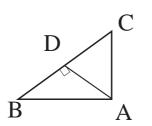
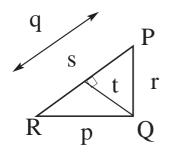

8. SIMILAR TRIANGLES


- 1. The ratio of the corresponding sides of the two similar triangles is 1:3, then the ratio of their areas is _____
- 2. Δ PQR is formed by joining the mid points of the sides of Δ ABC, then the ratio of the areas of the Δ PQR and Δ ABC is _____
- 3. D, E are the mid-points of the sides AB and AC of the \triangle ABC. If DE measures 4 cm, then the side BC measures _____
- 4. If the side of an equilateral triangle is 8 cm, then its area is _____
- 5. In the given figure DE//BC, AD = 6 cm, DB=8 cm and AE=9 cm, then EC = ____

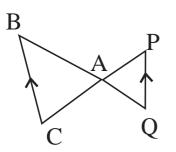
6. In $\triangle ABC \angle B=90^{\circ}$ then $b^2 =$ ____



- 7. Two congruent polygons are _____
- 8. In the given figure AD \perp BC, then AB² + CD² = ____



- 9. The length of the diagonal of the square is $5\sqrt{2}$ cm, then the area of the square in cm² is _____
- 10. The symbol for 'is similar to' is _____
- 11. $\triangle ABC \sim \triangle PQR$, if AB = 3.6, PQ = 2.4 and PR = 5.4, then AC =_____


12. In the given figure, $\angle Q = 90^{\circ}$ and $\angle S = 90^{\circ}$; QS = t, PQ = r QR = P and PR = q then $1/t^2 =$ ____

- 13. $\triangle ABC \sim \triangle PQR$, if AB = 6, BC = 4, AC = 8 and PR = 6 then PQ+QR =____
- 14. A man goes 7 metres due east and then 24 metres due north, then his distance from starting point is _____
- 15. If $\triangle ABC \sim \triangle DEF$, $\angle A = 50^{\circ}$ then $\angle E + \angle F =$ _____
- 16. The side of a rhombus with diagonals 16 cm & 30 cm is _____
- 17. Basic Proportionality Theorem is also known as _____
- 18. A ladder is placed in such a way that its foot is at a distance of 15 metres from the wall and its top reaches a window 8 m above the ground. Then the length of the ladder is _____
- 19. $\triangle ABC \sim \triangle PQR$, if $m \angle A = 50^{\circ}$ and $m \angle B = 60^{\circ}$ then $m \angle R =$ _____
- 20. In the given figure, AC = 13 cm, then the length of the Median BD =

- 21. The areas of two similar triangles are 16 cm² and 25 cm² respectively. Then the ratio of their corresponding sides is _____
- 22. In $\triangle ABC$, DE//BC and DE = 1/2BC, then AD:DB = _____
- 23. In the given figure $\triangle ACB \sim \triangle APQ$. If AB = 6 cm, BC = 8 cm and PQ = 4 cm, then $AQ = _$

- 24. The relation between a diagonal of a Square and its side is _____
- 25. In $\triangle ABC$, $\angle B=90^{\circ}$ and \overline{BM} is an altitude. then $\triangle AMB$ is similar to
- 26. In the rhombus ABCD, AB = 6cm, then $AC^2 + BD^2 =$
- 27. The area of an equilateral triangle whose height 'h' is _____
- 28. If the ratio of the medians of two similar triangles is 1:2, then the ratio of their areas is _____
- 29. In an equilateral triangle ABC, if AD \perp BC then, $3AB^2 =$ _____
- 30. The length of the diagonal of a Square is $5\sqrt{2}$ cm, then the area of the square is _____

ANSWERS

1) 1:9; 2) 1:4; 3) 8 cm; 4) 16 $\sqrt{3}$ cm²; 5) 12 cm; 6) b² = a²+c²; 7) similar;

8) BD²+AC²; 9) 25; 10) ~; 11) 1.8;

12) $\frac{1}{p^2} + \frac{1}{r^2}$; 13) 10; 14) 25m; 15) 130⁰; 16) 17 cm; 17) Thales Theorem; 18) 17 m; 19) 70⁰; 20) 6.5 cm; 21) 4:5; 22) 1:1; 23) 3

cm; 24) diagonal = $\sqrt{2}$. Side; 25) ΔABC ; 26) 144; 27) h²/ $\sqrt{3}$; 28) 1:4; 29) 4AD²; 30) 25 cm²