the identification and assessment of
potential hazards that may affect software negatively and
cause an entire system to fail.

Chapter 2  •  Project Management and Maintenance  |  8.99

•• Software safety examines the ways in which failures
result in conditions that can lead to a mishap. That is the
failures are evaluated in the context of an entire computer-
based system and its environment.

Software Reengineering
Cost of redevelopment is very high compared to
development.

The maintenance of existing software can account for
over 60% of all effort expended by a development organiza-
tion, and the percentage continues to rise as more software
is produced.

A reengineering process model is shown below:

Inventory analysis

Reverse
engineering

Document
restructuring

Code
restructuring

Data
restructuring

Forward
engineering

•• Reengineering takes time, costs significant amount of
money and absorbs resources that might be otherwise
occupied on immediate concerns.

•• Reengineering of information systems is an activity that
will absorb information technology resources for many
years.

•• Inventory analysis : The inventory can be nothing more
than a spreadsheet model containing information that
provides a detailed description of every active applica-
tion. It should be revisited on a regular cycle.

•• Document restructuring : It creates a framework of docu-
mentation that is necessary for the long-term support of
an application.

•• Code restructuring : The source code is analyzed using
a restructuring tool. The restricted code is reviewed and
tested to ensure that no anomalies have been introduced.

•• Data restructuring : It is a full-scale reengineering activ-
ity. Current data architecture is dissected and necessary
data models are defined.

•• Forward engineering : Also called renovation or reclama-
tion, covers design information from existing software
and uses this information to alter or reconstitute the exist-
ing system in an effort to improve its overall quality.

•• Reverse engineering : It is the process of analyzing a pro-
gram in an effort to extract data, architectural, and proce-
dural design information.

The abstraction level of a reverse engineering process
and the tools used to affect it refers to the sophistica-
tion of the design information that can be extracted from
source code.

Dirty source code

Restructure code

Clean source code

Extract
abstraction

Initial specification

Refine and
simplify

Processing

Interface

Database

Final specification

Figure 8  The reverse engineering process.

COCOMO Model
One of the famous model structures used to estimate the
software effort is the constructive cost model, which is often
called as COCOMO model. COCOMO was developed by
Boehm. The model helps in defining the mathematical rela-
tionship between the software development time, the effort
in man-months and the maintenance effort.

Basic COCOMO is defined as computers software
development effort (and cost) as a function of program size.
Program size is expressed in estimated thousand lines of
code (KLOC) COCOMO is applied to three classes of soft-
ware projects:
	 1.	 Organic projects
	 2.	 Semi-detached projects
	 3.	 Embedded projects

Organic projects
Organic projects are projects that are having small teams with
good working experience with less than rigid requirements.

Semi-detached projects
Semi-detached projects are projects with medium teams
having mixed working experience with a mix of rigid and
less than rigid requirements

Embedded projects
Project that are developed within a set of tight constraints
(hardware, software, operational…)
The general formula of the basic COCOMO model is

E = a(s)b

where
E → Represents effort in person-months
S → Size of the software development in KLOC
‘a’ and ‘→’ 5 Values dependent on the development mode

8.100  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

Development Mode Value of a Value of b
Organic 2.4 1.05

Semi-detached 3.0 1.12
Embedded 3.6 1.20

Development time D = C(E)d

People required () []P
E

D
= count

Development Mode Value of c Value of d
Organic 2.5 0.38

Semi-detached 2.5 0.35
Embedded 2.5 0.32

For intermediate COCOMO model, the value of coef-
ficient Q and the exponent b are given in the table below:

Development Mode Value of a Value of b

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
Common data for questions 1 and 2:  Consider the fol-
lowing payroll program that prints a file of employees and
a file of information (transaction file) for the current month
and for each employee.

In addition, the program updates the employee file, and
produces an earnings report, a deduction report and analysis
report. The application is capable of interactive command
to print an individually requested pay slip. It also processes
a file containing details of payment. This program can give
printout of pay slips when they are requested individually.
The weight table is shown below:

Simple Average Complex
No. of inputs 3 4 6
No. of outputs 4 5 7
No. of enquiries 3 4 6
No. of files 7 10 15
No. of interfaces 5 7 10

	 1.	 What is the unadjusted function point for the given pay-
roll program?

	 (A)	 60	 (B)	 62
	 (C)	 68	 (D)	 72

	 2.	 From the above problem, find adjusted function point
where F4 = 4, F5 = 3, F12 = 2, F14 = 5?

	 (A)	 49	 (B)	 62
	 (C)	 82	 (D)	 90

Common data for questions 3 and 4:  The size estimated
for software of a certain project is 45,000 lines of code. The
average salary paid per engineer is `20,000 per month.

	 3.	 Calculate the effort required if the software is of organic
type.

	 (A)	 100 pm	 (B)	 120 pm
	 (C)	 130 pm	 (D)	 140 pm

	 4.	 Calculate the cost required if the software is of semi-
detached type.

	 (A)	 113000	 (B)	 213000
	 (C)	 315000	 (D)	 326515
	 5.	 A 40 KDSI embedded program for teleprocessing is to

be developed. Estimate the time required for the project
using basic COCOMO model.

	 (A)	 12 pm	 (B)	 14 pm
	 (C)	 16 pm	 (D)	 18 pm

	 6.	 Consider the following code:
	 begin
	 If (x ≤ 0) then x = 0 – x;
	 a = x;
	 end
		 Lata wants to test the program with test data. What are

the sufficient values to execute both branches of the
decision box?

	 (A)	 x = 0, 4	 (B)	 x = 0, –4
	 (C)	 x = 1, 4	 (D)	 x = 0, –1

	 7.	 What is the maintainability of a software with average
number of days of repairing code is 10, adapting code
is 20 and for enhancing code is 10?

	 (A)	 6.3	 (B)	 12.5
	 (C)	 32.6	 (D)	 40
	 8.	 Consider a Java program and the SLOC is given as

1000.
		 Class A

		 {

	 	int x(int a);

	 	int y(int b);

	 	int z(int c);

		 }

		 What is the modularity?
	 (A)	 0.001	 (B)	 0.002
	 (C)	 0.003	 (D)	 0.004

	 9.	 Raj has written a program to add two numbers. Assuming
a 32-bit representation for an integer, to exhaustively test
his program, the number of test cases required are

	 (A)	 28	 (B)	 216

	 (C)	 232	 (D)	 264

Chapter 2  •  Project Management and Maintenance  |  8.101

	10.	 The module of the length ‘L’ is split up in two sub mod-

ules, module 1 and module 2, each of length
L

2
. How

many links between the sub modules are allowed so
that we maintain the value of information flow metric
at same level?

Module 1

Module 2

Module L

?

	 (A)	 2.4	 (B)	 3.6
	 (C)	 4.8	 (D)	 1.2

	11.	 The three estimates of the code size for a particular
application for geometric analysis were most optimistic
4600, most likely 6900, most pessimistic is 8600. The
value of estimated size that should be taken is

	 (A)	 4600	 (B)	 6800
	 (C)	 6900	 (D)	 8600

	12.	 For an application of developing new operating sys-
tem the KLOC is 34.5. What is the number of person-
month (effort) best estimated using the intermediate
COCOMO model?

	 (A)	 126	 (B)	 130
	 (C)	 158	 (D)	 196

	13.	 For a real-time software systems the KLOC is 28.2.
What is the effort in person–month calculated by using
basic COCOMO model?

	 (A)	 146	 (B)	 198
	 (C)	 220	 (D)	 248

	14.	 For inventory management system the KLOC is
25.5, what is the effort in person-month, using basic
COCOMO model?

	 (A)	 110	 (B)	 113
	 (C)	 120	 (D)	 140

	15.	 For the above, what is the estimated project duration in
months?

	 (A)	 6	 (B)	 8
	 (C)	 10	 (D)	 13

Practice Problems 2
Directions for questions 1 to 16:  Select the correct alterna-
tive from the given choices.

Common data for questions 1 and 2:  Consider the below
flow graph:

1

2

3 4

5

6

7 8

9 10

	 1.	 What is the number of paths to node 9?
	 (A)	 2	 (B)	 3
	 (C)	 4	 (D)	 5

	 2.	 What is the reachability measure?
	 (A)	 1.8	 (B)	 2.8
	 (C)	 2.4	 (D)	 2.1

Common data for questions 3 and 4:  For a software
project the estimation is carried out by the Delphi method.
Below table shows 5 experts with estimates:

Estimate Pessimistic Most likely Optimistic

Expert 1
Expert 2
Expert 3
Expert 4
Expert 5

30
10
20
30
25

50
55
50
60
40

60
75
70
70
75

	 3.	 What is the average estimate?
	 (A)	 48.3	 (B)	 49.4
	 (C)	 50.8	 (D)	 56.7

	 4.	 What is the average variance?
	 (A)	 5.0	 (B)	 6.7
	 (C)	 7.8	 (D)	 8.3

	 5.	 The module of length L is split up into two sub mod-

ules (module-1 and module-2) each of length
L

2
. How

many links between the sub modules exists so that we
maintain the value of the information flow metric at the
same level as found in the original module?

Module 1

Module 2

Module L

?

	 (A)	 3	 (B)	 4
	 (C)	 5	 (D)	 6

8.102  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

	 6.	 Constructive cost model is used to estimate
	 (A)	 Effort in man-month.
	 (B)	 Effort and schedule based on the size of the software.
	 (C)	� Size and duration based on the effort of the soft-

ware.
	 (D)	 None of these

	 7.	 The theoretic concept that will be useful in software
testing is

	 (A)	 Hamiltonian circuit
	 (B)	 Cyclomatic number
	 (C)	 Eulerian cycle
	 (D)	 None of these

	 8.	 Testing method that is normally used as the acceptance
test for a software system is

	 (A)	 Regression testing
	 (B)	 Integration testing
	 (C)	 Unit testing
	 (D)	 None of these

	 9.	 Acceptance testing is
	 (A)	� The manner in which each component functions

with other component of the system are tested.
	 (B)	� Running the system with given data by the actual

user.
	 (C)	� The process of testing the changes in a new system

or an existing system.
	 (D)	 None of these

	10.	 Which of the following statements is true?
	 (A)	� Use of independent path testing criterion guaran-

tees execution of each loop in a program under test
more than once.

	 (B)	� Validation is the process of evaluating software
at the end of the software development to ensure
compliance with the software requirements.

	 (C)	� Statement coverage cannot guarantee execution of
loops in a program under test.

	 (D)	 None of these

	11.	 The size estimated for software of a certain project is
40,000 lines of code. The average salary paid per engi-
neer is `15,000 per month. Calculate the cost required
if the software is of organic type.

	 (A)	 1,60,000
	 (B)	 2,20,000
	 (C)	 7,90,000
	 (D)	 2,25,000

	12.	 The size estimated for a software project is 35 Kloc.
The average salary paid per engineer is `25,000 per
month. Calculate the cost required if the software is of
semi-detached type.

	 (A)	 3,07,500
	 (B)	 3,17,500
	 (C)	 3,69,952
	 (D)	 2,45,000

	13.	 Which of the following statements is false?
	 (A)	� The cyclomatic complexity of a module is the

number of decisions in the module plus one where
a decision is effectively any conditional statement
in the module.

	 (B)	� A direct flow of control in flow chart representing
the lowest cyclomatic complexity.

	 (C)	� The reasonable limit of the cyclomatic complexity
measure is 10.

	 (D)	� The cyclomatic complexity depends on the num-
ber of statements in the flowchart.

	14.	 Which of the following is true regarding software
testing?

	 (A)	� Software testing techniques are most effective if
applied immediately after requirement specifica-
tion.

	 (B)	� Software testing techniques are most effective if
applied immediately after design.

	 (C)	� Software testing techniques are most effective if
applied after coding.

	 (D)	� Software testing methods are most effective if ap-
plied after integration.

Common data for questions 15 and 16:  A software pro-
ject involves execution of 4 activities A

1
, A

2
, A

3
, and A

4
, of

duration 11, 7, 8 and 3 days respectively. A
1
 is the first one

and needs to be completed before any other activity can
commence. Activity A

2
 and A

3
 can be executed in paral-

lel. Activity A
4
 cannot commence until both A

2
 and A

3
 are

completed.

	15.	 Find the critical path of the above project.
	 (A)	 A1 – A2 – A4
	 (B)	 A1 – A3 – A4
	 (C)	 A1 – A2 – A3 – A4

	 (D)	 None of these

	16.	 Find the slack time of the project.
	 (A)	 0	 (B)	 1
	 (C)	 12	 (D)	 13

Chapter 2  •  Project Management and Maintenance  |  8.103

	 1.	 The coupling between different modules of a soft-
ware is categorized as follows:

		 I.	 Content coupling

		 II.	 Common coupling

		 III.	 Control coupling

		 IV.	 Stamp coupling

		 V.	 Data coupling

		 Coupling between modules can be ranked in the order
of strongest (least desirable) to weakest (most desir-
able) as follows:� [2009]

	 (A)	 I-II-III-IV-V	 (B)	 V-IV-III-II-I
	 (C)	 I-III-V -II-IV	 (D)	 IV-II-V -III-I

	 2.	 The cyclomatic complexity of each of the modules
A and B shown below is 10. What is the cyclomatic
complexity of the sequential integration shown
below?� [2010]

A B

B

A

	 (A)	 19	 (B)	 21
	 (C)	 20	 (D)	 10

	 3.	 A company needs to develop digital signal process-
ing software for one of its newest inventions. The
software is expected to have 40000 lines of code. The
company needs to determine the effort in person-
months needed to develop this software using the
basic COCOMO model. The multiplicative factor for
this model is given as 2.8 for the software develop-
ment on embedded systems, while the exponentiation
factor is given as 1.20. What is the estimated effort in
person months?

� [2011]

	 (A) 234.25	 (B)	 932.50	
	 (C)	 287.80	 (D)	 122.40

	 4.	 The following is the comment written for a C function.

		 / * This function computes the roots of a quadratic
equation ax ∧ 2 + bx + c = 0. The function stores two
real roots in * root 1 and * root 2 and returns the status
of validity of roots. It handles four different kinds of
cases.

		 (i)	� When coefficient ‘a’ is zero irrespective of
discriminant.

		 (ii)	 When discriminant is positive.

		 (iii)	When discriminant is zero.

		 (iv)	 When discriminant is negative.

		 Only in case (ii) and (iii), the stored roots are valid.
Otherwise 0 is stored in the roots. The function returns
0 when the roots are valid and -1 otherwise.

		 The function also ensures root1 > = root2

		 int get_QuadRoots (float a, float b, float c, float *
root1, float * root 2); */

		 A software test engineer is assigned the job of doing
black box testing. He comes up with the following
test cases, many of which are redundant.

Test
Case

Input Set Expected Output Set

a b c root1 root2 Return value

T1 0.0 0.0 7.0 0.0 0.0 –1

T2 0.0 1.0 3.0 0.0 0.0 –1

T3 1.0 2.0 1.0 –1.0 –1.0 0

T4 4.0 –12.0 9.0 1.5 1.5 0

T5 1.0 –2.0 –3.0 3.0 –1.0 0

T6 1.0 1.0 4.0 0.0 0.0 -1

		 Which one of the following options provide the set of
non-redundant tests using equivalence class partition-
ing approach from input perspective for black-box
testing?� [2011]

	 (A)	 T 1, T 2, T 3, T 6	 (B)	 T 1, T 3, T 4, T 5
	 (C)	 T 2, T 4, T 5, T 6	 (D)	 T 2, T 3, T 4, T 5

	 5.	 The following figure represents access graphs of
two modules M1 and M2. The filled circles represent
methods and the unfilled circles represent attributes.
If method m is moved to module M2 keeping the
attributes where they are, what can we say about the
average cohesion and coupling between modules in
the system of two modules?� [2013]

Module M1

m

Module M2

	 (A)	 There is no change
	 (B)	� Average cohesion goes up but coupling is reduced
	 (C)	� Average cohesion goes down and coupling also

reduces.
	 (D)	 Average cohesion and coupling increase.

Common data for questions 6 and 7:  The procedure
given below is required to find and replace certain char-
acters inside an input character string supplied in array A.
The characters to be replaced are supplied in array ‘oldc’,
while their respective replacement characters are supplied
in array ‘newc’. Array A has fixed length of five charac-
ters, while arrays ‘oldc’ and ‘newc’ contain three charac-
ters each.

Previous Years’ Questions

8.104  |  Unit 8  •  Networks, Information Systems, Software Engineering and   Web Technology

Answer Keys

Exercises

Practice Problems 1
	 1.  B	 2.  A	 3.  C	 4.  D	 5.  C	 6.  A	 7.  B	 8.  C	 9.  D	 10.  B
	11.  B	 12.  C	 13.  B	 14.  B	 15.  D

Practice Problems 2
	 1.  C	 2.  B	 3.  B	 4.  C	 5.  B	 6.  A	 7.  B	 8.  D	 9.  B	 10.  B
	11.  D	 12.  C	 13.  D	 14.  B	 15.  B	 16.  B

Previous Years’ Questions
	 1.  A	 2.  A	 3.  A	 4.  C	 5.  A	 6.  C	 7.  B	 8.  B

	 However, the procedure is flawed.

	 	void find_and_replace (char *A, char
*oldc, char *newc) {

	 	for (int i = 0; i <5; i++)
	 	for (int j=0; j<3; j++)
	 	if (A[i] == oldc[j]) A[i] = newc[j];

		 }

		 The procedure is tested with the following four test
cases.

	 1.  oldc = “abc”, newc = “dab”
	 2.  oldc = “cde”, newc = “bcd”
	 3.  oldc = “bca”, newc = “cda”
	 4.  oldc = “abc”, newc = “bac”

	 6.	 If array A is made to hold the string “abcde”, which of
the above four test cases will be successful in expos-
ing the flaw in this procedure?� [2013]

	 (A)	 None	 (B)	 2 only
	 (C)	 3 and 4 only	 (D)	 4 only

	 7.	 The tester now tests the program on all input strings
of length five consisting of characters ‘a’, ‘b’, ‘c’, ‘d’
and ‘e’ with duplicates allowed. If the tester carries
out this testing with the four test cases given above,
how many test cases will be able to capture the flaw?
� [2013]

	 (A)	 Only one	 (B)	 Only two
	 (C)	 Only three	 (D)	 All four

	 8.	 In the context of modular software design, which one
of the following combinations is desirable?� [2014]

	 (A)	 High cohesion and high coupling
	 (B)	 High cohesion and low coupling
	 (C)	 Low cohesion and high coupling
	 (D)	 Low cohesion and low coupling

	Unit 8: Networks, Information Systems, Software Engineering and Web Technology
	Part B: Information Systems
	Chapter 2: Project Management and Maintenance
	Project Management
	Project Planning Tools
	Software Design
	Software Testing
	Implementation and Maintenance
	Exercises
	Previous Years’ Questions
	Answer Keys

