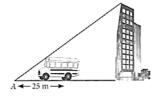
Sample Question Paper - 3 Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Basic)

Time Allowed: 1 hour and 30 minutes		Maximum Marks: 40	
Genera	al Instructions:		
	1. The question paper contains three parts A	A, B and C.	
	2. Section A consists of 20 questions of 1 ma	rk each. Attempt any 16 question	S.
	3. Section B consists of 20 questions of 1 ma	rk each. Attempt any 16 question	S.
	4. Section C consists of 10 questions based of	n two Case Studies. Attempt any 8	3 questions.
	5. There is no negative marking.		
	Se	ction A	
		ny 16 questions	
1.	The decimal expansion of $\frac{987}{10500}$ will terminate	ate after:	[1]
	a) 2 decimal places	b) 3 decimal places	
	c) 1 decimal place	d) None of these	
2.	A fraction becomes $\frac{9}{11}$, if 2 is added to both		. If 3 is added to [1]
	both the numerator and denominator it bec	omes $\frac{5}{6}$, then the fraction is	
	a) $\frac{9}{7}$	b) $\frac{-9}{7}$	
	c) $\frac{7}{9}$	d) $\frac{-7}{9}$	
3.	If $lpha$ and eta are the zeroes of the polynomial eta	$3x^2 + 11x - 4$, then the value of $\frac{1}{\alpha}$	$+\frac{1}{\beta}$ is [1]
	a) $\frac{13}{4}$	b) $\frac{12}{4}$	
	c) $\frac{11}{4}$	d) $\frac{15}{4}$	
4.	A system of linear equations is said to be inconsistent if it has		[1]
	a) one solution	b) at least one solution	
	c) two solutions	d) no solution	
5.	If $\tan \theta = \sqrt{3}$, then $\sec \theta =$		[1]
	a) $\sqrt{\frac{3}{2}}$	b) 2	
	c) $\frac{2}{\sqrt{3}}$	d) $\frac{1}{\sqrt{3}}$	
6.	If the LCM of a and 18 is 36 and the HCF of a	V -	[1]
	a) 1	b) 2	
	c) 4	d) 3	
	-, -	, •	

7.	If $lpha$ and eta are the zeros of 2x 2 + 5x - 9 then the value of $lphaeta$ is		[1]
	a) $\frac{-9}{2}$	b) $\frac{9}{2}$	
	c) $\frac{5}{2}$	d) $\frac{-5}{2}$	
8.		² B (4,0), C (4,3) and D (0,3). The length of one of its	[1]
	a) 5	b) 3	
	c) 4	d) 25	
9.	The zeroes of the quadratic polynomial $x^2 + k$	xx + k, k \neq 0,	[1]
	a) cannot be both negative	b) cannot be both positive	
	c) are always equal	d) are always unequal	
10.	Figure show the graph of the polynomial f(x) $f(x) = ax^{2} + bx + c + y$ $x' \qquad 0$ $y' \left(\frac{-b}{2a}, \frac{-D}{4a}\right)$	= ax ² + bx + c for which	[1]
	a) a > 0, b < 0 and c > 0	b) a < 0, b < 0 and c < 0	
	c) a < 0, b > 0 and c > 0	d) a > 0, b > 0 and c < 0	
11.	A number is selected at random from the nur number is	nbers 1 to 30. The probability that it is a prime	[1]
	a) $\frac{1}{6}$	b) $\frac{11}{30}$	
	c) $\frac{2}{3}$	d) $\frac{1}{3}$	
12.	If a = ($2^2 \times 3^3 \times 5^4$) and b = ($2^3 \times 3^2 \times 5$) then HCF (a, b) = ?		[1]
	a) 360	b) 90	
	c) 180	d) 540	
13.	If R(5, 6) is the midpoint of the line segment A equals	AB joining the points A(6, 5) and B(4, y) they y	[1]
	a) 7	b) 12	
	c) 5	d) 6	
14.	The area of a triangle with vertices A(5, 0), B(8, 0) and C(8, 4) in square units is	[1]
	a) 12	b) 20	
	c) 6	d) 16	
15.	The sum and product of the zeroes of the poly	ynomial x ² - 6x + 8 are respectively	[1]
	a) $\frac{-3}{2}$ and 1	b) $\frac{-3}{2}$ and -1	
	c) $\frac{3}{2}$ and 1	d) 6 and 8	

16.	If $ sin heta - cos heta = 0,$ then the value of $ heta$ is		[1]	
	a) 60°	b) 30°		
	c) 45°	d) 90°		
17.		is consistent, then the lines represented by two	[1]	
	a) parallel	b) always coincident		
	c) intersecting	d) intersecting or coincident		
18.	A card is selected from a deck of 52 cards. Th	ne probability of its being a red face card is	[1]	
	a) $\frac{3}{13}$	b) $\frac{1}{2}$		
	c) $\frac{2}{12}$	d) $\frac{3}{26}$		
19.	The number $rac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ is		[1]	
	a) an irrational number	b) an integer		
	c) not a real number	d) a rational number		
20.	In the figure, the area of $ riangle ABC$ (in square	units) is	[1]	
	$\begin{array}{c} A(1,3) \\ \hline \\ X' \\ \hline \\ -4 \\ -3 \\ -2 \\ -1 \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline \\ \\ Y' \\ \hline \end{array}$			
	a) 10	b) 2.5		
	c) 7.5	d) 15		
	Section B			
01	Attempt any 16 questions			
21.	The pair of equations $5x - 15y = 8$ and $3x - 9y$		[1]	
	a) infinitely many solutions	b) no solution		
	c) two solutions	d) one solution	543	
22.	If $f(x) = ax^2 + bx + c$ has no real zeros and a +	b + c < 0, then	[1]	
	a) c > 0	b) c < 0		
	c) None of these	d) c = 0		
23.	The least number that is divisible by all the r	numbers from 1 to 10 (both inclusive) is	[1]	
	a) 100	b) 10		
	c) 504	d) 2520		


24.	If $\sin heta = rac{a}{b}$ then $\cos heta$ = ?		[1]
	a) $\frac{b}{\sqrt{b^2-a^2}}$	b) $\frac{\sqrt{b^2 - a^2}}{b}$	
	c) $\frac{b}{a}$	b) $\frac{\sqrt{b^2 - a^2}}{b}$ d) $\frac{a}{\sqrt{b^2 - a^2}}$	
25.	The difference between two numbers is 26 an numbers are	·	[1]
	a) 39 and 13	b) 30 and 10	
	c) 36 and 12	d) 36 and 10	
26.	If the zeroes of the quadratic polynomial \mathbf{x}^2 +	- (a + 1) x + b are 2 and –3, then	[1]
	a) a = 0, b = – 6	b) a = 5, b = –1	
	c) a = -7, b = -1	d) a = 2, b = – 6	
27.	A semicircle is drawn on AC. Two chords AB drawn in the semicircle. What will be the me	and BC of length 8 cm and 6 cm respectively are asure of the diameter of the circle?	[1]
	a) 12 cm.	b) 10 cm.	
	c) 14 cm.	d) 11 cm.	
28.	If the distance between the points (2, -2) and	(-1, x) is 5, one of the values of x is	[1]
	a) -2	b) -1	
	c) 1	d) 2	
29.	If 2x = sec A and $rac{2}{x}$ = tan A then $2\left(x^2-rac{1}{x^2} ight)$	= ?	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	
	c) $\frac{1}{16}$	d) $\frac{1}{8}$	
30.	Half the perimeter of a rectangular garden, w The area of the garden is	whose length is 4m more than its width is 36m.	[1]
	a) _{320 m²}	b) 300 m ²	
	c) _{400 m²}	d) 360 m ²	
31.	If two positive integers m and n can be expre prime numbers, then HCF(m, n) =	ssed as m = x^2y^5 and n = x^3y^2 , where x and y are	[1]
	a) _x ² y ²	b) _{x²y³}	
	c) _x ³ y ²	d) _x ³ y ³	
32.	If \triangle ABC and \triangle DEF are two triangles such th Area (\triangle DEF) =	at $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = \frac{2}{5}$, then Area (\triangle ABC):	[1]
	a) 2 : 5	b) 4 : 15	
	c) 8 : 125	d) 4 : 25	
33.	If 7 tan θ = 4 then $\frac{(7\sin\theta - 3\cos\theta)}{(7\sin\theta + 3\cos\theta)} = ?$		[1]

	a) $\frac{3}{7}$	b) $\frac{1}{7}$	
	c) $\frac{5}{14}$	d) $\frac{5}{7}$	
34.	The mid-point of the line segment joining the	points A (-2, 8) and B (- 6, - 4) is	[1]
	a) (- 4, -6)	b) (4, 2)	
	c) (2, 6)	d) (– 4, 2)	
35.	A piggy bank contains 100 fifty paise coins, 5	0 one rupee coins, 20 two rupee coins and 10 five	[1]
	-	ne probability that the coin drawn will not be a	
	five rupee coin is		
	a) $\frac{5}{9}$	b) $\frac{7}{18}$	
	c) $\frac{8}{9}$	d) $\frac{17}{18}$	
36.	If the lines given by 3x + 2ky = 2 and 2x + 5y +	+ 1 = 0 are parallel, then the value of k is	[1]
	a) $\frac{-5}{4}$	b) $\frac{3}{2}$	
	c) $\frac{15}{4}$	d) $\frac{2}{5}$	
37.	Which of the following is an irrational numb	er?	[1]
	a) 3.141141114	b) 3. 1416	
	c) $\frac{22}{7}$	d) 3.1416	
38.	If x = a cos θ and y = b sin θ , then $b^2x^2 + a^2y^2$	=	[1]
	a) $a^2 + b^2$	b) ab	
	c) a ⁴ b ⁴	d) $a^{2}b^{2}$	
39.	A die is thrown once. Find the probability of	getting an even number:	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	
	c) $\frac{2}{3}$	d) $\frac{1}{4}$	
40.		bining the points A(2, -5) and B(5, 2) in the ratio 2 :	[1]
	3 lies in the quadrant.		
	a) III	b) I	
	c) II	d) IV	
	Sec	ction C	

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

Preeti visited to her uncles house. From point A, where Artina was standing, a bus and building come in a straight line as shown in the figure.

41.	Which similarity criteria can be seen in this case, if bus and building are considered in a straight line?		[1]
	a) SAS	b) SSS	
	c) ASA	d) AA	
42.	If the distance between Preeti and the bus is height of the bus is	twice as much as the height of the bus, then the	[1]
	a) 15 m	b) 12.5 m	
	c) 40 m	d) 25 m	
43.	If the distance of Preeti from the building is of the heights of bus and building is	twelve times the height of the bus, then the ratio	[1]
	a) 1:6	b) 3 : 1	
	c) 1:4	d) 2 : 3	
44.	What is the ratio of the distance between Pre tops of bus and building?	eeti and top of bus to the distance between the	[1]
	a) 2 : 5	b) Can't be determined	
	c) 1:6	d) 1 : 5	
45.	What is the height of the building?		[1]
	a) 120 m	b) 30 m	
	c) 75 m	d) 50 m	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

While doing dusting a maid found a button whose upper face is of black colour, as shown in the figure. The diameter of each of the smaller identical circles is $\frac{1}{4}$ of the diameter of the larger circle whose radius is 16 cm.

47.

46. The area of each of the smaller circle is

a) 52.3 cm^2	b) _{50.28 cm²}
c) 46.39 cm ²	d) _{40.28} cm ²
The area of the larger circle is	
a) 855.57 cm ²	b) 804.57 cm ²
c) _{704.57} cm ²	d) 990.57 cm ²

[1]

[1]

48. The area of the black colour region is

	a) _{623.45} cm ²	b) _{603.45} cm ²	
	c) 610.45 cm ²	d) 600.45 cm ²	
49.	The area of quadrant of a smaller circle is		[1]
	a) _{12 cm²}	b) 12.57 cm ²	
	c) 11.57 cm ²	d) 13.68 cm ²	
50.	If two concentric circles are of radii 2 cm and	d 5 cm, then the area between them is	[1]
	a) _{66 cm²}	b) _{60 cm²}	
	c) 68 cm ²	d) _{63 cm²}	

Solution

Section A

1. **(b)** 3 decimal places

Explanation: $\frac{987}{10500} = \frac{47}{500} = \frac{47}{2^2 \times 5^3}$ Here, in the denominator of the given fraction the highest power of prime factor 5 is 3, therefore, the decimal expansion of the rational number $\frac{47}{2^2 \times 5^3}$ will terminate after 3 decimal places.

2. (c) $\frac{7}{9}$

Explanation: Let the fraction be $\frac{x}{y}$.

According to question $\frac{x+2}{y+2} = \frac{9}{11}$ $\Rightarrow 11x + 22 = 9y + 18$ $\Rightarrow 11x - 9y = -4 \dots (i)$ And $\frac{x+3}{y+3} = \frac{5}{6}$ $\Rightarrow 6x + 18 = 5y + 15$ $\Rightarrow 6x - 5y = -3 \dots (ii)$ On solving eq. (i) and eq. (ii), we get x = 7, y = 9Therefore, the fraction is $\frac{7}{9}$

3. (c) $\frac{11}{4}$

Explanation: Here a = 3,b = 11,c = -4 Since $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha+\beta}{\alpha\beta}$

$$\alpha + \beta = \frac{-11}{3}, \ \alpha\beta = \frac{-4}{3}$$

So, $\frac{\frac{-11}{3}}{\frac{-4}{2}} = \frac{11}{4}$

4. (d) no solution

Explanation: A system of linear equations is said to be inconsistent if it has no solution means two lines are running parallel and not cutting each other at any point.

5. **(b)** 2

Explanation: Since $\sec \theta = \sqrt{1 + \tan^2 \theta}$ $\therefore \sec \theta = \sqrt{1 + (\sqrt{3})^2}$ $= \sqrt{1 + 3} = \sqrt{4} = 2$

6. **(c)** 4

Explanation: LCM (a, 18) = 36

HCF (a, 18) = 2

We know that the product of numbers is equal to the product of their HCF and LCM.

Therefore,

18a = 2(36) $a = \frac{2(36)}{18}$ a = 4

7. (a) $\frac{-9}{2}$

Explanation: For $ax^2 + bx + c$, we have $\alpha\beta = \frac{c}{a}$ For $2x^2 + 5x - 9$, we have $\alpha\beta = \frac{-9}{2}$ 8. **(a)** 5

Explanation: Three vertices of a rectangle ABCD are B (4,0), C (4, 3) and D (0, 3) length of one of its diagonals

$$egin{aligned} {
m BD} &= \sqrt{(4-0)^2 + (0-3)^2} = \sqrt{4^2 + 3^2} \ &= \sqrt{16+9} = \sqrt{25}$$
 = 5

9. **(b)** cannot be both positive **Explanation**:

Let $p(x) = x^2 + kx + k$, $k \neq 0$

On comparing p(x) with $ax^2 + bx + c$, we get

$$a = 1, b = k \text{ and } c = k$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-k \pm \sqrt{k^2 - 4k}}{2 \times 1}$$

$$= \frac{-k \pm \sqrt{k(k - 4)}}{2}, k \neq 0$$
[by quadratic formula]

Here, we see that k(k – 4)> 0 $\Rightarrow k \in (-\infty, 0) \cup (4, \infty)$

In quadratic polynomial $ax^2 + bx + c$

If a > 0, b > 0, c > 0 or a < 0, b < 0, c < 0, then the polynomial has always all negative zeroes. and if a > 0, c < 0 or a < 0, c > 0, then the polynomial has always zeroes of opposite sign. Case I: If $k \in (-\infty, 0)$ i.e., k < 0 $\Rightarrow a = 1 > 0$, b, c = k < 0So, both zeroes are of opposite sign. Case II: If $k \in (4, \infty)$ i.e., $k \ge 4$ $\Rightarrow a = 1 > 0, b, c > 4$ So, both zeroes are negative. Hence, in any case zeroes of the given quadratic polynomial cannot both be positive. (a) a > 0, b < 0 and c > 0**Explanation**: Clearly, $f(x) = ax^2 + bx + c$ represent a parabola opening upwards. Therefore, a > 0The vertex of the parabola is in the fourth quadrant, therefore b < 0 $y = ax^2 + bx + c$ cuts Y axis at P which lies on OY.

Putting x = 0 in $y = ax^2 + bx + c$, we get y = c.

So the coordinates of P is (0, c). Clearly, P lies on OY. \Rightarrow c>0

Hence, a>0, b<0 and c>0

11. (d) $\frac{1}{3}$

10.

Explanation: Total outcomes of selecting a number from 30 numbers = 30 Favourable numbers (prime numbers) = 10, i.e., (2, 3, 5, 7, 11, 13, 17, 19, 23, 29) \therefore Probability of selecting a prime number = $\frac{10}{30} = \frac{1}{3}$

12. **(c)** 180

Explanation: It is given that: $a = (2^2 \times 3^3 \times 5^4)$ and $b = (2^3 \times 3^2 \times 5)$

: HCF (a, b) = Product of smallest power of each common prime factor in the numbers = $2^2 \times 3^2 \times 5 = 180$

13. **(a)** 7

Explanation: Given that R is the mid- point of the line segment AB.

Th y-coordinate of R = $\frac{5+y}{2}$ \Rightarrow y = 7

14. **(c)** 6

Explanation: The given points are A(5,0), B(8, 0) and C(8, 4) \therefore ($x_1 = 5$, $y_1 = 0$), ($x_2 = 8$, $y_2 = 0$) and ($x_3 = 8$, $y_3 = 4$) The area of the triangle

$$= \frac{1}{2} |x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)|$$

= $\frac{1}{2} \lceil (0 - 4) + 8(4 - 0) + 8(0)$
= $\frac{1}{2} |-20 + 32 + 9|$
= $\frac{1}{2} \times 12$
= 6 sq. units

15. (d) 6 and 8

Explanation: Sum of the zeroes of the polynomial = $\frac{-b}{a} = \frac{6}{1} = 6$ And Product of the zeroes of the polynomial = $\frac{c}{a} = \frac{8}{1} = 8$

16. (c) 45°

Explanation: Given: $\sin \theta - \cos \theta = 0$ $\Rightarrow \sin \theta = \cos \theta$ $\Rightarrow \sin \theta = \sin(90^{\circ} - \theta)$ $\Rightarrow \theta = 90^{\circ} - \theta$ $\Rightarrow 2\theta = 90^{\circ}$ $\Rightarrow \theta = 45^{\circ}$

17. (d) intersecting or coincident

Explanation: If a pair of linear equations in two variables is consistent, then its solution exists. ... The lines represented by the equations are either intersecting or coincident.

18. (d) $\frac{3}{26}$

Explanation: In a deck of 52 cards, there are 12 face cards i.e. 6 red (3 hearts and 3 diamonds) and 6 black cards (3 spade and 3 clubs)

So, probability of getting a red face card = 6/52 = 3/26

19. (a) an irrational number

Explanation:
$$\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$$

= $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \times \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}$
= $\frac{(\sqrt{5}+\sqrt{2})^2}{(\sqrt{5})^2 - (\sqrt{2})^2}$
= $\frac{(\sqrt{5})^2 + (\sqrt{2})^2 + 2 \times \sqrt{5} \times \sqrt{2}}{(\sqrt{5})^2 + (\sqrt{2})^2 + 2 \times \sqrt{5} \times \sqrt{2}}$
= $\frac{5+2+2\sqrt{10}}{3}$
= $\frac{7+2\sqrt{10}}{3}$

Here $\sqrt{10} = \sqrt{2} \times \sqrt{5}$ Since $\sqrt{2}$ and $\sqrt{5}$ both are an irrational number Therefore, $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ is an irrational number.

20. **(c)** 7.5

Explanation: Vertices of $\triangle ABC$ are A(1, 3), B(-1, 0), C(4, 0) \therefore Area = $\frac{1}{2}[(x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ = $\frac{1}{2}[1(0 - 0) + (-1)(0 - 3) + 4(3 - 0)]$ = $\frac{1}{2}[0 + 3 + 12] = \frac{15}{2} = 7.5$

Section B

21. (a) infinitely many solutions

Explanation: Given: $a_1 = 5, a_2 = 3, b_1 = -15, b_2 = -9, c_1 = 8$ and $c_2 = \frac{24}{5}$ Here $\frac{a_1}{a_2} = \frac{5}{3}, \frac{b_1}{b_2} = \frac{-15}{-9} = \frac{5}{3}, \frac{c_1}{c_2} = \frac{8}{\frac{24}{5}} = \frac{5}{3} \because \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Since all have the same answer $\frac{5}{3}$.

Therefore, the pair of given linear equations has infinitely many solutions.

22. **(b)** c < 0 **Explanation:** We are given a+b+c < 0 $\Rightarrow f(1) < 0$ So, f(x) must be negative for all x.

23. **(d)** 2520

Explanation: Factors of 1 to 10 numbers 1 = 1 $2 = 1 \times 2$ $3 = 1 \times 3$ $4 = 1 \times 2 \times 2$ $5 = 1 \times 5$ $6 = 1 \times 2 \times 3$ $7 = 1 \times 7$ $8 = 2 \times 2 \times 2$

 $9 = 1 \times 3 \times 3$ $\Rightarrow \text{LCM of number 1 to 10} = \text{LCM (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)}$ $= 1 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$

24. **(b)**
$$\frac{\sqrt{b^2 - a^2}}{b}$$

Explanation:
$$\cos^2 heta = \left(1 - \sin^2 heta
ight) = \left(1 - rac{a^2}{b^2}
ight) = rac{b^2 - a^2}{b^2} \Rightarrow \cos heta = rac{\sqrt{b^2 - a^2}}{b}$$

25. (a) 39 and 13

Explanation: Let the two numbers be x and y According to question, x - y = 26 and x = 3yPutting the value of x in x - y = 26, we get, 3y - y = 26 $\Rightarrow y = 13$ And $x = 3 \times 13 = 39$ Therefore, the two numbers are 13 and 39.

26. **(a)** a = 0, b = -6

Explanation: Zeroes of a polynomial are the values of x at which the polynomial is equal to zero.

2 and - 3 are the zeroes of the polynomial $p(x) = x^2 + (a + 1)x + b$ i.e. p(2) = 0 and p(-3) = 0 $p(2) = (2)^2 + (a + 1)(2) + b = 0$ $\Rightarrow 4 + 2a + 2 + b = 0$ $\Rightarrow 6 + 2a + b = 0$ (1) $P(-3) = (-3)^2 + (a + 1)(-3) + b = 0$ $\Rightarrow 9 - 3a - 3 + b = 0$ $\Rightarrow 6 - 3a + b = 0$ (2) Equating (1) & (2), as both the equations are equal to zero. $\therefore 6 + 2a + b = 6 - 3a + b$ $\Rightarrow 5a = 0$ $\Rightarrow a = 0$ Putting the value of 'a' in (1) 6 + 2(0) + b = 0 $\Rightarrow b = -6$

27. **(b)** 10 cm.

Explanation: The diameter of circle is AC. Here \angle ABC is angle of semicircle.

A
B
B
C

$$\therefore \angle ABC = 90^{\circ} \therefore \triangle ABC$$
 is a right angled triangle.
 $\therefore By using Pythagoras theorem,$
 $\therefore AC = \sqrt{AB^2 + BC^2} = \sqrt{(8)^2 + (6)^2} C \Rightarrow AC = \sqrt{100} = 10 \text{ cm}$
(d) 2
Explanation: 2
(a) $\frac{1}{2}$
Explanation: We know that $\sec^2 A \cdot \tan^2 A = 1$.

$$egin{aligned} &\therefore (2x)^2 - \left(rac{2}{x}
ight)^2 = 1 \Rightarrow 4x^2 - rac{4}{x^2} = 1 \Rightarrow 4\left(x^2 - rac{1}{x^2}
ight) = 1 \ \Rightarrow \left(x^2 - rac{1}{x^2}
ight) = rac{1}{4} \Rightarrow 2\left(x^2 - rac{1}{x^2}
ight) = 2 imes rac{1}{4} = rac{1}{2} \end{aligned}$$

30. **(a)** 320 m²

28.

29.

Explanation: Let the width be x then length be x + 4According to the question, 1 + b = 36x + (x + 4) = 362x + 4 = 362x = 36-42x = 32x = 16. Hence, The length of the garden will be 20 m and width will be 16 m.

Area = length \times breath = 20 \times 16 = $~320~m^2$

31. **(a)** x²y²

Explanation: $x^2y^5 = y^3(x^2y^2)$ $x^3y^3 = x(x^2y^2)$ Therefore HCF (m, n) is x^2y^2

32. **(d)** 4 : 25

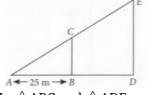
Explanation: In $\triangle ABC$ and $\triangle DEF$ $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = \frac{2}{5}$ \therefore The sides are proportional $\therefore \triangle ABC \sim \triangle DEF$ $\therefore \frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{AB^2}{DE^2}$ $= \left(\frac{2}{5}\right)^2 = \frac{4}{25}$ \therefore Ratio = 4: 25

33. **(b)** $\frac{1}{7}$

Explanation: Given,
$$\tan \theta = \frac{4}{7}$$

$$\therefore \quad \frac{(7 \sin \theta - 3 \cos \theta)}{(7 \sin \theta + 3 \cos \theta)} = \frac{(7 \tan \theta - 3)}{(7 \tan \theta + 3)}$$
 [Dividing numerator and denom. by $\cos \theta$]

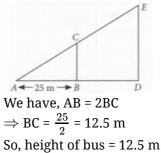
$$= \frac{\left(7 \times \frac{4}{7} - 3\right)}{\left(7 \times \frac{4}{7} + 3\right)} = \frac{(4 - 3)}{(4 + 3)} = \frac{1}{7}$$

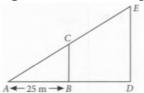

34. (d) (-4, 2) **Explanation:** (x, y) = { $\frac{(-6+(-2))}{2}$, $\frac{(8+(-4))}{2}$ } $=(\frac{-8}{2},\frac{4}{2})$ = (-4,2) (d) $\frac{17}{18}$ 35. **Explanation:** Number of total coins = 100 + 50 + 20 + 10 = 180 Number of coins except five rupee coins = 180 - 10 = 170 \therefore Required Probability = $\frac{170}{180} = \frac{17}{18}$ (c) $\frac{15}{4}$ 36. Explanation: Condition for parallel lines is $rac{a_1}{a_2}=rac{b_1}{b_2}
eq rac{c_1}{c_2}\dots(i)$ Given lines, 3x + 2ky - 2 = 0 and 2x + 5y - 1 = 0;Comparing with standard form, Here, a₁ = 3, b₁ = 2k, c₁ = - 2 and $a_2 = 2$, $b_2 = 5$, $c_2 = -1$ From Eq. (i), $\frac{\frac{3}{2}}{\frac{2}{2}} = \frac{2k}{\frac{5}{5}}$ $k = \frac{15}{4}$ 37. (a) 3.141141114... Explanation: 3.141141114 is an irrational number because it is a non-repeating and non-terminating decimal. (d) a^2b^2 38. **Explanation:** $x = a \cos \theta$, $y = b \sin \theta$ bx = ab cos θ ...(i) ay = ab sin θ ...(ii) Squaring and adding (i) and (ii) we get, $b^2x^2 + a^2y^2 = a^2b^2\cos^2\theta + a^2b^2\sin^2\theta$ $= a^2b^2(\cos^2\theta + \sin^2\theta)$ $=a^2b^2 \times 1$ $= a^2 b^2$ (a) $\frac{1}{2}$ 39. Explanation: Total number of outcomes = {1, 2, 3, 4, 5, 6} So, total outcomes = 6 Favourable outcomes in this case = $\{2, 4, 6\}$ So, number of favourable outcomes = 3 \therefore P(an even number) = $\frac{Favourable outcomes}{Total outcomes} = \frac{3}{6} = \frac{1}{2}$ (d) IV 40. **Explanation:** The point p is given by P $\left(\frac{2\times5+3\times2}{2+3},\frac{2\times2-3\times5}{2+3}\right) = P\left(3,\frac{-11}{5}\right)$ so, p lies in IV quadrant.

$$(-,+)$$
 $(+\infty)$
if
 $(-,-)$ $(+,-)$

Section C

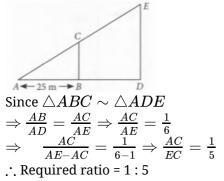
41. **(d)** AA


Explanation: Let BC represents the height of bus and DE represents the height of building.

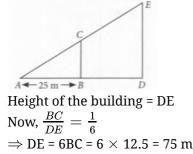

In \triangle ABC and \triangle ADE, $\angle A = \angle A$ (Common) $\angle B = \angle D$ (Corresponding angles) $\therefore \triangle ABC \sim \triangle ADE$ (By AA similarity criteria)

42. **(b)** 12.5 m

Explanation: Let BC represents the height of bus and DE represents the height of building.


- 43. **(a)** 1 : 6
 - Explanation: Let BC represents the height of bus and DE represents the height of building.

We have, AD = 12 BC \Rightarrow AD = 12 × 12.5 = 150 m $\therefore \triangle ABC \sim \triangle ADE$ $\therefore \frac{AB}{AD} = \frac{BC}{DE} \Rightarrow \frac{BC}{DE} = \frac{25}{150} = \frac{1}{6}$ So, ratio of heights of bus and building is 1 : 6.


44. **(d)** 1 : 5

Explanation: Let BC represents the height of bus and DE represents the height of building.

45. **(c)** 75 m

Explanation: Let BC represents the height of bus and DE represents the height of building.

46. **(b)** 50.28 cm²

Explanation: Let r and R be the radii of each smaller circle and larger circle respectively. We have, $d = \frac{1}{4}D$

 $\Rightarrow r = \frac{1}{4}R \Rightarrow r = \frac{1}{4} \times 16 \Rightarrow r = 4cm$ Area of smaller circle = πr^2 = $\frac{22}{7} \times 4 \times 4 = 50.28 cm^2$

47. **(b)** 804.57 cm²

Explanation: Let r and R be the radii of each smaller circle and larger circle respectively. We have, $d = \frac{1}{4}D$

$$\Rightarrow r = \frac{1}{4}R \Rightarrow r = \frac{1}{4} \times 16 \Rightarrow r = 4cm$$
Area of lrger circle = πR^2
= $\frac{22}{7} \times 16 \times 16 = \frac{5632}{7} = 804.57 cm^2$

48. **(b)** 603.45 cm²

Explanation: Let r and R be the radii of each smaller circle and larger circle respectively. We have, $d = \frac{1}{4}D$

 $\Rightarrow r = \frac{1}{4}R \Rightarrow r = \frac{1}{4} \times 16 \Rightarrow r = 4 \text{ cm}$ Area of the black colour region = Area of larger circle - Area of 4 smaller circles = 804.57 - 4 × 50.28 = 603.45 cm²

49. **(b)** 12.57 cm²

Explanation: Let r and R be the radii of each smaller circle and larger circle respectively. We have, $d = \frac{1}{4}D$

 $\Rightarrow r = \frac{1}{4}R \Rightarrow r = \frac{1}{4} \times 16 \Rightarrow r = 4 \text{ cm}$ Area of quadrant of a smaller circle $= \frac{1}{4} \times 50.28 = 12.57 \text{ cm}^2$

50. **(a)** 66 cm²

Explanation: Let r and R be the radii of each smaller circle and larger circle respectively. We have, d = $\frac{1}{4}$ D

 $\Rightarrow r = \frac{1}{4}R \Rightarrow r = \frac{1}{4} \times 16 \Rightarrow r = 4 \text{ cm}$ Area between two concentric circles $= \pi(R^2 - r^2) = \frac{22}{7}(5^2 - 2^2)$ $= \frac{22}{7}(25 - 4) = \frac{22}{7} \times 21 = 66 \text{ cm}^2$