
Introduction 
The to and fro motion of a body (or a system of bodies) 
about a mean position (which is the stable equilibrium 
position of the system where the total potential energy of 
the system in all forms is minimum) is called vibration. 
Hence, only those bodies or system of bodies that have a 
stable equilibrium position can vibrate.

When an external force (called as a disturbing force 
or exciting force), slowly shifts the system from its mean 
position (i.e. without any change in its kinetic energy) and 
takes it to another position, the potential energy (or strain 
energy) of the system increases as work has been done 
against the internal elastic forces of the system (which are 
conservative forces within the elastic limit). The change in 
position of the body or system from its mean position to the 
new position is called the displacement. When the body or 
the system is now released from its new position, neglecting 
all forces like friction, viscous forces, etc. that offer resist-
ance to motion, the internal forces of the system (elastic 
forces) try to reduce the potential energy of the system by 
bringing it back to the original mean position. This internal 
force is called restoring force.

When the system returns to the mean position, though the 
potential energy of the system has decreased, because posi-
tive work is done by the restoring force (internal forces), the 
kinetic energy of the system increases. Hence, at the mean 
position, the system has maximum kinetic energy. Because of 
kinetic energy, the system overshoots the mean position and 
gets displaced in the opposite direction till its kinetic energy 
becomes zero. Again the elastic forces bring the system back 
to the mean position where the kinetic energy becomes maxi-
mum and this process goes on. If there is no dissipation of 
energy (due to viscosity, friction, etc.), the process is repeated 
infinitely and it is called undamped free vibrations.

If only one co-ordinate is needed to describe the position 
of a vibrating system, then it is called a one-dimensional 
vibration. It can be either linear (in which case only one 
linear co-ordinate like x or y but not both, is required to 
describe the system) or angular (in which case only one 
angular position, q, is required to describe the system). 
Horizontal oscillation of a spring mass-system and verti-
cal oscillation of a spring-mass system are examples of 
one-dimensional linear oscillations. Oscillation of a simple 
pendulum is an example of one-dimensional angular oscil-
lation. If a spring-mass system oscillates up and down and 
also sways like a simple pendulum it becomes a two-dimen-
sional vibration. 

If there are two masses, with two spring along the same 
line and oscillating in the same direction as shown in figure, 
it is also a two dimensional vibration (because two co-ordi-
nates x1 and x2 need to be specified)

k1 k2

m1 m2

x1 x2

The discussion in this chapter is for one-dimensional vibra-
tions only.

A motion which repeats itself at regular inter-
vals of time is called a periodic motion. For exam-
ple, the orbital motion of the Earth around the Sun. The 
to and fro motion of a body about a mean  position is 
called oscillation or vibration. All undamped vibra-
tions are periodic but all periodic motions need not  
be  oscillatory. Simple harmonic motion (SHM) is a spe-
cial case of oscillatory motion (hence periodic motion) 
in which the restoring force is directly proportional to 
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displacement from mean position (for linear oscillations) 
or restoring torque is directly proportional to angular 
displacement (for  angular oscillations).

Important Definitions for 
Oscillatory/Vibrating Motion
Some of the commonly used terms for vibrating motions 
are listed below.

 1. Time period (T ) or period of vibration: The time 
taken for the motion to repeat itself is called time 
period. Its SI unit is second (s) and symbol is T.

 2. Cycle: The motion executed by the system during 
one time period is called a cycle.

 3. Frequency ( f ): The number of cycles completed by 
the vibrating system in one second is called frequency. 

Its SI unit is per second, known as hertz (Hz). f = 
1

T
 4. Circular frequency or angular frequency of 

vibration is defined as 2p times frequency. Its symbol 
is w (omega) and unit is radian per second (rad/s) 

w = 2p f = 
2p
T

 5. Resonance: This is a term used for only forced 
vibrations, to describe a state when the frequency of 
the external force on the system is equal to the natural 
frequency of free vibrations of the system. Resonance 
results in very large amplitudes of vibrations and can 
be dangerous.

 6. Amplitude: It simply means maximum value but it is 
used often in the context of displacement amplitude. 
Displacement amplitude or simply amplitude is the 
maximum value of displacement from the mean 
position. Velocity amplitude is the maximum value 
of velocity, which occurs at the mean position. 
Acceleration amplitude is the maximum value of 
acceleration, etc.

 7. Phase: This is a term used to represent how far the 
system has been displaced from the mean position 
and whether it is moving towards the mean position or 
away from it. It is usually expressed as angle in radian 
or in terms of time (as a fraction of time period T) etc.

Types of  Vibrations
There are three important types of vibrations.

 1. Natural vibrations or Free vibrations
 2. Forced vibrations
 3. Damped vibrations (which can be free or forced 

vibrations as well)

These are explained as given below:

Natural Vibrations or Free Vibrations
After initial displacement and release of the body, if the 
vibratory motion is maintained only by the internal elas-
tic forces of the body and no external force (including 

friction and other resistance to the motion of body) acts 
on the body, then the vibration of the body is called Free 
vibration or Natural vibration.

Forced Vibrations
When an external periodic disturbing force is applied con-
tinuously on the body to maintain its vibratory motion and 
the vibratory motion of the body has the same frequency 
as the frequency of the applied external force, such type of 
vibration is called forced vibration.

Damped Vibrations
A vibration in which the energy of the vibrating system 
gradually gets dissipated by friction and other resistances 
offered to the motion, is called damped oscillation. If the 
amplitude of oscillation of the body keeps on decreasing 
over every cycle of vibration and finally the body comes 
to rest, it is called Free Damped Vibrations. If a periodic 
external force is acting on the body which is executing 
damped oscillations, then it is called Forced-damped 
oscillations.
We will discuss undamped free vibrations now.

Undamped Free Vibrations  
(or Undamped Natural Vibrations) 
This is an ideal (or hypothetical) vibration in which there is 
no external force (including friction) acting on the vibrat-
ing body, energy of vibration remains constant and so the 
amplitude of vibration remains constant. There are three 
types of undamped free-vibrations.

 1. Longitudinal vibrations
 2. Transverse vibrations and
 3. Torsional vibrations

Longitudinal Vibrations
In longitudinal vibrations, the particles of the system vibrate 
along the axis or length of the system. There is expansion and 
contraction along the axial (lengthwise) direction, subjecting 
the system to axial tensile and axial compressive stresses.

Heavy disc

Mean position
(equilibrium
position)

Light shaft or rod
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M

Light spring

Heavy block
(Equilibrium
position)

Transverse Vibrations
In transverse vibration, the particles of the system vibrate 
in a direction perpendicular to the axis (or length) of the 
shaft/rod. This results in alternate bending and straightening 
of the shaft producing tensile and compressive stresses in 
the shaft/rod due to bending.

Equilibrium position

Torsional Vibrations
In torsional vibrations, the particles of the system vibrate 
along circular arcs (of different radii) whose centres lie 
on the axis of the shaft. The shaft gets periodically twisted 
and untwisted which produces torsional shear stresses in 
the shaft.

Equilibrium
position

In all the three cases of free vibrations, if the stresses on the 
vibrating body do not exceed the proportionality limit of 
the material of the body (i.e. Hooke’s law can be applied), 
the restoring force (in the case of longitudinal free vibration) 
and restoring torque (in the case of transverse and torsional 
vibrations) are directly proportional to displacement (linear 
or angular) from the mean position. Also,  the acceleration 
of the vibrating body is directed towards mean position. 
Hence, for small amplitudes of vibration, the motion of the 
vibrating body will be simple harmonic. (i.e. SHM)

Methods of Finding the Natural Frequency 
of Free Longitudinal Vibrations
The methods used are (i) Equilibrium method (also 
known as Force/Torque method) (ii) Energy method and 
(iii) Rayleigh’s method.

For the mathematical analysis of a vibrating system, 
an idealised model which approximately represents the 
system is needed. For a system to vibrate, with damping 
or without damping, it must have inertial and restoring 
elements. In the case of vibration with damping, some 
damping element responsible for dissipation of energy is 
also required.

The inertial elements are represented by lumped 
masses for rectilinear motion and by lumped moment of 
inertia for angular motion. The lumping of qualities (mass 
or moment of inertia) depends upon the distribution of 
these qualities in the system. In a spring-mass system, if 
the mass of the spring is negligible compared to the mass 
connected at its end, the spring can be considered as mass-
less. Such a system (without damping) can be represented 
as shown below.

Massless
spring

M
Inertial
mass

Similarly for a beam, if the mass of the beam is neg-
ligible compared to the mass at its end, the beam can be 
considered as massless and the system can be represented 
as shown below.

M

Massless
beam

Inertial
mass

If the beam cannot be considered massless, then lumping 
of mass is not possible and the system will be represented 
as shown below.

Distributed
beam
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Restoring elements are usually massless linear springs for 
rectilinear motion and massless torsional springs for tor-
sional motions, respectively.

Equilibrium Method of Finding the Natural 
Frequency for Free Longitudinal Vibra-
tions 
This method makes use of D’ Alembert’s principle for 
dynamic equilibrium of a system, i.e. for the dynamic equi-
librium of a system, the sum of the resultant external force 
on the system and the inertia force is equal to zero.

i.e. Fr + Fi = 0, where Fr = resultant external force and  
Fi = inertia force

Let us apply this for a spring mass system.

δ

L

(a)

M
Equilibrium
position

M

(b)

(c)

(d)

s(δ + x) ma = mẍ = Fi

Mg

x

Consider a light spring of stiffness s and natural length L, 
fixed at the upper end and hanging vertically (see Figure a). 
A block of mass M(so weight W = Mg) is connected to its 
lower end and lowered very slowly to its equilibrium posi-
tion. The extension of the spring is d (see Figure b). As the 
mass is in equilibrium, downward force = upward force

⇒              Mg = sd   (1)

Let this mass be disturbed from its equilibrium position 
and made to vibrate freely. When this mass is displaced by  
x downwards from its equilibrium position and moving 
downwards, (see Figure c), its velocity is �x  and accelera-
tion is ��x , both in the direction of x(i.e. downwards). At this 
instant, the forces on the mass are

Inertial Force Fi = −mass × acceleration

= − Mx��  (i.e. Mx��  upwards)

Weight, W = Mg(downwards)

Spring force, Fs = s(d + x)
= sd + sx [∵ sd = Mg from (1)]
= (Mg + sx) upwards.

∴ Net external force on mass, Fr = Fs − W
= Mg + sx − Mg
= sx, upwards

The forces on the mass are shown in Figure d.
As per D’ Alembert’s principle, for dynamic equilibrium 

of mass.
Fr + Fi = 0 ⇒ sx + Mx��  = 0

i.e. Mx sx��+ = 0  represents the differential equation for 
free longitudinal vibration of the spring-mass system.

⇒ ��x
s

M
x+ ⎛

⎝⎜
⎞
⎠⎟

= 0 → (2), represents a simple harmonic 

motion (SHM) of natural circular frequency (wn) given by  

  wn
s

M
= ⎛

⎝⎜
⎞
⎠⎟

    (3)

SI unit of wn is radian per second (rad/s).
The solution to the differential equation (ii) is given by
x(t) = Xsin(wnt + f) where
x(t) = displacement of vibrating mass from the equilib-

rium position at time, t
X = displacement amplitude of oscillation
wn = natural circular frequency (radian/second)
(wnt + f) = phase of vibration at time t (in radian)
f = initial phase (at time t = 0) in radian, also known as epoch

The fundamental differential equation for SHM is 
��x xn+ =w 2 0

NOTE

The natural linear frequency,

   ( fn) = 
w

p p
n s

M2

1

2
=     (4)

From equation (1) we have s = 
Mg

d
. Substituting this 

value in equation

(4) → f
Mg

M

g
n = =

1

2

1

2p d p d

∴ f
g

n =
1

2p d
, where

d = static deflection = 
Mg

s
SI unit of fn is hertz (Hz)

As g = 9.81 m/s2, we have

fn = 
1

2

9 81

p d
.

or fn =
0 4985.

d
Hz

Unit of d must be metre in SI.

NOTE

If the spring is replaced by a uniform solid shaft of 
length L, cross sectional area A, negligible mass and made 
of a material of Young’s modulus E and carrying the mass 
M(or weight W = Mg) at its end, then the elongation of shaft

  
d = =

WL

AE

MgL

AE

If the mass of the spring is not negligible and say it is 
equal to Ms, then one third of this mass shall be added to the 
mass M at the end of the spring.
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Accordingly, wn = s

M
Ms+⎛

⎝⎜
⎞
⎠⎟3

, where

Ms = mass of spring (or shaft) and

fn = 1

2
3

p
s

M
Ms+⎛

⎝⎜
⎞
⎠⎟

1.  When springs are connected in series, the spring force 
is the same in all springs but extensions are different 
in each spring.

F

k1 k2 k3

If x1, x2 and x3 are the extensions of each spring, of 
stiffnesses k1, k2 and k3, respectively when subjected to 
an axial force F, total extension x = x1 + x2 + x3
If ks is the equivalent stiffness, then

x = 
F

ks

, x1 = F

k
x

F

k1
2

2

, =  and x3 = 
F

k3

⇒ 
F

k

F

k

F

k

F

ks

= + +
1 2 3

 ⇒ 
1 1 1 1

1 2 3k k k ks

= + +

When n identical springs, each of stiffness k, are 

connected in series, equivalent stiffness ks = 
k

n2. Stiffness of spring

∝ 
1 1

Length Number of turns
∝

3.  If a spring of stiffness k and length L is cut into two 

parts whose lengths are in the ratio L

L

m

n
1

2

= , then the 

corresponding stiffness k1 and k2 of the parts are given by

k1L1 = k2L2 = kL

⇒ k1 = 
( )m n k

m

+
 and k2 = 

( )m n k

n

+

If a uniform spring of stiffness k is cut into n equal 
parts, the stiffness of each part = nk.

4.  When springs are connected in parallel, the extension of 
each spring is the same while the spring forces are different.

F1

k1 k2 k3

F2 F3

F

NOTES

Extension = x for each spring
F1 = k1x

F2 = k2x

F3 = k3x

∴ F = F1 + F2 + F3

If kp is the equivalent stiffness, kpx = F

⇒ kpx = k1x + k2x + k3x

⇒ kp = k1 + k2 + k3

∴ When n identical springs, each of stiffness k, are 
connected in parallel, equivalent stiffness is kp = nk

5. 
M2M1

k

L

A massless spring of length L and stiffness k, has two 
masses M1 and M2 at each end and placed on a smooth 
horizontal floor.
When the masses are pulled on either side (along the length 
of the spring) and released, both the masses execute SHM 
with same circular frequency wn. The centre of mass of 
the system remains at rest. We can show that this system 
is equivalent to a spring mass system with one end fixed 

and other end carrying a mass m = M M

M M
1 2

1 2+( )
 (called 

the reduced mass of 2 mass system).

µ
k

Equivalent to 2 Mass Spring System

∴ wn = k k M M

M Mm
=

+( )1 2

1 2

fn = 1

2

1

2
1 2

1 2p
w

pn

k M M

M M
=

+( )

Tn = Time period of free vibration = 
1

fn

= 2p M M

k M M
1 2

1 2+( )
.

6. 

k

M

k

M

k

M
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The pulleys shown in figures are smooth and massless. 
The circular frequency of vibration in all the three 

cases are same and equal to wn = 
k

M
.

7. 

k

M

  is equal to  

M

keq

When movable pulley is used with spring configuration 
as shown, it is equivalent to a spring mass system where  

keq = 
k

4

 ∴ wn = 
k

M

k

M
eq =

4

fn = 
1

2 4p
k

M

Tn = 2p 
4M

k

8. 

k

M

  is equal to  

M

keq

For this movable pulley spring configuration, keq = 4k

∴ wn = 
k

M

k

M
eq =

4

fn = 
1

2

4

p
k

M

      Tn = 
1

2
4f

M

Kn

= p

9. 

k1

k2

M

 

is equal to

 

k� =

M

k1k2
(k1 + k2)

=
4k1k2

(k1 + k2)M

keq = 4k�=

∴ wn = 
k

M

k k

k k M
eq =

+( )
4 1 2

1 2

10. 

M

M

keq

Mk2

k2

k1 4k1

is equal to is equal to

Here, keq = 4

4
1 2

1 2

k k

k k+( )
(∵4k1 and k2 are in series connection)

wn = 
k

M

k k

k k M
eq =

+( )
4

4
1 2

1 2

11.  When a massless spring of stiffness k is stretched or 
compressed by x, the elastic potential energy stored 

in the spring is 
1

2
2kx .

12.  The time period of a spring mass sytem for undamped 
free oscillations is

Tn = 2p
M

k
, where M is the mass of oscillating system 

and k = stiffness of spring. This time period, unlike a 
simple pendulum, is independent of acceleration due 
to gravity. Hence, spring mass system can be used 
for time measurement in variable acceleration due to 
gravity (g) situation. 
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∴ fn = 
1

2

1

2

5600

1 4p p
k

m
eq =

.

=
4000

2p
= 10.07 Hz.

≈ 10 Hz. 

Example 3: The natural frequency of a spring mass system 
on Earth is wn. The natural frequency of this system on the 

Moon g
g

Moon
Earth=⎛

⎝⎜
⎞
⎠⎟6

 is

(A) wn  (B) 0.408 wn

(C) 0.204 wn (D) 0.167 wn

Solution:
The spring-mass system has an undamped natural frequency 

= 
1

2p
k

m
,  independent of g. So the natural frequency of the 

system on Earth and Moon will be the same and equal to wn.

Example 4: 

k
mm

Smooth floor

Consider the system of two blocks, each of mass m, placed 
on a smooth floor and connected by a massless spring of 
stiffness k. The natural frequencies of this  system are

(A) 0
2

,
k

m
 (B) 

k

m

k

m
,

2

(C) 
k

m

k

m
,

2
 (D) 0, 

k

m2

Solution:
There are two possible movements for the system. The com-
plete system can have a translation with both blocks having 
same velocity and same acceleration and the centre of mass 
of system also moving in the same direction.
⇒ No vibration and so natural frequency is zero
 In the second case, the centre of mass of system remains fixed 
and the masses oscillate along the length of spring with same fre-

quency wn = 
k

m
, where m = reduced mass of 2-particle system

m = m m

m m

m

m

m1 2

1 2

2

2 2+( ) = =

∴ wn = 
k

m
2( ) = 

2k

m

∴ Possible natural frequencies are 0, 
2k

m
. 

Solved Examples

Example 1:

m

k2

k1

θ

Smooth

The contact between the block of mass m and the inclined 
plane is frictionless. The stiffness of the springs are k1 and k2 
respectively. The springs are parallel to the inclined plane. 
The natural frequency of spring mass system is

(A) 
k k

m
1 2

2

+
 (B) 

k k

m
1 2

4

+

(C) 
k k

m
1 2−

 (D) 
k k

m
1 2+

Solution:

No friction means it is free undamped oscillation.

∴ wn = 
k

m
eq

, where

keq = equivalent stiffness of springs

The springs are connected in parallel (∵one is fixed and 
other end is connected to the same mass)

∴ keq = k1 + k2 (for parallel combination of springs)

∴ wn = 
k k

m
1 2+

. 

Example 2:

Smooth floor

m
k1 k2

In the figure shown, the springs are massless, block is of 
mass m = 1.4 kg, k1 = 4000 N/m and k2 = 1600 N/m respec-
tively. The natural frequency of free oscillation of the sys-
tem is nearly
(A) 8 Hz  (B) 10 Hz 
(C) 12 Hz (D) 14 Hz

Solution:
Springs are connected in parallel

Keq = k1 + k2 = 4000 + 1600 = 5600 N/m

m = 1.4 kg



Chapter 3 • Vibrations | 3.261

Example 5:

m = 1 kg

k3

k2

k1

k1 = 1 kN/m
k2 = 3 kN/m
k3 = 2 kN/m
A mass of 1 kg is suspended by means of 3 springs as shown 
in figure. The spring constants k1, k2 and k3 are respectively 
1 kN/m, 3 kN/m and 2 kN/m. The natural frequency of the 
system is approximately
(A) 46.90 rad/s (B) 52.44 rad/s
(C) 60.55 rad/s (D) 77.46 rad/s

Solution:
Springs k1 and k2 are in series. So their equivalent spring 
constant is

ks = k k

k k
1 2

1 2

1 3

1 3

3

4+( ) =
×
+( ) =  kN/m

Now, ks and k3 are in parallel. Hence, their equivalent spring 
constant is

kp = ks + k3 = 
3

4
2+  = 

11

4
kN/m

= 
11000

4
N/m = 2750 N/m

     ∴ wn = 
k

m
p =

2750

1
= 52.44 rad/s  

Example 6:

m
k

k /2

k /2

The natural frequency of the system shown in figure is

(A) 
k

m2
 (B) 

k

m

(C) 
2k

m
 (D) 

3k

m

Solution:
The parallel springs can be reduced to a single spring of  

kp = 
k k

2 2
+  = k

Now two springs of stiffness k and k are connected in series 

→ ks = 
k

2

           ∴ wn = 
k

m

k

m
s =

2
. 

Example 7: The differential equation for free vibrations of 

a spring mass system is 4 49 0
2

2

d x

dt
x+ = . The time period 

of natural vibration is (x is in metre and t in second)
(A) 0.893 s (B) 1.284 s
(C) 1.795 s (D) 0.982 s

Solution:
Given equation can be written as 

d x

dt
x

2

2

49

4
0+ = which is 

of the form ��x xn+ w 2 = 0

⇒ wn
2 = 

49

4
 ⇒ wn = 

49

4

7

2
3 5= = .

∴ Tn = 
2 2

3 5

p
w

p

n

=
.

 = 1.795 s. 

Let us now recap some important properties and charac-
teristics of simple harmonic motion (SHM).

Properties/Characteristics of 
SHM
Consider a particle of mass m, executing a linear SHM along 
the X-direction with equilibrium position at the origin. At time 
t = 0, the particle is at origin, moving towards the +x direction.

 1. At time t, position x = A sinw t, where A = amplitude 
of SHM, w = natural circular frequency of SHM

 2. Velocity v = 
dx

dt
A t A x= = −w w wcos 2 2

  Maximum velocity vmax = Aw where x = 0 i.e. at 
the equilibrium position. v = 0 when x = ± A (i.e. at 
displacement amplitude)

 3. Acceleration a = 
dv

dt

d x

dt
A t= = −

2

2
2w wsin

        = −w2x
  |Maximum acceleration| = w 2A when
  x = ±A (at extreme position)
  At x = 0, a = 0

∴ 
a

v

A

A
max

max

= =
w
w

w
2

 for SHM

 4. Restoring force F at displacement ± x is of magnitude 
= ma = mw 2x

    ∴ Average force acting on particle upto x

= 
0

2

1

2
2+

=
F

m xw

 5. Potential energy at displacement x,
  PE = FAverage × x

          = 
1

2
2 2m xw
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  At x = 0 (equilibrium position),
  PE = 0 (minimum)
  At x = ± A(extreme position),

  PE = 
1

2
2 2m Aw (maximum)

  ∴ PE at any position = 
1

2
2 2m xw

     = 
1

2
2 2 2m A tw wsin

     = 
1

2

1 2

2
2 2m A

t
w

w−⎡
⎣⎢

⎤
⎦⎥

cos

     = 
1

2

1

4
22 2 2 2m A m A tw w w− cos

    ∴ PE in SHM is also simple harmonic with circular 
frequency 2w and shifted origin.

 6. Kinetic energy at displacement x,

KE = 
1

2
2mv

 = 
1

2

1

2
2 2 2 2 2 2m A x m A tw w w( ) cos− =

= 
1

2

1 2

2
2 2m A

t
w

w+⎡
⎣⎢

⎤
⎦⎥

cos

    ∴ KE in SHM is also simple harmonic with circular 
frequency 2w and shifted origin.

 7. Total energy in SHM is the sum of KE and PE

  ∴ E = KE + PE

= 
1

2

1

2
2 2 2 2 2 2m A t m A tw w w wcos sin+

= 
1

2
2 2m Aw = constant

  Hence, in undamped SHM, the total energy of 

oscillation is constant and it is equal to 
1

2
2 2m Aw .

  i.e. E = 
1

2
2 2m Aw = constant, has zero frequency of 

oscillation.

  For a spring-mass system, w = 
k

m

⇒ E = 
1

2
2m

k

m
A

⇒ E = 
1

2
2kA

  i.e. k = mw 2

 8. When displacement is x, 
PE

kE

t

t
=

sin

cos

2

2

w
w

         = tan2 w t

  Also, 
PE

KE

x

A x
=

−( )
2

2 2

  when x = 
A PE

KE2

1

3
, =

  when x = 
A PE

KE2

1

2
, = :

  PEmax = KEmax = 
1

2
2 2m Aw

 9. In SHM, velocity leads displacement by a phase of 
p
2

 

radian (90°), acceleration leads velocity by a phase of 
p
2

 radian (90°), so acceleration leads displacement 

by a phase of p radian (180°).

 10. The graph between displacement and acceleration in 
SHM is a straight line with negative slope, passing 
through origin.

a

xθO

  |tan q | = w 2, where q is the angle which the a − x 
diagram makes with the x-axis.

 11. The graph between velocity and displacement in SHM 
is an ellipse. It becomes a circle only when w = 1 rad/s.

 12. The graph between acceleration and velocity in SHM is 
also an ellipse. It becomes a circle only when w  = 1 rad/s.

 13. The graph between PE and displacement in SHM 
is a parabola which has zero value at equilibrium 
position (x = 0) and maximum values at amplitude 
positions.

PE

+A�A O x

mA2ω21
—
 2

 14. The graph between KE and displacement in SHM is 
an inverted parabola with maximum KE at x = 0 and 
zero KE at x = ± A.

x−A +A

KE

2
mω2A

O
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 15. The graph between total energy of oscillation E 
and displacement x is a straight line parallel to the 
displacement axis.

E

x
O

mω2A21
—
 2

Example 8: A point mass is executing simple harmonic 
motion with an amplitude of 10 mm and frequency of 4 Hz. 
The maximum acceleration (m/s2) of the mass is _________

Solution: A = 10 mm = 0.01 m

      f = 4 Hz → w = 2p f = 2p × 4

        = 8p rad s−1

Maximum acceleration, amax = w 2A

        = (8p)2 × 0.01

        = 6.317 m/s2

Example 9: A single degree of freedom system having 
mass 1 kg and stiffness 10 kN/m, initially at rest is subjected 
to an impulse force of magnitude 5 kN for 10−4 second. The 
amplitude in mm of the resulting free vibration is
(A) 0.5  (B) 1.0
(C) 5.0  (D) 10.0

Solution:
Mass m = 1 kg ; k = 10 × 103

= 104 N/m
Impulse given J = Ft = (5 × 103) × 10−4

= 0.5 Ns
We know that impulse J

= change in linear momentum
= Dp (by impulse - momentum theorem)
= p2 − p1

= p2 (∵  p1 = 0 as initially system is at rest)

∴ p2 = 0.5 Ns = 0.5 kg ms−1

∴ Maximum KE = 
p

m
2

2

2

( )

∵ KE
p

m
=

⎛
⎝⎜

⎞
⎠⎟

2

2

= 
0 5

2 1
0 125

2
.

.
( )

×
= J

In SHM, PEmax = KEmax for undamped oscillation.

⇒ 
1

2
2kA KE= max

⇒ A = 
2 2 0 125

104

KE

k
max .

=
×

    = × −5 10 3 m = 5 mm 

Aliter 

wn = 
k

m
=

10

1

4

= 100 rad/s

Impulse J = Ft = 5 × 103 × 10−4

= 0.5 Ns.
But Dp = J (impulse momentum theorem)

⇒ (p2 − p1) = J

⇒ (p2 − 0) = J (∵  p1 = 0 as system is initially at rest)

⇒ p2 = J or mVmax = J

⇒ Vmax = 
J

m
= =

0 5

1
0 5

.
. m/s

∴ a = 
V

n

max

w
= 

0 5

100
0 005

.
.= m = 5 mm 

Example 10:

A

B
m

m

x

δ

kF
re

e 
 le

ng
th

In the figure shown, the spring deflects by d to position A 
(the equilibrium position) when a mass m is kept on it. Dur-
ing free vibration, the mass is at position B (distant x below 
A) at some instant. The change in potential energy of spring- 
mass system from position A to position B is

(A) 
1

2
2kx  (B) 

1

2
2kx mgx−

(C) 
1

2
2

k x +( )d  (D) 
1

2
2kx mgx+

Solution:
There are two forms of potential energy in this system (1) 
Elastic potential energy of spring (2) Gravitational  potential 
energy of mass m.
The gravitational potential energy at A (equilibrium posi-
tion) is taken as zero.
Hence, gravitational potential energy at B = −mgx  
(−,  because mass is lowered by x)
At the equilibrium position A, spring is compressed by d 
Hence, elastic potential energy at

A = 
1

2
2kd

At position B, spring is compressed by (d + x)
∴ Elastic potential energy at

B = 
1

2
2

k xd +( )  = 
1

2
kd 2 + 

1

2
2kx k x+ d
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∴ At A (equilibrium position), spring force = weight
⇒ kd = mg
PEA = Total potential energy at

A = 0 + 
1

2

1

2
2 2k kd d=

PEB = Total potential energy at B

= −mgx + 
1

2

1

2
2 2k kx k xd d+ +

= 
1

2

1

2
2 2k kx mgx k xd d+ =( )∵

∴ DPE (A to B) = PEB − PEA

= 
1

2

1

2

1

2
2 2 2k kx kd d+⎛

⎝⎜
⎞
⎠⎟

−

= 
1

2
2kx .  

If we have to find the change in PE of spring alone, it is 

1

2

1

2

1

2
2 2 2k kx k x kd d d+ +⎛

⎝⎜
⎞
⎠⎟

−

 = 
1

2
2kx k x+ d

 = 
1

2
2kx mgx+

   ∵k mgd =( )
If we have to find the change in PE of mass alone, it is 
−mgx.

NOTE

Example 11:

k2

k1

M

A block of mass m is suspended by the spring arrangement 
as shown in figure. The springs, strings and pulley are of 
negligible mass and the pulley is smooth. If the block is 
moved vertically from its equilibrium position and released, 
the natural frequency of vibration is

(A) k k

k k m
1 2

1 2+( )
 (B) k k

k k m
1 2

1 24 +( )

(C) 4

4
1 2

1 2

k k

k k m+( )
 (D) k k

k k m
1 2

1 24+( )

Solution:
T1

T2

mg

T2

T2

   Forces on pulley     Forces on block

For equilibrium of block, T2 = mg
Here T2 = spring force of spring of stiffness k2

         = k2x2, where x2 is the extension of spring 2

∴ T2 = k2x2 = mg → x2 = mg

k2

  (1)

For the equilibrium of pulley,
T1 = 2T2 = 2mg
But T1 = k1x1, where
x1 = extension of spring 1

⇒ k1x1 = 2mg → x1 = 2

1

mg

k
  (2)

The total distance x though which the block of mass m gets 
lowered to reach equilibrium position is
x = 2x1 + x2 [∵when upper spring stretches by x1, centre of 
pulley gets lowered by x1 and mass m gets lowered by 2x1. 
This is to be added to extension of lower spring]

     = 2 × 2

1 2

mg

k

mg

k
+

i.e. x = mg 4 1

1 2k k
+

⎛
⎝⎜

⎞
⎠⎟

  (3)

The system can be reduced to a single spring mass system 
of stiffness keff and mass m such that

       x = 
mg

keff

  (4)

Comparing (3) and (4),

1 4 1

1 2k k keff

= +

⇒ keff = k k

k k
1 2

1 24+( )

∴ wn = 
k

m

k k

k k m
eff =

+( )
1 2

1 24
 

Aliter
The upper spring can be replaced by a spring of stiffness 

k1

4
which is now connected in series with the lower spring of 
stiffness k2. So, the equivalent system is as shown.
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m

k2

k1
4

∴ 
1 4 1

1 2k k keff

= +  ⇒ keff = k k

k k
1 2

1 24+( )

∴ wn = 
k

m

k k

k k m
eff =

+( )
1 2

1 24
.

Determination of Natural Frequency  
of Free Angular Vibrations by Equilibrium 
Method
Using D’Alembert’s principle, the equation for dynamic 
equilibrium will be the sum of all external torques plus the 
sum of inertial torque is equal to zero.

i.e. Resultant torque + Inertial torque = zero

If q is the instantaneous angular displacement, q
. qd

dt

⎛
⎝⎜

⎞
⎠⎟

 

is the instantaneous angular velocity (w) and q
.. qd

dt

2

2

⎛
⎝⎜

⎞
⎠⎟

 is 

the instantaneous angular acceleration (a).
tγ = Resultant torque = Restoring torque due to elastic 

forces  = sq,
where q = angular displacement of system from equilib-

rium position
s = elastic stiffness (i.e. restoring torque per unit angular 

displacement)
ti = Ia = I ��q , where
I = moment of inertia of the system about the axis of 

angular displacement
∴ I ��q q+ =s 0  is the differential equation for free angu-

lar oscillations. The solution for this equation is ∴ q(t) = 
q0sin(wnt + f), which is SHM.

Here, q0 = amplitude of angular displacement

wn = natural circular frequency of vibration

wn = 
s

Ι
 and

f = initial phase (at time t = 0)

Angular acceleration a = −w qn
2  for angular SHM

Simple Pendulum
A particle of mass m is connected to one end of a light, 
inextensible string of length l. The other end of the string 
is pivoted at fixed point O as shown in the following figure.

θ

O

m

mg

m

sinθ

An external torque moves the bob of mass m through 
a small anticlockwise angular displacement and the bob 
is released. When the bob is at an angular displacement q 
(counter clockwise),

TR = Restoring torque = mg × � sinq
 = mg � q, clockwise

(∵  For small angles, sinq = q in radian)

Ti = Inertial torque = I ��q  (clockwise)

= m� ��2q (∵ I  = m �2  about O)

∴ Ti + TR = 0 (for dynamic equilibrium)

⇒ m mg� �� �2 0q q+ =

⇒ ��
�

q q+ ⎛
⎝⎜

⎞
⎠⎟

=
g

0  ⇒ SHM

∴ wn
g2 =
�

 ⇒ wn = 
g

�
;

∴ fn = 
w

p p
n g

2

1

2
=

�

Tn = 2p 
�
g

 for a simple pendulum

1.  The time period of a simple pendulum is independent 
of the mass of the bob.

2.  A simple pendulum having a time period T = 2 second 
is called a second’s pendulum. The length of the 
string for a second’s pendulum on Earth is nearly 1 m.

3. The time period of a simple pendulum is

(a)  T = 2p
�

g a+
, when it is in a lift moving 

vertically up with an acceleration a (a < g)

(b)  T = 2p
�

g a−
, when it is in a lift moving 

vertically down with an acceleration a (a < g)

NOTES
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(A) 
k

m2
 (B) 

k

m

(C) 
2k

m
 (D) 

5k

m

Solution:

k

A B

C
G

3
2L

3
L

k
A�

B�

θ
θ

G is the centre of mass of rod AB.

∴ CG = AG − AC = 
L L L

2 3 6
− =

Moment of inertia of rod about an axis through C and per-
pendicular to AB,

IC = IG + m(CG)2

(∵  IG
mL

=
2

12
 for uniform rod)

= 
mL

m
L2 2

12 6
+ ⎛

⎝⎜
⎞
⎠⎟

= 
mL mL2 2

12 36
+

= 
4

36 9

2 2mL mL
=

∴ IC = 
mL2

9
  (i)

From the equilibrium position, let the rod AB be rotated 
clockwise by a small angle q. Point B moves vertically down 

to B′ such that BB′ = CB q = 
2

3

L
q

FB = The spring force at B = k(BB′)

        = 
2

3

kLq
, vertically upwards

Torque about C due to spring force at B,

TB = FB(CB) = 
2

3

2

3

kL Lq
.

      = 
4

9

2kL q
, anti-clockwise

The point A moves vertically up to A′ such that AA′ = (CA)

q = 
L

3
q

FA = The spring force at A = k(AA′)

  = 
kLq

3
, vertically downwards

(c)  T = ∞ (infinite), when it is in a lift under free-fall 
(a = g) such a pendulum will make no oscillation 
i.e. fn = 0 eg. simple pendulum in an artificial 
satellite of Earth.

(d)  T = 2p 
�

g a2 2+
, when it is in a vehicle moving 

horizontally with an acceleration a

(e)  T = 2p 
�

g cosq
, when it is on a frame which 

slides on a smooth inclined plane, making angle q 
with horizontal.

(f)  The time period of a simple pendulum of length 
�  on a planet of radius R and acceleration due to 
gravity g is

T = 2p 
1

g g

R�
+⎡

⎣⎢
⎤
⎦⎥

If � < < R, then 
g

R
can be neglected which gives  

T = 2p 
�
g

.

If � >> R (i.e. an infinitely long pendulum), then 
g

�

can be neglected, which gives T = 2p
R

g
  . Hence, 

the time period of an infinitely long pendulum near 
surface of Earth,

T = 2p 
6 4 10

9 81

6.

.

×

(∵R of Earth = 6.4 × 106 m
 g = 9.81 m/s2)

  = 5075 second

  = 84.6 minute, which is finite  
   (and not infinite)

Example 12:

k

A B

C

3
2L

3
L

k

A rigid uniform rod AB of length L and mass m is hinged at 

C such that AC = 
L

3
, CB = 

2

3

L
. Ends A and B are supported 

by springs of spring constant k. The natural frequency of the 
system is given by
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Torque about C due to spring force at A,

TA = FA(CA) = 
kL L kLq q

3 3 9

2

. = , anti-clockwise

∴ Total restoring torque,

TR = TA + TB

= 
4

9 9

2 2kL kLq q
+

= 
5

9

2kL⎛
⎝⎜

⎞
⎠⎟

q , anticlockwise

If a is the angular acceleration (which is anticlockwise), 
inertial torque Ti = ICa
As per D′ Alembert’s principle, TR + Ti = 0

⇒ 
5

9
0

2kL
C

⎛
⎝⎜

⎞
⎠⎟

+ =q aI

a = −

5

9

5

9

9

2 2

2

kL kL

mLC

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

q q

I

i.e. a = − 
5k

m

⎛
⎝⎜

⎞
⎠⎟

q  ⇒ angular SHM

∴ wn
2 = 

5k

m
 ⇒ wn = 

5k

m
 

Example 13:

m m

αα

The assembly shown in figure is composed of two mass-
less rods of length � , with two particles, each of mass m. 
The natural frequency of this assembly for small oscilla-
tions is

(A) 
g

�
  (B) 

2g

�cosa

(C) 
g

�cosa
 (D) 

g cosa
�

Solution:
O

m

B
B�

m
A

A�

φ
α α

φ

O is the hinge. The moment of inertia of the system about 
hinge O is

Io = m �2 + m �2  = 2m �2

From the equilibrium position, rotate the system by a small 
angle in the clockwise sense and release. When the system 
has moved by a small angle f in the clockwise sense, right 
arm makes an angle (a − f) with the vertical and the left 
arm makes an angle of (a + f) with vertical
Restoring torque on left arm about O,

TL = W � sin(a + f), anticlockwise [W = mg]

Restoring torque on right arm about O,

TR = W � sin(a − f), clockwise

∴ Net restoring torque about O,

T = TL − TR 

 = W � sin(a + f) − W � sin(a − f)

 = W � [sin(a + f) − sin(a − f)]

 = W � [(sina cosa + cosa sinf) − (sina cosf − cosa sinf)]

 = W � [2cosa sinf]

 =  (2W � cosa)f, anticlockwise 
[∵ sinf = f for small value of f]

If b is the angular acceleration, then inertial torque about O
Ti = I0q , anticlockwise

 = 2m �2b
As per D’Alembert’s principle,
T + Ti = 0

⇒ (2W �cos )a f + 2m �2 b = 0

⇒ b = 
−( )2

2 2

W

m

�
�

cosa f

= 
−( )2

2 2

mg

m

�
�
cosa f

= − ⎛
⎝⎜

⎞
⎠⎟

g

�
cosa f

∴ b = −
g

�
cosa f⎛

⎝⎜
⎞
⎠⎟

⇒ angular SHM

 
w

a
n

g2 =
cos

�
. 
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Example 14:
O

m2

m1

A compound pendulum consists of two point masses m1 
and m2, connected to the same light, inextensible string of 
length �2  and upper end connected to fixed pivot O. Mass 
m1 is at a distance �1  from O and mass m2 is at a distance 
�2 from O as shown in figure. Keeping the string taut, mass 
m2 is pulled to the right and released so that the system 
makes to and fro motion of small angular amplitude in the 
vertical plane. The natural time period of oscillation of this 
pendulum is

(A) 2
1 1

2
2 2

2

1 1 2 2

p
m m

m m g

� �

� �

+( )
+( )

(B) 2p 
�2

g

(C) 2 1 1 2 2

1 2

p
m m

m m g

� �+( )
+( )

(D) 2p 
m m

m m g

1 1
2

2 2
2

1 2 1 2

� �

� �

+( )
+( ) +( )

Solution:

θ

O

m2

m1

Moment of inertia of system about pivot O,

I0 = m1 � �1
2

2 2
2+ m

when the angular displacement is a small value q to the 
right, angular acceleration is a  =  ��q  and inertial torque  
Ti = Ia = m m1 1

2
2 2

2� �+( )a , clockwise. For small angle 
q, sinq = q
∴ Restoring torque (about O),

TR = (m1g �1 sin )q + m2g �2 sinq
 = m m g1 1 2 2� �+( ) sinq

 = m m g1 1 2 2� �+( ) q
As per D′ Alembart’s principle,

TR + Ti = 0

∴ m m g1 1 2 2� �+( ) +q  m m1 1
2

2 2
2 0� �+( ) =a

⇒ a  = 
− +( )

+( )
m m g

m m

1 1 2 2

1 1
2

2 2
2

� �

� �
q  ⇒ SHM

∴ wn

m m g

m m
2 1 1 2 2

1 1
2

2 2
2

=
+( )
+( )

� �

� �

∴ wn = 
m m g

m m

1 1 2 2

1 1
2

2 2
2

� �

� �

+( )
+( )

∴ Tn = 2
2 1 1

2
2 2

2

1 1 2 2

p
w

p
n

m m

m m g
=

+
+( )

� �
� �

 

Determination of Natural Frequency of Free 
Undamped Vibration by Energy Method 

k
m m

x

Equilibrium
position

smooth floor

v, a

Consider a light spring of spring constant k and a block 
of mass m, executing free longitudinal vibrations. When the 
block is displaced by x to the right from the mean position, 
let its velocity and acceleration be v and a respectively. We 

have v = 
dx

dt
x= �  and a = 

d x

dt
x

2

2
= ��

Kinetic energy of system, KEx = 
1

2
2mv

Potential energy of system, PEx = 
1

2
2kx

Total energy of system, E = KEx + PEx

      = 
1

2

1

2
2 2mv kx+

The total energy of vibration system (i.e. energy of vibra-
tion) is constant for undamped vibrations.

∴
1

2

1

2
2 2mv kx E+ = = constant
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Differentiating the above equation with respect to time 

(t), we get 
1

2
2

1

2
2 0m v

dv

dt
k x

dx

dt
. .+ =

∵
dE

dt
=⎛

⎝⎜
⎞
⎠⎟

0

⇒ mva + kxv = 0 ∵
dv

dt
a

dx

dt
v= =⎛

⎝⎜
⎞
⎠⎟

,

⇒ ma + kx = 0

or a = −
k

m
x

⎛
⎝⎜

⎞
⎠⎟

 ⇒ SHM

∴ wn = 
k

m
, same result obtained earlier by equilibrium 

method.

1.  When a system of mass m is having a pure translation 

with a velocity V, its kinetic energy = 
1

2
2mV

2.  When a system of mass m is having a pure rotation 
about an axis with an angular velocity w, its rotational 

kinetic energy = 
1

2
2Iw , where I = moment of inertia 

of system about axis of rotation = mk2, where k = 
radius of gyration of the system about that axis.

3.  When a body of mass m and radius R is doing pure 
rolling with an angular velocity w and translational 
velocity VCM (of its centre of mass), then VCM = Rw 

and translational KE = 
1

2
2mVCM , rotational KE = 

1

2
ICMw 2 , where ICM  = mKCM

2 (here KCM = radius 

of gyration of the round body about rotational axis 
through centre of mass)

∴ Total energy of rotating body
= KE (translation) + KE (rotation)

= 
1

2

1

2
2 2mVCM CM+ I w

i.e. E = 
1

2
12

2

2
mV

K

R
CM

CM+
⎡

⎣
⎢

⎤

⎦
⎥  in pure rolling.

NOTES

Example 15:

m
k

A thin uniform disc of mass m is attached to a light 
spring of stiffness k as shown in figure. The disc rolls with-
out slipping on a horizontal surface. The natural frequency 
of vibration of the system is

(A) 1

2p
k

m
 (B) 

1

2

2

p
k

m

(C) 
1

2

2

3p
k

m
 (D) 

1

2

3

2p
k

m

Solution:

Radius of gyration of disc, KCM = 
R

2

 ∵ ΙCM CM
MR

MK= =
⎛
⎝⎜

⎞
⎠⎟

2
2

2
When the centre of mass is displaced by xCM to the right 
from equilibrium position, let the velocity of centre of mass 
be VCM and its acceleration be aCM.

∴ VCM = �xCM  and aCM = ��xCM

PE of system, PEx = 
1

2
2kxCM

KE of system,

KEX = 
1

2
12

2

2
mV

K

R
CM

CM+
⎡

⎣
⎢

⎤

⎦
⎥ [For body in pure rolling]

= 
1

2
1

1

2
2mVCM +⎡

⎣⎢
⎤
⎦⎥

∵
K

R
CM

2

2

1

2
=

⎡

⎣
⎢

⎤

⎦
⎥for disc

= 
3

4
2mVCM

∴ KEx + PEx = Total energy of oscillation,

E = constant

∴ 
3

4

1

2
2 2mV kxCM CM+ = E

Differentiating with respect to time (t), we get 

3

4
2m V

dV

dt
CM

CM.
⎛
⎝⎜

⎞
⎠⎟

+  1

2
2 0k x

dx

dt
CM

CM.
⎛
⎝⎜

⎞
⎠⎟

=

  (∵E = constant)

⇒ 
3

2
0mV a kx VCM CM CM CM+ =

∵
dV

dt
a

dx

dt
VCM

CM
CM

CM= =⎛
⎝⎜

⎞
⎠⎟

,

⇒ 
3

2
0ma kxCM CM+ =

⇒ aCM = 
−
⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

kx

m

k

m
xCM

CM3

2

2

3
⇒SHM

∴ wn
2 = 

2

3

k

m
 ⇒ wn = 

2

3

k

m

∴ fn = 
w

p p
n k

m2

1

2

2

3
= . 
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Example 16:

a

r

k k

A cylinder of mass 1 kg and radius r = 1 m is connected 
by two identical springs at a height of a = 0.5 m above the 
centre as shown in the figure. The cylinder rolls without 
slipping. If the spring constant is 30 kN/m for each spring, 
the natural frequency of the system for small oscillations (in 
Hz) is ___________ .

Solution:

x
G

θ

P

k = 30 × 103 N/m
r = 1 m
m = 1 kg
a = 0.5 m
Point of contact P is the instantaneous centre. The cylinder 
can be considered to be under pure rotation about point P. 
If the cylinder rotates clockwise by a small angle q about 

P, centre of mass G gets shifted by x = r
d

dt
r

q
w=  and the 

change in length of the springs is (r + a)q, with one spring 
getting compressed and another getting stretched.

∴ PE in the springs

  = 2 × 
1

2

2
k r a+( )⎡⎣ ⎤⎦q

 = k r a+( )2 2q

KE of cylinder = 
1

2
2I pw

 = 
1

2
2 2IG mr+⎡⎣ ⎤⎦w

 = 
1

2 2

2
2 2mr

mr+
⎡

⎣
⎢

⎤

⎦
⎥w

 =
3

4
2 2mr w

KE + PE = E = constant

⇒ 
3

4
2 2 2 2mr k r a Ew q+ +( ) =

Taking derivative with respect to time,

3

4
2 02 2

mr
dt

k r a
d

dt
w

w
q

qd⎛
⎝⎜

⎞
⎠⎟

+ +( ) ⎛
⎝⎜

⎞
⎠⎟

=

    ∵
dE

dt
=⎛

⎝⎜
⎞
⎠⎟

0

⇒ 
3

2
2 02 2

mr
d

dt
k r a

w
q⎛

⎝⎜
⎞
⎠⎟

+ +( ) =

    ∵
d

dt

q
w=⎡

⎣⎢
⎤
⎦⎥

⇒ 
3

2
2 02 2

mr k r aa q+ +( ) =

∵
d

dt

w
a=⎡

⎣⎢
⎤
⎦⎥

⇒ a = 
− +( ) ×2 2

3

2

2

k r a

mr

q

 = − 
4

3

2

2

k r a

mr

+( )⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ q ⇒ SHM

∴ wn = 
4

3

2

2

k r a

mr

+( )

⇒ fn = 
w

p
n

2
 = 

1

2

4

3

2

2p
k r a

mr

+( )

∴ fn = 
1

2

4

3

30 1000 1 0 5

1 1

2

2p
×

× +( )
×

.

= 47.75 Hz
Hence, frequency of natural vibration is 47.75 Hz.

The radius of gyration of various round bodies of radius 
R and mass m, about an axis through their centres of mass 
are given below.

NOTE

Sl. No. Body ICM KCM

1 Thin ring mR 2 R

2 Uniform disc
mR 2

2

R

2

3 Solid cylinder
mR 2

2

R

2

4 Solid sphere
2
5

2mR 2
5
R

5 Thin spherical shell 
2
3

2mR 2
3
R
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Determination of Natural Frequency of 
Vibration of Free Vibrations by Rayleigh’s 
Method 
Rayleigh’s method takes into consideration that for a system 
in SHM, the maximum kinetic energy of vibration (which 
occurs at the equilibrium position, where potential energy is 
zero) is equal to the maximum potential energy of vibration 
(which occurs at the maximum amplitude positions, where 
the kinetic energy is zero)

∴ KEmax = PEmax

For a spring-mass system, if m = mass of oscillating 
body, k = spring constant and A = amplitude of vibration, 
maximum velocity, vmax = Awn

∴ KEmax = 
1

2

1

2
2 2 2mv mA nmax = w

PEmax = 
1

2
2kA

KEmax = PEmax (for SHM)

⇒ 
1

2

1

2
2 2 2mA kAnw =

⇒ wn
2 = 

k

m
 ⇒ wn = 

k

m
, same result as obtained by 

equilibrium method or by energy method.

Determination of Natural Frequency of 
Free Undamped Transverse Vibrations  
of Shafts Carrying a Concentrated load. 

M

L

δ
Equilibrium
position 

x

Consider a horizontal, uniform rod (or a shaft) of negli-
gible mass, fixed at one end and free at the other end.

A concentrated mass M is connected at the free end 
(weight of mass, W = Mg). The rod (or shaft) undergoes 
a static lateral deflection d, when the mass M is slowly 
released and comes to rest in the equilibrium position.

If s is the stiffness of the rod (or shaft) (i.e. force required 
to produce unit lateral deflection), then in the equilibrium 
position,
        sd = W = Mg (1)

If the rod or shaft is deflected further from the equilib-
rium position by an external force and released, the rod (or 
shaft) will execute transverse vibrations. At an instant when 
the rod (or shaft) is deflected downwards from the equilib-
rium position by x, the net force acting on rod (or shaft)

= weight of body − upward force on rod due to deflection

= Mg − s(d + x) ( )∵Mg s= d
= −sx

But net force = mass × acceleration

              = m 
d x

dt

2

2

⇒ m 
d x

dt
sx

2

2
= −  or m

d x

dt
sx

2

2
0+ =

Or 
d x

dt

s

m
x

2

2
0+ ⎛

⎝⎜
⎞
⎠⎟

=  which is SHM

This equation is the same as for longitudinal vibrations.

∴ wn = 
s

m
 ⇒ wn = 

mg

m

g

d d
=

fn = 
1

2

1

2p p d
s

m

mg

m
=

i.e. fn = 
1

2

1

2

0 4985

p p d d
s

m

g
= =

.
.Hz

Here, d = static deflection of rod (or shaft) in m
If E = Young’s modulus for material of shaft
(or rod)
I = second moment of area of the shaft (or rod)
L = length of shaft (or rod),

d = 
MgL

E

3

3 I
, for cantilever beam, W = Mg

d = WL

E

3

3 I
, for cantilever beam with concentrated load W 

at free end.

1.  The values of I for various cross sections are
(a) Circular 

d

y

y

xx

I Ixx yy d= =
p
64

4 , where d = shaft diameter

(b) Rectangular
y

y

x
d

b

I xx = 
bd3

12

          I yy = 
db3

12

NOTES
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Example 17: Consider a cantilever beam, having negligi-
ble mass and uniform flexural rigidity, with length 0.01 m. 
The frequency of vibration of the beam, with a 0.5 kg mass 
attached at the free tip, is 100 Hz. The flexural rigidity (in 
Nm2) of the beam is __________ .

Solution:

L

Mg

The natural frequency of transverse vibration of a cantilever 
beam of negligible mass, loaded as shown is,

fn = 
0 4985.

d
Hz, where d = static deflection, fn = 100 Hz

→ d  = 
0 4985

100

2

2

.( )
( )

= 2.485 × 10−5 m

But d = 
MgL

E

3

3 I

∴ Flexural rigidity, EI = 
MgL3

3d

 = 
0 5 9 81 0 01

2 485 10

3

5

. . .

.

× × ( )
× −

 = 0 0658. Nm2

Hence, the flexural rigidity of the beam is 0.0658 Nm2.

Example 18: A simply supported shaft of length 900 mm 
carries a mass of 50 kg placed 300 mm from left end. If  
E = 200 GN/m2 and diameter of shaft is 40 mm, the natural 
frequency of undamped natural transverse vibrations is
(A) 86.33 Hz (B) 52.17 Hz
(C) 32.57 Hz (D) 24.38 Hz

Solution:

a = 0.3 m b = 0.6 m

L = 0.9 m

m = 50 kg

(c) Square

a
x

a
y

I Ixx yy
a

= =
4

12

(d) Triangular
b

h

A

xx

A
G

I Ixx G
bh

= =
3

36

I IAA Base
bh

= =
3

12

2.  The static deflections d for various types of 
concentrated loads (W = Mg) are

(a) Cantilever
M

L

d = 
MgL

E

3

3 Ι

fn = 
1

2p
s

Meff

;  If mass of shaft is negligible,  

Meff = M

If mass of shaft is ms (not negligible),

Meff = M + 
33

140

ms

(b) Simply supported 
M

ba

L

d =
Mga b

E L

2 2

3 Ι
 (d is below point of application 

of Mg)

If a = b = 
L

2
,  dcentre = 

MgL

E

3

48 Ι
 and

fn = 
1

2p
s

Meff

,  Meff = M + 
17

35

ms

where ms = mass of shaft

(c) Fixed ends
M

ba

L

d =
Mga b

EIL

3 3

33
(d  is below point of application of Mg)

If a = b = 
L

2
,  dcentre = 

MgL

E

3

192 Ι
 and

fn = 
1

2p
s

Meff

, where

Meff = M
ms+

13

35
 , where ms = mass of shaft
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Shaft dia, d = 40 mm = 0.04 m

E = 200 × 109 N/m2 

∴ I = 
p
64

4d

= 
p
64

0 04 1 2566 10
4 7 4× ( ) = × −. . m

d = 
Mga b

E L

2 2

3 I

 
=

× × ×
× × × × ×−

50 9 81 0 3 0 6

3 200 10 1 2566 10 0 9

2 2

9 7

. . .

. .

 = 2.342 × 10−4 m

fn = 
1

2

1

2

9 81 0 4985

p d p d d
g

= =
. .

 = 
0 4985

2 342 10 4

.

. × −

 = 32.57 Hz. 

Example 19:

0.4 m 0.4 m

W = 500 N

The natural frequency of transverse free vibration of the 
beam shown in figure is 125 Hz. The flexural rigidity of the 
beam (in N m2) is

(A) 83,836.35 (B) 61,937.48

(C) 94,328.37 (D) 75,821.64

Solution:

For transverse vibration,

fn = 
1

2

0 4985

p d d
g

=
.

Hz.

⇒ d = 
0 4985 0 4985

125

2

2

2

2

. .( )
=

( )
( )fn

   = × −1 5904 10 5. m

For the fixed beam with concentrated load at centre,  

d = 
WL

E

3

192 I

⇒ EI = 
WL3 3

5192

500 0 8

192 1 5904 10d
=

× ( )
× × −

.

.

= 83,836.35 Nm2. 

Determination of Natural Frequency of Free 
Undamped Transverse Vibrations of Shafts 
Carrying a Uniformly Distributed Load.
Case 1 Simply supported beam

L

x
dx

y

Consider a simply supported horizontal shaft (or beam) of 
length L, made of a material of Young’s modulus E and having 
a second moment of area about the bending axis equal to I. Let 
this beam carry a uniformly distributed load of m kg per metre 
(or weight mg newton per metre). Due to the load, the shaft (or 
beam) will bend and come to rest in an equilibrium position, 
where the deflection at the centre of the shaft (or beam) is 

d =
mgL

E

4

384 I
 This is the static deflection at the centre. If the 

shaft (or beam) is pulled vertically down from this equilibrium 
position and released, it will execute transverse vibrations.

Consider an elemental length dx of the beam, at a dis-
tance x from the left end. Let the displacement of this 
elemental length from the equilibrium position be y. From 
the theory of bending of beams (refer to study material on 

Strength of Materials), we know EI
d y

dx
Mx

2

2
= , where Mx is 

the bending moment at distance x from the beam end.

⇒ EI 
d y

dx

dM

dx
Fx

x

3

3
= = ,  where Fx is the shear force at   

distance x from the beam end

⇒ EI 
d y

dx

4

4
= dynamic load per unit length on beam at 

distance x from the beam end
But the dynamic load per unit length of vibrating beam 

(at distance x) is equal to the centrifugal force per unit 
length = mw2y.

∴ EI 
d y

dx
m y

4

4
2= w , where

w = circular frequency of transverse vibration  of beam

⇒ 
d y

dx

m

E
y

4

4
2 0− ⎛

⎝⎜
⎞
⎠⎟

=
Ι

w

i.e. 
d y

dx
m y

4

4

4
0− ( ) =∗

is the differential equation for this transverse vibration, 

where m
m

E
∗( ) =

4 2w
I

 (1)

The solution to this differential equation is of the form
y = A cos m*x + B sin m*x + C cosh m*x + D sinh m*x, 

where (2)
A, B, C and D are constants of integration obtained from 

end conditions.
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The end conditions for simply supported beam are

 (i) At x = 0 and x = L, y = 0
   (∵No deflection at supports)

 (ii) At x = 0 and x = L, 
d y

dx

2

2
0=

   (∵No bending moment at the support locations)

On applying the end conditions in equation 2 and solving 
for A, B, C and D we find that there are more than one value 
for m* which is given by

m* = 
p p p
L L L

, ,
2 3

 etc

Using the smallest value of m*, equation (1) becomes 

  
p w
L

m

E

⎛
⎝⎜

⎞
⎠⎟

=
4 2

I

      ⇒ w = 
E

m L L

E

m

I I
× ⎛

⎝⎜
⎞
⎠⎟

=
p p2 2

2

Hence, the smallest natural frequency of transverse vibra-
tions of a simply supported beam carrying a uniformly dis-
tributed load is given by

fn( )1  = 
w
p p

p
2

1

2

2

2
= × ×

L

E

m

I

⇒ f
E

mL
n( ) =

1 42

p I

But 
E

mL

gI
4

5

384
=

d
, where d  = static deflection at the 

centre of simply supported beam.

∴ f
g

n( ) = × =
1 2

5

384

0 5615p
d d

.
 is the fundamental 

frequency (or the smallest frequency) of transverse vibra-
tion of a simply supported beam carrying a uniformly dis-
tributed load. Fundamental frequency is also called the 
first mode or first harmonic. By using the other values of  

m* =⎛
⎝⎜

⎞
⎠⎟

2 3p p
L L

, etc. , we can obtain the next higher frequen-

cies at which the beam can vibrate. These are called sec-
ond harmonic, third harmonic etc (or second mode, third 
mode etc)

These frequencies are 4, 9, 16, ……. etc. times the fun-
damental frequency.

f = n
E

mL
n

g n2
4

2
2

2 2

5

384

0 5615p p
d d

Ι
= =

.

where f is the frequency of free undamped transverse vibra-
tion of uniformly loaded simply supported beam in the nth 
mode and n = 1, 2, 3, 4, …… etc.

m kg/m

L

First Mode (n = 1)

Second Mode (n = 2)

Third  Mode (n = 3)

In all cases, the supports are nodes (or points of zero 
displacement). In the fundamental (or first) mode, there 
are no nodes in between the ends and one anti-node (point 
of maximum displacement)in between the ends. In the sec-
ond mode (n = 2), there is one node (= n − 1) and two anti-
nodes (= n) in between the ends. So, in the nth mode, there 
are (n − 1) nodes and n anti-nodes in between the ends.

Case 2 Encastre beam (Beam with fixed ends) 

m kg/m

L
x dx

As seen in Case-1 (for simply supported beam), we have 

m
m

E
∗( ) =

4 2w
I

 (equation 1) and

y = A cos m*x + B sin m*x + C cosh m*x + D sinh m*x 
 (equation 2)
The end conditions for fixed beam are

 (i) when x = 0 and x = L, y = 0
 (∵No deflection at fixed ends)

 (ii) when x = 0 and x = L, 
dy

dx
= 0

 (∵ slope at fixed ends is zero)

The static deflection at the centre, d = 
mgL

E

4

384 I

Using the above conditions, we can show that the fun-
damental frequency (smallest frequency) of natural free 
undamped transverse vibrations of a uniformly loaded 
beam with fixed ends is

f
E

mL
n( ) =

1 4
3 562.

Ι

For the higher modes of vibration (n = 2, 3, 4,  etc.), the 
natural frequency is given by

f = 
p
2

1

2

2

4
n

E

mL
+⎛

⎝⎜
⎞
⎠⎟

Ι
, where n = 2, 3, 4 etc
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The smallest frequency of oscillation (fundamental fre-
quency) almost corresponds to n = 1.

m kg/m

L

First mode (n = 1)

Second  mode (n = 2)

NOTE

Case 3 Cantilever beam

x dx m kg/m

L

We have m
m

E
∗( ) =

4 2w
Ι

     (1)

y = A cos m*x + B sin m*x + C cosh m*x 
               + D sinh m*x      (2)

The end conditions for cantilever beam are

 (i) when x = 0, y = 0 (∵no deflection at the fixed end)

 (ii) when x = 0, 
dy

dx
= 0

 
(∵zero slope at fixed end)

 (iii) when x = L, 
d y

dx

2

2
0=

 
(∵Bending moment is zero at 

the free end)

 (iv) when x = L, 
d y

dx

3

3
0=

 
(∵ shear force is zero at the 

free end)

The static deflection at the free end of the cantilever beam 

is d  = 
mgL

E

4

8 I
Using the above conditions, we can show that the fun-

damental (smallest) frequency of free undamped transverse 
vibrations of a cantilever beam carrying a uniformly dis-
tributed load is

f
E

mL
n( ) =

1 4
0 565.

I

For higher modes of vibration, the frequencies are given by

f = 
p I
2

1

2

2

4
n

E

mL
−⎛

⎝⎜
⎞
⎠⎟

, where n = 2, 3, 4, ….. etc.

The smallest frequency of oscillation (fundamental fre-
quency) almost corresponds to n = 1.

First mode (n = 1)

NOTE

1.  Shafts which are supported on knife-edges, needle 
bearings and short bearings can be treated as simply 
supported shafts.

2.  Shafts which are supported on long bearings are 
treated as fixed at both ends.

NOTES

Example 20: A uniform shaft is 60 mm in diameter and 
10 m long and may be regarded as simply supported. The 
density of shaft material is 7850 kg/m3 and Young’s modulus  
E =  210 GPa. The natural frequencies of first, second and third 
mode of undamped free transverse vibrations of the shaft are  
(in Hz) respectively
(A) 3.16, 12.64, 28.44 (B) 1.22, 4.88, 10.98
(C) 2.41, 9.64, 21.69 (D) 12.2, 48.8, 109.8

Solution:
Diameter of shaft, d = 60 mm = 0.06 m
∴ Second moment of area,

I = = × ( )p p
64 64

0 064 4
d .

 = 6.3617 × 10−7 m4

E = 210 × 109 N/m2

∴ Flexural rigidity,

EI = 210 × 109 × 6.3617 × 10−7

 = 133,595.7 Nm2

Mass per unit length,
m = Density × cross sectional area

 = 7850 × 
p
4

0 06
2× ( ).

 = 22.195 kg/m

Length, L = 10 m
Fundamental frequency,

f
E

mL
n( ) =

1 42

p I

= 
p
2

133595 7

22 195 104

.

. ×
= 1.22 Hz.

Second harmonic f fn n( ) = ( )2
2

1
2

 = × =4 1 22 4 88. .  Hz
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Third harmonic fn( )3
= 32 fn( )1
= 9 × 1.22
= 10.98 Hz

Hence, the frequencies of first three modes of transverse 
undamped vibrations are 1.22 Hz., 4.88 Hz and 10.98 Hz, 
respectively. 

Example 21: A thin rod 4 mm in diameter is held between 
two chucks 0.9 m apart. The rod weights 1.52 N/m and flex-
ural stiffness is 6.236 Nm2. The natural frequencies (in Hz) 
of the first three modes of undamped free transverse vibra-
tions of the rod are respectively.
(A) 27.90, 76.90, 150.73
(B) 27.90, 111.60, 251.10
(C) 2.79, 7.69, 15.07
(D) 12.31, 33.93, 66.50

Solution:
Mass per unit length,

m = 
weight unit length/

g

 = 
1 52

9 81

.

.

 = 0.1549 kg/m

Flexural stiffness, EI = 6.236 Nm2

Length, L = 0.9 m

⇒ 
E

mL

I
4

= 7.8333

Shaft fixed at both ends
∴ Fundamental frequency,

f
E

mL
n( ) =

1 4
3 562.

I

= 3 562
6 236

0 1549 0 94
.

.

. .
×

×
 = 27.90 Hz.

Second harmonic

f
E

mL
n( ) = +⎛

⎝⎜
⎞
⎠⎟2

2

42
2

1

2

p I

= 
p
2

25

4
7 8333× × .

= 76.90 Hz
Third harmonic

f
E

mL
n( ) = +⎛

⎝⎜
⎞
⎠⎟3

2

42
3

1

2

p I

= 
p
2

49

4
7 8333× × .

= 150.73 Hz. 

Example 22: An aluminium rod is held in a chuck with 
the other end unsupported. It is 10 mm diameter and 500 
mm long. The density of aluminium is 2725 kg/m3 and the 

modulus of elasticity E is 72 GPa. The natural frequencies 
of first three modes of undamped free transverse vibrations 
of the rod (in Hz) are respectively

(A) 31.17, 124.68, 280.53
(B) 13.15, 82.25, 228.48
(C) 7.34, 20.23, 39.65
(D) 29.05, 181.70, 504.73

Solution:

This is a cantilever beam

Diameter of rod, d = 10 mm = 0.01 m

Second moment of area,

I = 
p p
64 64

0 014 4
d = × ( ).

 = 4.91 × 10−10 m4

E = 72 × 109 N/m2

∴ Flexural rigidity,

EI = 72 × 109 × 4.91 × 10−10

 = 35.352 Nm2

Length, L = 0.5 m

Mass per unit length,

m = Density × cross sectional area

 = 2725 × 
p
4

0 01
2× ( ).

 = 0.214 kg/m

Fundamental frequency of transverse vibration, 

f
E

mL
n( ) =

1 4
0 565.

I

= 0 565
35 352

0 214 0 54
.

.

. .
×

×
= 29.05 Hz

Second harmonic

f n
E

mLn( ) = −








2

2

42

1

2

p I
 (n = 2)

= 
p
2

2
1

2

35 352

0 214 0 5

2

4
−⎛

⎝⎜
⎞
⎠⎟ ×

.

. .

= 
p
2

9

4
51 4115× × .

= 181.70 Hz

Third harmonic

fn( ) = −⎛
⎝⎜

⎞
⎠⎟ ×3

2

22
3

1

2

35 352

0 214 0 5

p .

. .

= 
p
2

25

4
51 4115× × .

= 504.73 Hz.  
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KEmax = 
1

2

1

2

1

2
1 1

2
2 2

2
3 3

2m v m v m v+ +

 = 
1

2

1

2

1

2
1 1

2
2 2

2
3 3

2
m y m y m yw w w( ) + ( ) + ( )

 = 
1

2
2

1 1
2

2 2
2

3 3
2w m y m y m y+ +⎡⎣ ⎤⎦

 = 
1

2
2 2w ∑ my

But PEmax = KEmax (for undamped oscillation)

⇒ 
g

my my
2

1

2
2 2∑ = ∑w

⇒ w2 = 
g my

my

∑
∑ 2

 w = 
g my

my

∑
∑ 2

∴ Natural frequency of transverse vibration,

f
g my

my
n =

∑
∑

1

2 2p

Dunkerley’s method
This method is used when the diameter of shaft is uniform 
and this method takes the weight of shaft also into consid-
eration. It is a semi-empirical method which gives approxi-
mate results.

W1 W2 W3

Consider a simply supported, uniform shaft of mass ms 
and weight Ws = msg. The maximum static deflection of 
the shaft under its own weight is ds.

The concentrated loads on the shaft at various locations 
are W1, W2, W3, etc due to masses m1, m2, m3 etc (∵W1 = 
m1g, W2 = m2g, W3 = m3g, etc)

The static deflection of the shaft under the load W1, 
W2, W3, etc, when each load is acting separately, is d1, 
d2, d3, etc

The natural frequency of transverse vibration of the shaft 
with each load acting separately, is f f fn n n1 2 3

, ,
 
, etc. The 

natural frequency of transverse vibration of the shaft under 
its own uniformly distributed weight is fns

. If fn = natural 

frequency of transverse vibration of the simply supported 
system (carrying uniformly distributed load as well as con-
centrated loads), then as per Dunkerley’s empirical formula,

1 1 1 1 1 1
2 2 2 2 2 2

1 2 2 3
f f f f f fn n n n n ns

= + + + + +..... , where

Determination of Natural Frequency  
of  Transverse Vibration of a Uniform 
Shaft Carrying a Combination of Distrib-
uted and Point Loads
When a shaft (or a beam) has one or more concentrated 
masses as well as uniformly distributed mass, the natural 
frequency of transverse vibration can be obtained by

 1. Energy method (or Rayleigh’s method) or 
 2. Dunkerley’s method

In general, Rayleigh’s method overestimates and Dunkerley’s 
method underestimates the natural frequency. These are 
explained below.

Energy method (or Rayleigh’s method)
This method gives accurate results. In this method, the mass 
of shaft (or beam) is neglected. In fact, the mass of shaft is 
considered as additional point loads so that there are only 
concentrated loads on the system and no uniformly distrib-
uted load. This method takes into consideration that for a 
vibrating body, its kinetic energy in the equilibrium position 
is equal to its potential energy in the extreme positions.

KEmax = PEmax.

W1(= m1g) W2(= m2g) W3(= m3g)

y1 y2 y3

Consider a uniform shaft of negligible mass, carrying 
point loads W1(= m1g), W2(= m2g) and W3(= m3g) respec-
tively. The system is vibrating with a circular frequency of 
w  rad/s. The amplitudes of displacements (from equilib-
rium position) for points of application of W1, W2 and W3 
are y1, y2 and y3, respectively.

For the extreme positions of shaft, maximum potential 
energy,

PEmax = ΣMean load × defection below load

 = 
1

2

1

2

1

2
1 1 2 2 3 3W y W y W y+ +

= 
1

2

1

2

1

2
1 1 2 2 3 3m gy m gy m gy( ) + ( ) + ( )

= 
g

m y m y m y
2

1 1 2 2 3 3+ +[ ]

= 
g

my
2

∑

For the equilibrium position of the shaft, maximum 
kinetic energy,
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f
g

n1

1

2

0 4985

1 1

= =
p d d

.
,

f
g

n2

1

2

0 4985

2 2

= =
p d d

.

f
g

n3

1

2

0 4985

3 3

= =
p d d

.
 and

f
E

mL

g
n

s
s

= =
p p

d2 2

5

3844

Ι

= 

0 5615.

d s .

∴ Dunkerley’s empirical formula becomes

1 1

0 4985

1

0 4985

1

0 4985
2

1

2

2

2

3

2fn

=
⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟

+
. . .

..

d d d

  

       ….… +
⎛

⎝
⎜

⎞

⎠
⎟

1

0 5615
2

.

d s

= 
d d d1

2
2

2
3

2
0 4985 0 4985 0 4985. . .( )

+
( )

+
( )

+
 

… + 
d s

0 5615
2

.( )

= 
1

0 4985
2

.( )
 × d d d

d
1 2 3 2

0 5615

0 4985

+ + + +
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

....
.

.

s

= 
1

0 4985 1 272 1 2 3
.

....
.( )

+ + + +⎡
⎣⎢

⎤
⎦⎥

d d d
d s

⇒ fn

s

=
+ + + +⎡

⎣⎢
⎤
⎦⎥

0 4985

1 271 2 3

.

.....
.

d d d d

1.  The formula 
1 1 1 1

2 2 2 2
1 2

f f f fn n n ns

= + + +....  holds good 

for all types of beams but f f fn n ns1 2
, , .....,  will have 

different values for simply supported beams, fixed 
beams and cantilever beams.

2. If the mass of shaft is negligible, then ds = 0.

NOTES

Example 23: A cantilever beam is 1 m long and has a cross 
section of 50 mm wide and 30 mm deep. The density and 
modulus of elasticity of the material of the beam are 2700 
kg/m3 and 80 GPa respectively. There is a mass of 4 kg at-
tached at the free end of the beam. The natural frequency (in 
Hz) of the free undamped transverse vibrations of the beam 
in the fundamental mode due to its own weight, due to only 
the point load and due to the combined loads are respectively

(A) 6.7, 19.2, 9.3 (B) 13.4, 6.2, 9.4
(C) 26.4, 13.08, 11.72 (D) 33.7, 19.8, 24.3

Solution:
Length, L = 1 m,
Area of cross section,

A = 50 × 30

 = 1500 mm2

 = 1.5 × 10−3 m2

Density r = 2700 kg/m3

m = Mass per unit length = r A

= 2700 × 1.5 × 10−3

= 4.05 kg/m

Second moment of area,

I = 
bd3 3

12

0 05 0 03

12
=

× ( ). .

= 1.125 × 10−7 m4

E = 80 × 109 N/m2

fns  
=  natural frequency of transverse vibra-

tion in the fundamental mode due to 
weight of beam only (uniformly dis-
tributed load)

= 0 56
4

.
E

mL

Ι⎛

⎝⎜
⎞

⎠⎟
(for cantilever beam)

= 0.56 
80 10 1 125 10

4 05 1

9 7

4

× × ×
×

−.

.

= 26.4 Hz

d1  
=  Deflection of free end of shaft due  to 

point load W = Mg = 4 × 9.81

= 39.24 N

= 
WL

E

3

3 Ι
(for cantilever beam, W at free end)

= 
39 24 1

3 80 10 1 125 10

3

9 7

.

.

×
× × × × −

= 1.4533 × 10−3 m

∴ fn1
=

  
natural frequency of transverse vibra-
tion in the fundamental mode due to 
point load at end of cantilever beam

= 1

2 1p d
g

= 0 4985

1

.

d

= 
0 4985

1 4533 10 3

.

. × −

= 13.08 Hz.
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If fn =  natural frequency of transverse  vibration under com-
bined loading, as per Dunkerley’s method,

1 1 1 1
2 2 2 2

2 2

2 2
1

1

1
f f f f

f f

f fn n n n

n n

n ns

s

s

= + ⇒ =
+

⇒ fn = 
f f

f f

n n

n n

s

s

1

1

2 2+
 = 

13 08 26 4

26 4 13 082 2

. .

. .

×

+

= 
345 312

868 05

.

.

= 11.72 Hz.

∴ The natural frequencies required are 26.4 Hz, 13.08 Hz 
and 11.72 Hz. respectively. 

Example 24: A uniform shaft having a uniformly distribut-
ed weight of 50 N/m is supported on self-aligning bearings 
which are 1.5 m apart. The flexural stiffness of the shaft is 
5000 Nm2 and the end conditions may be treated as sim-
ply supported. There is a heavy pulley at the centre of the 
shaft with the centre of gravity of pulley coinciding with the 
centre line of shaft. The static deflection of the shaft due to 
the weight of pulley alone is 0.4 mm. The fundamental fre-
quency of free undamped transverse vibration of the shaft 
under combined loading is
(A) 24.93 Hz (B) 21.87 Hz
(C) 33.71 Hz (D) 16.44 Hz.

Solution:
d1 = Deflection of shaft due to weight of pulley  

  = 4 mm

  = 0.4 × 10−3 m

fn1
=   frequency of transverse vibration due to 

weight of pulley alone

 = 1

2

0 4985 0 4985

0 4 101 1
3p d d

g
= =

× −

. .

.
 

 = 24.93 Hz.

fns
=

 
frequency of transverse vibration due to 
distributed weight of shaft

 = 
p p
2 24 4

E

mL

gE

wL

I I
=  ∵w mg=[ ]

 = 
p
2

9 81 5000

50 1 5
4

.

.

×

× ( )
 

∵E

w

L

I Nm

N m

=
=
=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

5000

50

1 5

2

/

. m

 = 21.87 Hz.

If fn =  frequency of transverse vibration under  com-
bined loading, as per Dunkerley’s formula,

1 1 1
2 2 2

1
f f fn n ns

= +

⇒ fn = 
f f

f f

n n

n n

s

s

1

1

2 2+

∴ fn = 
24 93 21 87

24 93 21 872 2

. .

. .

×

+
= 16.44 Hz. 

Whirling Speeds (or Critical Speeds)  
of Shafts
Consider a horizontal shaft, whose centre of gravity coin-
cides with the axis of rotation as shown in below Figure.

Shaft position (C.G of shaft
coincides with axis of rotation)

If this shaft is now loaded with a rotor of mass m (so that 
its weight, W = mg), the centre of gravity of the loaded shaft 
(G) is displaced from the axis of rotation by ‘d’ as shown in 
below Figure.

Rotor 

G 
δ

Shaft position 

Here, mg = sd, where s = stiffness of shaft and

     d = static deflection
When the shaft begins to rotate, a radially outwards 

force, which is proportional to d, acts through G, the centre 
of gravity of the loaded shaft. This radially outward force 
bends the shaft in the direction of initial displacement d so 
that the displacement of centre of gravity G of the loaded 
shaft from the axis of rotation now becomes (y + d) as 
shown in below Figure.

y

G
δ

shaft
position

Axis of rotation

If w = angular velocity of shaft and
 s =  stiffness of shaft (i.e. force needed to produce unit 

deflection of shaft) at the deflected position of the 
shaft, the force resisting the deflection of shaft = 
centrifugal force through G, radially outwards

⇒ sy = m(y + d)w2

= mw2y + mw2d
⇒ sy −mw2y = mw2d
 (s − mw2)y = mw2d
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⇒ y = 
m

s m s

m

w d
w

d

w

2

2

2
1−( ) =

−⎡
⎣⎢

⎤
⎦⎥

∴ y = 
d

w
s

m 2
1−⎡

⎣⎢
⎤
⎦⎥

But 
s

m
n= w 2 where

wn = circular frequency of transverse vibration

∴ y = 
d

w
w

n
2

2
1−

where d = static deflection

Case 1 
When w = wn (i.e. the angular speed of rotation of shaft is 
equal to the natural circular frequency of vibration of system), 

denominator 
w
w

n
2

2
1−

⎛
⎝⎜

⎞
⎠⎟

 becomes zero and hence the deflec-

tion y becomes infinite. This condition is called resonant con-
dition.

The speed at which the shaft runs so that the deflection of 
the shaft from the axis of rotation becomes infinite, is called 
whirling speed or critical speed. i.e. if w = wn, w is called 
the critical speed, denoted as wc. At the critical speed, the 
shaft tends to vibrate violently in the transverse direction

∴ wc = wn = 
s

m

g
=

d
, where

d = static deflection under load W = mg

If Nc = critical speed in rpm,

 wc = 
2

60

p
d

N gc =

⇒ Nc = 
60

2

60 0 4985

p d d
g

=
× .

( )rpm

i.e. Nc = 60 times fn , where Nc is in rpm

Case 2

If w > wn, denominator 
w
w

n
2

2
1−

⎛
⎝⎜

⎞
⎠⎟

becomes negative, so  

y < 0 (i.e. y is in opposite direction) , that is, the shaft will 
vibrate in the opposite direction.

Case 3
If y = −d, then G coincides with the axis of rotation, and 
hence the shaft will immediately stops vibrating.

The critical speed in rps (revolutions per second) of a 
shaft which carries point loads or uniformly distributed 
loads or combination of both, is equal to the natural fre-
quency of transverse vibration.

NOTE

Example 25: The rotor shaft of a large electric motor sup-
ported between short bearings at both ends shows a deflec-
tion of 1.8 mm in the middle of the rotor. Assuming the 
rotor to be perfectly balanced and supported at knife edges 
at both ends, the likely critical speed (in rpm) of the shaft is
(A) 350   (B) 705   (C) 2810   (D) 4430

Solution:
Nc(rpm) = 60 × 

1

2
60

0 4985

p d d
g

= ×
.

 = 
60 0 4985

1 8 10 3

×

× −

.

.

 = 704.98 rpm

  = 705 rpm  

At this speed, the shaft will be vibrating with no nodes in 
between the supports. If the speed becomes
 22 × 705 = 2820 rpm, the shaft will be vibrating in the 
second mode and there will be one node in between the 
supports. Hence, 2820 rpm is the second critical speed. If 
the shaft rotates at 32 × 705 = 6345 rpm, it will be in the 
third mode and there will be two nodes in between the 
supports. Hence, 6345 rpm is the third critical speed.

NOTE

Example 26: If two nodes are observed at a frequency 
of 1800 rpm during whirling of a simply supported long 
slender rotating shaft, the first critical speed of the shaft 
in rpm is
(A) 200   (B) 450   (C) 600   (D) 900

Solution:
Two nodes are observed ⇒ between the supports, there are 
two nodes ⇒ shaft is vibrating in the third mode (i.e. n = 3)

As f n fn n n( ) = ( )2
1
for simply supported system, n = 3 

and fn( ) =
3

1800 , we get

1800= 32 fn( )1

⇒ fn( ) = =
1 2

1800

3
200 rpm

Hence, the first critical speed of shaft is 200 rpm.

The second critical speed is 22 × 200 = 800 rpm

NOTE

Example 27: A flexible rotor−shaft system comprises of a 
10 kg  rotor disc placed in the middle of a massless shaft of 
diameter 30 mm and length 500 mm between bearings (shaft 
is being taken massless as the equivalent mass of shaft is in-
cluded in rotor mass) mounted at the ends. The bearings are 
assumed to simulate simply supported boundary conditions. 
The shaft is made of steel for which the value of E is 2.1 × 
1011 Pa. What is the critical speed of rotation of the shaft?
(A) 60 Hz (B) 90 Hz
(C) 135 Hz (D) 180 Hz



Chapter 3 • Vibrations | 3.281

Solution:
d = diameter of shaft = 30 mm

 = 0.03 m
L = length of shaft = 500 mm = 0.5 m

I = 
p p
64 64

0 034 4
d = × ( ). = × −3 976 10 8 4. m

E = 2.1 × 1011 Pa
M = 10 kg
Static deflection at centre, d = 

WL

E

3

48 I
  (for simply sup-
ported beam, load at 
centre)

= 
MgL

E

3

48 Ι

= 
10 9 81 0 5

48 2 1 10 3 976 10

3

11 8

× ×
× × × × −

. .

. .
m  = 3.06 × 10−5 m

Critical speed Nc (rps) = fn

 = 
0 4985.

d
Hz

 = 
0 4985

3 06 10 5

.

. × −

 = 90.11 Hz

 90 Hz.

Damped Free Vibrations
When an elastic body is set in vibratory motion, in all 
practical oscillations, the oscillation energy of the system 
gradually gets dissipated as heat in overcoming the internal 
molecular friction of the mass of the body and friction of the 
medium in which it vibrates. As the energy of oscillation is 
proportional to the square of amplitude of oscillation, the 
amplitude of oscillation keeps on decreasing with the pas-
sage of time and the vibrations die out after some time. The 
diminishing of vibrations with time is called damping.

The extent of damping can be increased by the use of 
dashpots or dampers. In the discussions in this chapter, it is 
assumed that the damping force (Fd) is proportional to the 
relative velocity of the vibrating body with respect to the 
damper (for slow speeds). Usually at higher speeds, damp-
ing force is proportional to square of velocity of vibration 
but this is not in our scope of discussion. Hence, if dashpot 
(or damper) is fixed and the displacement of vibrating mass 
from its equilibrium position is x, the velocity of vibrating 

mass v = 
dx

dt
x= ,  which gives damping force, Fd ∝ v ∝ �x  

⇒ Fd = c �x  where c = damping coefficient (or damping 
force per unit velocity). The SI unit of c is Ns/m (newton 
second per metre). If dashpot is not fixed but has a displace-
ment x1 at the instant when the vibrating body is displaced 
by x2 from equilibrium position, then the relative velocity 

of the oscillating body with respect to damper is � �x x2 1−( )
∴ Damping force, Fd ∝ � �x x2 1−( )
⇒ Fd = c � �x x2 1−( )

The damping force opposes the relative motion of the 
vibrating body with respect to the damper. The value of c 
depends upon the dashpot type (like the size of restriction 
inside the dashpot, nature of fluid used, etc.)

The mathematical model of a damped free vibrating sys-
tem consists of three elements (i) Inertia element which is 
represented by lumped mass for rectilinear motion and by 
lumped moment of inertia for angular motion (ii) Restoring 
element represented by massless linear springs for recti-
linear motion and massless torsional springs for torsional 
motion, respectively (iii) Damping element, is usually rep-
resented by massless and rigid dashpots for energy dissipa-
tion. Such a model, vibrating in the vertical plane (linear 
vibrations) is shown below Figure.

m

s
c

x

Equilibrium position

mass

Dashpot
(damper)spring

The mass m is suspended from one end (lower end) 
of light spring of stiffness s, with the dashpot of damp-
ing coefficient c between the mass and fixed support. The 
mass is disturbed from its equilibrium position and set into 
free vibrations. When the mass is displaced by a distance x 
below the equilibrium position, the various forces acting on 
the mass are shown in below Figure.

Fs
Fd Fi Equilibrium

position 

x
m

Fi = Inertial force = m 
d x

dt

2

2
= mx��  (upwards)

Fd = damping force = c 
dx

dt
cx= � (upwards)

Fs = spring force = sx (upwards)
As per D’Alembert’s principle,
Fi + Fd + Fs = 0

⇒ mx cx sx�� �+ + = 0

or �� �x
c

m
x

s

m
x+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= 0
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i.e. 
d x

dt

c

m

dx

dt

s

m
x

2

2
0+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

=

is the second order differential equation for free damped 

vibration. We have seem earlier that 
s

m
n

⎛
⎝⎜

⎞
⎠⎟

= w 2  for free 
vibration, where

wn = natural circular frequency of free vibration.
The solution to this second order differential equation is 

of the form x = A e Bet ta a1 2+ , where A and B are some con-
stants that are evaluated by initial boundary conditions and 
a1 and a2 are the roots of the auxiliary equation

a a2 0+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

=
c

m

s

m

⇒ a1, 2 = 

− ± ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

c

m

c

m

s

m

2

4

2

 = − 
c

m

c

m

s

m2 2

2

± ⎛
⎝⎜

⎞
⎠⎟

−

   ∴ a1

2

2 2
= − + ⎛

⎝⎜
⎞
⎠⎟

−
c

m

c

m

s

m
 and

a2 = − − ⎛
⎝⎜

⎞
⎠⎟

−
c

m

c

m

s

m2 2

2

We now define damping coefficient (x) as the ratio 

of square root of 
c

m
to

s

m2

2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

, which represents the 

degree of damping provided in the system.

∴ x =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

c

m

s

m

2

2

 ; Also, 
s

m
n= w

⇒ x
w w

=

⎛
⎝⎜

⎞
⎠⎟

= =

c

m

s

m

c

m

c

mn n

2

2 2
= 

c

cc

, where

cc = critical damping coefficient

⇒ cc = 2mwn
∴ Damping factor (x )

 = 
Damping coefficient c

Critical dampingcoefficient cc

( )

( )
=

c

m n2 w

∴ 
c

m
n

2
= xw  and 

s

m
n= w 2

Using the above values of 
c

m2
and 

s

m
, equation for a1 

and a2 become

a1, 2 = − xw xn ± −2 1 wn

i.e. a1, 2 = wn − ± −⎡
⎣

⎤
⎦x x 2 1

Depending upon the value of x, the roots a1 and a2 may 
be real, imaginary or complex. The imaginary part of the 
root represents the extent of vibration present in the sys-
tem (i.e. the circular frequency of actual vibration), while 
the real part of the root represents the extent of damping 
present in the system.

When x = 0 (undamped system)
The roots a1,2 = ± iwn implies there is no real part of root 
(i.e. no damping in the system) which is an undampd sys-
tem. The imaginary part indicates that the system oscillates 
with a circular frequency of wn. The displacement equation 
is given by x = A coswnt which is a pure SHM, when x  = 0. 
The damping coefficient c = zero for the system

When x = 1 (critically damped system)
The roots are real and equal.

i.e. a1 = a2 = −wn
The system is said to be critically damped.
As there is no imaginary component to the root, the sys-

tem will not vibrate when released from disturbed position 
but will move to the equilibrium position and come to rest. 
The time taken to come to rest will be the shortest for 
critically damped system.

The displacement equation is given by x = Ae nt−w , which 
is an exponentially decaying curve. 
The damping coefficient c = cc (critical damping coefficient) 
for this system.

When x  > 1 (overdamped system)

The roots are a1, 2 = −xwn ± wn x 2 1− . The roots are 
real and unequal. As there is no imaginary component for 
the root, the system will not vibrate when released from 
disturbed position but will move towards equilibrium posi-
tion and come to rest there. The time taken to come to 
rest (from disturbed position to equilibrium position) will 
be more than that taken by a critically damped system (i.e. 
x = 1 system). The displacement equation for this system is

x = A e Ben nt tw x x w x x− + −( ) − − −( )+
2 21 1

 which represents a 
non-periodic motion. A and B are constants which depend 
upon initial conditions. The damping coefficient c is greater 
than cc , i.e. c > c c for this system.

When 0 < x < 1 (under damped system)

The roots are a1 = −xwn + iwn 1 2− x  and

a2 = −xwn − iwn 1 2− x

That is, the roots are complex conjugates. As there is an 
imaginary component, there will be some vibrations of 
decaying amplitude. The system now vibrates not at its 
natural frequency wn but at another frequency called as the 
circular frequency of damped oscillation (wd), where

wd = wn 1 2− x

This is the circular frequency of under damped vibrations.
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Imaginary axis 

Real axis O

α

α2

−ωn (ξ = 0)

+ωn (ξ = 0)

−ξωn (ξ > 1)

−ωn 1 − ξ2

+ωn 1 − ξ2

φ
×

(ξ > 1)

(ξ = 1)

In the above figure shows how a1 and a2 move in the 
complex plane as x is increased from zero. If f is the angle 
made by the position vector of roots (line connecting origin 
O and the root a) with imaginary axis,

cos f = 
xw
w

n

n

= x or f = cos−1(x)

Also, tanf = 
w x

xw
x

x
n

n

1 12 2−
=

−

∴ f = tan− −1
21 x

x

The displacement equation for under damped system is 

given by x = X e nt
0

−( )xw sin(wdt + f), where

X0 = amplitude of oscillation at time t = 0

wd = wn 1 2− x ,  is the circular frequency of

damped oscillation

f = cos−1(x) or tan−1 
1 2−⎛

⎝
⎜

⎞

⎠
⎟

x
x

X e nt
0

−xw = amplitude of oscillation at time t

Clearly, the amplitude is decaying exponentially with 
time but the system is also vibrating with decreasing 
amplitude.

Td = time period of damped vibration

⇒ Td = 
2 2

1 2

p
w

p

w xd n

=
−

The linear frequency of damped vibration,

fd = 1 1

2

2

Td

n=
−w x

p

For under damped system, c < cc
The following figure shows the variation of displacement 
with time as damping factor (x) is increased from zero.

X0

X0

time t

ξ = 1(no vibration)

ξ > 1(no vibration)

0 < (ξ < 1)

Displacement ξ = 0(undamped)

The following formulae are useful in solving numerical 
problems.

1.  Differential equation for free damped vibration is 

�� �x
c

m
x

s

m
x+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= 0 which can also be written as 

�� �x x xn n+ + =2 02xw w

∵
c

m

s

m
n n= =⎛

⎝⎜
⎞
⎠⎟

2 2xw w

2.  Critical damping coefficient,
cc = 2mwn = 2 ms

3. Damping factor x = 
c

c

c

m

s

m
c

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

2

2

= =
c

ms

c

m n2 2 w

NOTES

Amplitude Reduction Factor
In under damped free vibrations, the ratio of the amplitude 
of two successive oscillations on the same side of mean po-
sition is called amplitude reduction factor.

Let x1 be the amplitude of under damped free oscillation 

at time t and xm be the amplitude m cycles later. If Td = 
2p
wd

is the time period of damped oscillations, the time taken for 

m cycles will be t′ = mTd = 
2 2

1 2

p
w

p

w x

m m

d n

=
−

If X0 is the amplitude at time t = 0, x is the damping fac-
tor and wn = natural frequency of undamped oscillations, we 
have

      x1 = X0 e nt−xw  and

xm = X0 e n t t− +( )xw ’  = X0 e n dt mT− +( )xw

    ∴ x

x

X e

X e
e

m

t

t mT
mT

n

n d

n d
1 0

0

= =
−

− +( )
xw

xw
xw
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= e
n

d

mxw p
w

.
2

 ∵Td
d

=
⎛
⎝⎜

⎞
⎠⎟

2p
w

     = e
n

n

mxw p
w x

2

1 2−  ∵w w xd n= −( )1 2

= e

m2

1 2

px
x−

i.e. x

x
e

m

m

1

2

1 2= −
px

x  

For two successive oscillations, m = 1

⇒ Amplitude reduction factor = x

x
1

2

                 = −e

2

1 2

px
x

Logarithmic Decrement
The natural logarithm of the ratio of any two successive 
amplitudes on the same side of the mean position in an 
under damped system is called logarithmic decrement. 
For an under damped system, it is always a constant and is 
denoted as d.

i.e. Natural logarithm of amplitude reduction factor 
is called logarithmic decrement.

∴ d
px px

x
xw

x
=

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
−

=
−

� �n
x

x
n

e
Tn d

1

2
1 2

2 2

1
2

 

We can also write

� �n
x

x
n

m

e

m
m

m

1

1 2

2 2

1
2

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
−

=
−

px px

x
d

x
 

If x << 1, d = 2px ∵ 1 12− ≈( )x

The displacement Vs time graph of an under damped free 
vibration with amplitudes at various instants is shown in 
below figure.

x2 x3
x1

Time
(t)

Td

t2

t1

t1 t2
t3

O

x0

D
is

pl
ac

em
en

t
(x

)
Example 28: The differential equation governing the 
 vibrating  system is

x

k
c

y

(A) mx cx k x y�� ��+ + −( ) = 0

(B) m �� �� � �x y c x y kx−( ) + −( ) + = 0

(C) mx c x y kx�� � �+ −( ) + = 0

(D) m x y c x y k x y�� �� � �−( ) + −( ) + −( ) = 0

Solution:
The forces on the mass are
Fi = inertial force

= mx��  (∵Acceleration of mass is ��x )
Fs = restoring force of spring

 = kx (depends only on extension or compression of spring)
Fd = damping force

= c × relative velocity of mass with respect to dashpot
= c � �x y−( )

As per D’Alembert’s, Principle,
Fi + Fd + Fs = 0 for free damped vibration
⇒ mx c x y kx�� � �+ −( ) + = 0 .  

Example 29: Critical damping is the
(A)  largest amount of damping for which no oscillation 

 occurs in free vibration.
(B)  smallest amount of damping for which no oscillation 

occurs in free vibration.
(C)  largest amount of damping for which the motion is sim-

ple harmonic in free vibration.
(D)  smallest amount of damping for which the motion is 

simple harmonic in free vibration.

Solution:
Damping factor x ≥ 1,  no vibration occurs. x  = 1 is called 
critical damping, which is the smallest amount of damping 
for which no oscillation occurs in free vibration.

Example 30: The damping ratio of a single degree of 
freedom spring-mass-damper system with mass of 1 kg, 
stiffness 100 N/m and viscous damping coefficient of 25 
Ns/m is

Solution: Given c = 25 
N s

m

s = 100 N/m
m = 1 kg
cc = 2mwn = 2 2 1 100ms = ×

= 20 
N s

m

Damping factor x   = 
c

cc

= =
25

20
1 25.
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Example 31: A vehicle suspension system consists of a 
spring and a damper. The stiffness of the spring is 3.6 kN/m 
and the damping constant of the damper is 400 Ns/m. If the 
mass is 50 kg, then the damping factor (x ) and damped 
natural frequency (fd) respectively are
(A) 0.471 and 1.19 Hz (B) 0.471 and 7.48 Hz
(C) 0.666 and 1.35 Hz (D) 0.666 and 8.50 Hz

Solution:
Given m = 50 kg

s = 3.6 × 103 N/m
c = 400 Ns/m

cc = 2mwn = 2 ms

= × ×2 50 3 6 103.

= 848.53 Ns/m

∴ x = = =
c

cc

400

848 53
0 471

.
.

fd = 
w

p
w x

p
d n

2

1

2

2

=
−

 = × −( )1

2
1 2

p
x

s

m

= 
1

2

3 6 10

50
1 0 471

3
2

p
.

.
×

× −( )
= 1.19 Hz.

Hence, the damping factor is 0.471 and damped natural fre-
quency of vibration is 1.19 Hz. 

Example 32: In a spring-mass system, the mass is 0.1 kg and 
the stiffness of the spring is 1 kN/m. By introducing a damper, 
the frequency of oscillation is found to be 90% of the original 
value. What is the damping coefficient of the damper?
(A) 1.2 Ns/m (B) 3.4 Ns/m
(C) 8.7 Ns/m (D) 12.0 Ns/m

Solution:
Given m = 0.1 kg

s = 1 × 103 N/m
wd = 0.9 wn

We have wd = wn 1 2− x

⇒ 0.9 wn = wn 1 2− x

⇒ (0.9)2 = 1 – x 2

⇒ x 2 21 0 9 0 19= − =. .

∴ x = =0 19 0 4359. .

cc = 2 ms = × ×2 0 1 1 103.

= 20 Ns/m

x =
c

cc

⇒ c = xcc

= 0.4359 × 20

= 8.718 Ns/m
∴ c = 8.7 Ns/m  

Example 33: The suspension system of a two-wheeler can 
be equated to a single spring-mass system with a viscous 
damper connected in series. For a mass m = 50 kg and a 
spring with a stiffness of 35 kN/m, the damping coefficient 
of the damper provides critical damping. The damping force 
for a plunger velocity of 0.05 m/s (expressed in newton) is 
________

Solution: m = 50 kg

s = 35 × 103 N/m

cc = 2 ms = × ×2 50 35 103

       = 2645.75 Ns/m

Critically damped → x  = 1
⇒ c = cc

v = 0.05 m/s

∴ Fd = cv = ccv = 2645.75 × 0.05

 = 132.29

 = 132.3 N.

Example 34: The equation of motion of a harmonic oscil-

lator is given by 
d x

dt

dx

dt
xn n

2

2
22 0+ + =xw w  and the initial 

conditions at t = 0 are x(0) = X, 
dx

dt
0 0( ) = . The amplitude 

of x(t) after n complete cycles is

(A) Xe
n−

−

⎛

⎝
⎜

⎞

⎠
⎟2

1 2
p x

x
 (B) Xe

n2
1 2

p x
x−

⎛

⎝
⎜

⎞

⎠
⎟

(C) Xe
n−

−⎛

⎝
⎜

⎞

⎠
⎟2

1 2

p
x

x  (D) X

Solution:
It is an under damped oscillator

→ amplitude decreases
→ (B) and (D) are not answers

We have 
X

x
e

n

n

= −
2

1 2

p x
x

⇒ xn = 
X

e
n2

1 2

p x
x−

⎛
⎝⎜

⎞
⎠⎟

= X e
n−

−
⎛
⎝⎜

⎞
⎠⎟

2
1 2

p x
x  

Example 35:

M

A mass M, of 20 kg, is attached to the free end of a steel 
cantilever beam of length 1000 mm having a cross section 
of 25 mm × 25 mm. Assume the mass of cantilever to be 
negligible and Esteel = 200 GPa. If the lateral vibration of 
the system is critically damped using a viscous damper, the 
damping constant of the damper is
(A) 1250 Ns/m (B) 625 Ns/m
(C) 312.50 Ns/m (D) 156.25 Ns/m
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Solution:
The static deflection of a cantilever beam with concentrated 
load W = Mg at free end is given by

d = 
MgL

E

3

3 I

⇒ 
3

3

E

L
Mg

I
d⎛

⎝⎜
⎞
⎠⎟

=

∴ Lateral stiffness, s = 
3 1

23

E

L

I

Here, E = 200 × 109 Pa

I = 
a4 3 4

12

25 10

12
=

×( )−

= 3.2552 × 10–8 m4

L = 1 m

∴ s = 
3

3

E

L

I

 
=

× × × × −3 200 10 3 2552 10

1

9 8

3

.

= 19,531.2 N/m

M = 20 kg

cc = 2 Ms = ×2 20 19531 2.

 = 1249.99

 = 1250 Ns/m

x = 1  (∵critically damped) = 
c

cc∴ c = cc = 1250 Ns/m 

Direction for questions (Examples 36 and 37): A vibra-
tory system consists of a mass 12.5 kg, a spring of stiffness 
1000 N/m and a dashpot with damping coefficient of 15 Ns/m

Example 36: The value of critical damping coefficient of 
the system is
(A) 0.223 Ns/m (B) 17.88 Ns/m
(C) 71.4 Ns/m (D) 223.6 Ns/m

Solution:
m = 12.5 kg
s = 1000 N/s

cc = 2 2 12 5 1000ms = × ×.

= 223.6 Ns/m 

Example 37: The value of logarithmic decrement is
(A) 1.35   (B) 0.42   (C) 0.68   (D) 0.66

Solution:
c = 15 Ns/m

∴ x = = =
c

Cc

15

223 6
0 067

.
.

d = �n
x

x
1

2 2

2

1

⎛
⎝⎜

⎞
⎠⎟

=
−

px

x

=
×

− ( )
2 0 067

1 0 067
2

p .

.
 = 0.421 

Example 38: Two consecutive oscillations of an under 
damped vibrating system were found to have amplitudes of 
3 mm and 0.5 mm, respectively. The logarithmic decrement 
(d) and damping factor (x) are respectively
(A) 0.322, 1.792 (B) 3.561, 0.644
(C) 2.79, 0.61 (D) 1.792, 0.274

Solution:
x1 = 3 mm

x2 = 0.5 mm

∴ d = � �n
x

x
n1

2

3

0 5

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟.

= =�n6 1 792.

We have d = 
2

1 2

px

x−

⇒ 1.792 = 
2

1 2

px

x−

⇒ (1.792)2 = 
4

1

2 2

2

p x
x−( )

⇒ 1 – x 2 = 4 2 2p x /(1.792)2 = 12.294 x2

⇒ 1 = 13.294 x 2

⇒ x = 
1

13 294.
= 0.274

∴ d = 1.792 and x  = 0.274.  

Example 39: A mass of 10 kg is suspended on a massless 
spring and set into vertical oscillations. It is observed that the 
amplitude reduces to 10% of its initial value after 4 oscilla-
tions. It takes 0.8 second to do that. Calculate the following.
 (i) The actual frequency (in Hz) of the system.
 (ii) The damping factor (x).
 (iii) The natural frequency of oscillation (in Hz).
 (iv) The spring stiffness (in kN/m)
 (v) The critical damping coefficient cc (in Ns/m)
 (vi) The actual damping coefficient c (in Ns/m)

Solution: 
 (i) Number of vibrations in 0.8 s = 4

  ∴ Actual frequency fd = 
4

0 8.
= 5 Hz

 (ii) Amplitude after 4 oscillations
     = 10% of amplitude at beginning
    ⇒ x4 = 0.1 x1

    ⇒ x

x
1

4

1

0 1
10= =

.

    ∴ � �n
x

x
n1

4

10 2 3026
⎛

⎝⎜
⎞

⎠⎟
= = .

But �n
x

x
1

4 2

2 4

1

⎛
⎝⎜

⎞
⎠⎟

=
×

−

px

x
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∵�n

x

x

m

m

1

2

2

1

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛

⎝
⎜

⎞

⎠
⎟

px

x

    ⇒ 2.3026 = 
8

1 2

px

x−

    ⇒ (2.3026)2 = 
64

1

2 2

2

p x
x−( )

    ⇒ 5.302 – 5.302x 2 = 631.65x 2

  ⇒ 636.952x 2 = 5.302

    ⇒ x = =
5 302

636 952
0 0912

.

.
.

    ∴ Damping factor (x ) = 0.0912

 (iii) We have fd = fn 1 2− x

 ⇒ fn = 
fd

1

5

1 0 09122 2−
=

−x .

   = 5.02 Hz
  Hence, natural frequency of system, fn = 5.02 Hz.

 (iv) We have fn = 
1

2p
k

m
  ⇒ k = 4p2fn

2m (m = 10 kg)

  ⇒ k = 4p2 × (5.02)2 × 10

          = 9949 N/m

          = 9.95 kN/m

  ∴ Stiffness of springs,
  k = 9.95 kN/m
 (v) Critical damping coefficient,

  cc = 2mwn or 2 mk( )
        = 2 × 10 × 5.02 × 2p
        = 630.83 Ns/m
 (vi) Actual damping coefficient,

  c = xcc  ∵x =
⎛
⎝⎜

⎞
⎠⎟

c

cc

   = 0.0912 × 630.83

   = 57.5317 Ns/m.

Forced Vibrations
When the vibration of system is maintained by an external 
excitation, it is called forced vibration. When an external 
force is applied on the system, the system will respond to 
the force. The nature of response depends on the type of 
applied force. There are usually two types of forces that can 
be applied on a system.

 1. Step-input force (or constant force)
 2. Harmonic force. We will look at the response of 

single degree freedom system when these forces 
are applied.

Step-input force (i.e. force of constant magnitude and con-
stant direction)

m
F

C
x0

s

1 2

Smooth floor

Consider a block of mass m on a smooth horizontal floor, 
connected to a light spring of stiffness s and a damper of damp-
ing coefficient c. In position 1, there is no extension of spring 
and no velocity for mass, so there is no damping force or spring 
force in the horizontal direction. Hence, position 1 is the ini-
tial equilibrium position. Now, a constant horizontal force F 
applied to the right on block and slowly the mass moves to 
position 2, where it comes to rest. Hence damper force is zero 
but spring force = sx0 to the left, where x0 = displacement of 
block from position 1 to position 2. In this position,
  sx0 = F  (1)

Hence, position 2 represents the shifted equilibrium posi-
tion of the system. If a disturbing force F0 is now applied to 
the right and removed, the system will execute damped vibra-
tions under the force F. At any distance x to the right from 
position 2 (which is the new equilibrium position), the forces 
on the block in the horizontal direction are spring force,

Fs = s(x0 + x), to the left

Damping force, Fd = c
dx

dt
cx= � to the left

Inertia force, Fi = m
d x

dt
mx

2

2
= ��  to the left,

Step-input force F to the right
For dynamic equilibrium, Fi + Fd + Fs = F

⇒ mx cx s x x F�� �+ + +( ) =0        (2)

Using equation 1 in equation 2, we get

mx cx sx�� �+ + = 0

∵ sx F0 1=[ ]from equation ( )

which is the same as the differential equation for free-damped 
oscillation for the same spring mass system. Hence, we can 
conclude that a step-input force (or an external force of 
constant magnitude and direction)only shifts the equilib-
rium position and results in free-damped oscillations.

When a spring-mass-damper system is executing verti-
cal oscillations, a step-input force equal to the weight of 
the block (W = mg) is acting vertically downwards on the 
system, which determines the equilibrium position of the 
system only. Other characteristics of the oscillating sys-
tem are not affected by this step-input force. 

NOTE
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Harmonic excitation (or an external force F = F0sinw t) 
with no damping
Consider a block of mass m, suspended from a massless 
spring of stiffness s, subjected to a harmonic force F = F0sinwt.  
At time t, let this block be at a distance x below the equilib-
rium position E-E. This is as shown in below Figure.

F = F0 sin ωt

s

E E (equilibrium position)

m
C

x

C

At the equilibrium position, t = 0 ⇒ F = 0, so
sx0 = mg. The forces on the block are,

Inertial force F1 = m 
d x

dt
mx

2

2
= �� , acting upwards, spring 

force Fs = sx (∵ sx0 cancels weight mg), acting upwards and

Applied force F = F0 sinwt, acting downwards
∴ For dynamic equilibrium, Fi + Fs = F
⇒ mx sx F t��+ = 0 sinw  is the differential equation for 

undamped forced vibration under harmonic excitation.
The solution of this differential equation
will be of the form

x = X t

F
s

tn

n

0

0

2

1

sin sinw f
w
w

w+( ) +
( )
−

⎛
⎝⎜

⎞
⎠⎟

, where

X0 = amplitude of free vibration of system

wn = 
s

m
 = circular natural frequency of system

w = circular frequency of exciting force (applied force)
f =  phase difference between applied force and resulting 

free vibration.

Harmonic excitation with damper (External force,   
F = F0sinwt)

s

E
E (equilibrium

position)

m
C

x

C

c

F = F0 sin ωt

Consider a massless spring of stiffness s and a dashpot of 
damping coefficient c, suspended from a fixed  support. 
Their free ends are connected to a block of mass m. The 
block is subjected to a harmonic force F = F0sinwt. The 
mass is constrained to move only up or down (i.e. sin-
gle degree of freedom). At time t, the block is displaced 
downwards by x from its mean position (EE). For dynamic 
equilibrium,

F F F Fi d s+ + + = 0, where

Fi = inertial force on block

 = m
d x

dt
mx

2

2
= ��, acting upwards

Fd = damper force on block = c
dx

dt
cx= � , acting upwards

Fs  = spring force = sx, acting upwards

F  = F0sinw t, acting downwards

Hence, their magnitudes are related as
Fi + Fd + Fs = F

⇒  mx cx sx F t�� �+ + = 0 sinw , is the differential equation 
for forced damped oscillation. This is a second degree 
 differential equation, the solution of which is of the form 
x = xc + xp, where

xc = complementary solution, which represents the tran-
sient part of the forced vibrations, given by the solution of 
the equation mx cx sx�� �+ + = 0,  already dealt with in free-
damped oscillation

∴ xc = X0 e tnt
d

− +( )xw w jsin

and xp = particular solution, which represents the steady 
state part of the forced vibrations.

It can be shown that

xp = 
F t

s m c

0

2 2 2

sinw j

w w

−( )
−( ) + ( )

Hence, in the steady state, the frequency of forced vibra-
tions is same as the frequency of external applied force (i.e. 
excitor frequency).

The amplitude of forced vibration in the steady state,  

A = xmax = 
F

s m c

0

2 2 2−( ) + ( )w w

⇒ A = 
F s

m

s

c

s

0

2
2 2

1

( )

− ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

+ ⎛
⎝⎜

⎞
⎠⎟

w w

           
∵

m

s n

=
⎡

⎣
⎢

⎤

⎦
⎥

1
2w

= F s

c

sn

0

2

2

2 2

1

( )

−
⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

w
w

w

 ∵
c

s n

=
⎡

⎣
⎢

⎤

⎦
⎥

2x
w
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= 
F s

n n

0

2 2 2

1 2

( )

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

w
w

x w
w

[ ]F s0 ∵  static deflection of spring, d = [ ]F s0

               ⇒ A = d

w
w

x w
w

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟n n

,

where d = 
F

s
0 , is static deflection of spring

w = circular frequency of external force (excitor)
wn =  natural frequency of undamped oscillation of the 

system

x  = damping factor = 
c

cc

of the system

This equation can be used only for steady state vibrations.
Also, f = phase difference between the applied force and the 
displacement  of system in steady state such that

⇒ tanf = 
c

s m

w
w−( )2

Also, tanf = c

s m

s
n

n

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

w

w

x
w

w
w
w

1

2

12
2

2

.

∵
m

s n

=
⎡

⎣
⎢

⎤

⎦
⎥

1
2w

⇒ tanf = 

2

1
2

x w
w

w
w

n

n

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The above expressions are for the amplitude (A) and 
phase (f) of steady state forced-damped vibrations. 

The ratio of maximum displacement (i.e. amplitude of 
steady state vibration, A) of the steady state forced vibra-
tion to the static deflection (d ) is known as magnification 
factor (MF).

∴ MF = 
A

n n

d
w
w

x w
w

=

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

1

1 2
2 2 2

Hence, amplitude of steady state forced vibrations = 
static deflection × magnification factor

⇒ A = d (MF) , where d = 
F

S
0

1.  When there is no damping (i.e. x  = 0), magnification 
factor

MF = 1

1
2

2

2 2

−
⎛
⎝⎜

⎞
⎠⎟

=
−( )w

w

w
w w

n

n

n

2.  When there is no damping (i.e. x = 0) and the frequency 
of excitor is equal to the natural frequency of oscillator 
(i.e. w = wn), this condition is called resonance. The 
magnification factor at undamped resonance is 
infinite (•).

3.  When there is damping (i.e. x ≠ 0), maximum 
magnification factor does not occur at w = wn. At 

x  ≠ 0 and w = wn, MF = 
1

2x
4.  When there is damping (i.e. x  ≠ 0), the maximum 

amplitude of steady state forced vibration occurs at an 

excitor frequency w = wr, where wr = wn 1 2 2− x , 

where 0 < x < 
1

2

This can be easily proved as follows. As

 MF = 
1

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

w
w

x w
wn n

,

MF will be maximum, when

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

w
w

x
w
wn n

is minimum . Put 
w
wn

r=

∴ MF is maximum, when

[1 − r2]2 + (2x r)2 is minimum.

Differentiating this function with respect to r and 
equating it to zero (condition for maxima or minima), 
we get

d r r

dr

( ) ( )1 22 2 2− +{ }x

= 2(1 − r2) (−2r) + 8x 2 0r =

⇒ r = 1 2 2− x

i.e. 
w
w

x
n

= −1 2 2

⇒ w = wn 1 2 2− x
∴ wr < wn for MFmax, when x  ≠ 0 and x <

1

2

5. If x >
1

2
,  there is no solution for wr. By substituting  

w  = wn 1 2 2− x , we can show that MFmax = 
1

2 1 2x x−
,  

when x ≠ 0 and

NOTES
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Graphical Method of Determining 
Maximum Amplitude (A) and Phase (f) in 
Steady State of Forced-Damped-Vibration
The applied force at time t is F = F0 sinwt, hence the maxi-
mum force applied is of magnitude F0 at an excitor frequency 
w. Let us assume the displacement in steady state at that 
instant is x = A sin(wt − f), where A = amplitude of displace-
ment, f is the phase lag of the displacement with the applied 
force.

Fs = spring force = −sx = −sAsin(w t − f), with maximum 
spring force = sA in magnitude

Fd = Damper force = −cv = −swA(coswt − f), with max-
imum damper force = swA in magnitude and leading the 

spring force by 
p
2

 rad (i.e. 90° lead)

Fi = inertial force = −m
d x

dt

2

2  = + mw 2 Asin(wt − f) with 

maximum value of mw 2A, leading the spring force by p 
rad (i.e. 180° lead) The maximum values of spring force, 
damper force and inertial force (in magnitude and direc-
tions) on the block of mass m are as shown below.

90°

180°

cωA

sAmω2A

The maximum value of applied force (F0) is equal and 

opposite to the sum of Fi, Fd and Fs ∵F F F Fi d s+ + =( )0 . 
This is shown in the vector diagram below.

φ

F0

2

1

cωA

mω2A

sA0

From the right angled triangle 012, we have
F0

2 = (sA − mw2A)2 + (cwA)2

 = A2 s m c−⎡⎣ ⎤⎦ + ( ){ }w w2 2 2

⇒ F0 = A s m c−( ) + ( )w w2 2 2

⇒ A = 
F

s m c

0

2 2 2−( ) + ( )w w
 , which is the same 

expression for amplitude obtained earlier by the differential 
equation method.

w = wn
1 2 2− x and 0 < x <

1

2
.

At x = 0 (undamped), MF = 1

1
2

−
⎛
⎝⎜

⎞
⎠⎟

w
wn

. As x  is 

incre-ased, MF keeps on decreasing.

At x = 1,  MF = 1

1
2

+
⎛
⎝⎜

⎞
⎠⎟

w
wn

The variation of magnification factor (MF) with ratio of 

frequencies w
wn

⎛
⎝⎜

⎞
⎠⎟

for various values of x  are shown in 

below Figure.

2.0

Ratio of frequency 
ωn

ω
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ξ = 1
ξ = 0.5

ξ = 0.2

ξ = 0.1

ξ = 0

The relation between phase angle (f) in the steady 
state of forced vibrations to the angular frequency ratio 

w
wn

⎛
⎝⎜

⎞
⎠⎟

 for various values of damping factor x( )  is shown

ξ = 1

ξ = 0.5
ξ = 0.2

ξ = 0.1
180°

90°
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⇒ A = 
F

s m c

0

2 2 2−( ) + ( )w w

= 
F s

n n

0

2 2 2

1 2

( )

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w
w

x w
w

, where

F0/s = d, the static deflection of the spring.
From triangle 012, we have

tan f = 
c A

sA m A

c

s m

w
w

w
w−( ) =

−( )2 2

 = ⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

c

s

n

w

w
w

1
2

⇒ tan f = 
2

1
2

x w
w

w
w

n

n

( )
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 same as calculated earlier.

1.  When w = wn in force-damped oscillation (steady 
state),

mw2A = mwn
2A = m 

s

m
A sA=

∴ tanf = 
c A

sA sA

w
−( ) = ∞

⇒ f = 90° or
p
2

rad
⎛
⎝⎜

⎞
⎠⎟

i.e. When w = wn in force-damped oscillation, the 
displacement of the vibrating body lags the applied 

force by 
p
2

 radian.

2.  If x = 0 (i.e. undamped), f = 0° ⇒ displacement of 
vibrating body and applied force are always in phase.

3.  If w > wn, f > 
p
2

 rad, if w < wn, f < 
p
2

 rad when  

x ≠ 0 (i.e. system has some damping).

4.  If w  = wn
1 2 2−( )x ,  i.e. when magnification factor is 

maximum in forced-damped vibrations 0
1

2
< <x⎛

⎝⎜
⎞
⎠⎟ , 

then

  tanf = 
1 2 2− x

x
 ⇒ f < 90°.

NOTES

Vibration Isolation
Whenever machines having unbalanced masses are operated, 
vibrations will be produced in such machines. These vibra-
tions get transmitted to the foundation/ support/ structure on 

which such machines are installed. However, if springs and 
dampers are used in between the machines and their founda-
tions/supports/structures, the vibrations will be transmitted 
through the springs and dampers. Also, other vibration isola-
tion materials (like anti-vibration pads, etc.) can also be used 
between machines and their supports/foundations. The pro-
cess of reducing the vibration transmitted from machines to 
foundations/supports/structures is called vibration isolation.

Transmissibility (e)
The ratio of the magnitude of the maximum force transmit-
ted to the foundation to the maximum exciting force applied 
on the machine is called as transmissibility. It is usually 
denoted by the symbol e.

cs

m Machine

Damper

Spring

Foundation 

F = F0 sin ωt

Consider the system shown in the above Figure. When an 
exciting force F = F0sinwt acts on the machine of mass m, 
a force is transmitted to the foundation through the spring 
(of stiffness s) and the damper (of damping coefficient c). If 
A is amplitude of vibration of the body and w is the circular 
frequency of exciter (i.e. the frequency of external force on 
the machine), the maximum spring force Fs = sA and maxi-
mum damper force, Fd = cwA. Then two forces are having a 

phase difference of 
p
2

rad (i.e. 90°) with each other with Fd 

leading Fs. The resultant force transmitted to the foundation 

(FT) is the vector sum of Fs and Fd.

i.e. F F FT s d= +
Graphically, this can be represented as shown below.

FT

Fs = sA

Fd = cωA

φ1

∴ Resultant force transmitted to foundation,

FT = F Fs d
2 2+ ]

⇒ FT = sA cA( ) + ( )2 2w

⇒ FT = A s c2 2 2+ w

But we knew A = 
F

s m c

0

2 2 2−( ) + ( )w w
from earlier 

 discussions. Hence,



3.292 | Part III • Unit 3 • Theory of Machine, Vibrations and Design

FT = 
F

s m c
s c0

2 2 2

2 2 2

−( ) + ( )
× +

w w
w

 = 

F
c

s

m

s

c

s

0

2

2
2 2

1

1

+ ⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

w

w w

∵
m

s n

=
⎡

⎣
⎢

1
2w

 and c

s n

=
⎤

⎦
⎥

2x
w

i.e. F

F

T
n

n n

=
+

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

⎛
⎝⎜

⎞
⎠⎟

0

2

2 2 2

1 2

1 2

x w
w

w
w

x w
w

 

Transmissibility, e

xw
w

w
w

xw
w

= =
+

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

F

F
T n

n n

0

2

2 2 2

1
2

1
2

 

If no damper is used (i.e. x = 0), then

e
w
w

=

± −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

1
2

n

If damper is used i.e. 0
1

2
< x <⎛

⎝⎜
⎞
⎠⎟  and w = wn (which 

is not resonance for this force damped vibrations) then 
transmissibility, 

e
x

x
x

x
=

+ ( )
=

+1 2

2

1 4

2

2 2

(For forced-damped oscillations with 0 < x <
1

2
, res-

onance occurs at wr = w = wn 1 2 2− )x . The following 

points are to be noted about transmissibility.

 1. If w
wn

⎛
⎝⎜

⎞
⎠⎟

< 2 , then the transmissibility (e) is greater 

than 1 (i.e. e > 1) for all values of damping factor (x).

 2. If w
wn

⎛
⎝⎜

⎞
⎠⎟

> 2, then the transmissibility (e) is less 

than 1 (i.e. e < 1) for all values of damping factor (x).

 3. If 
w
wn

= 2,  then the transmissibility (e) is equal to 1 

(i.e. e = 1) for all values of damping factor (x).

 4. If w
wn

= 1,  then transmissibility (e) is infinite (i.e.  

e = ∞), if no damper is used (i.e. x = 0).

 5. If 
w
wn

= 1,  then transmissibility (e) decreases as 

damping factor (x) is increased.

 6. If 
w
wn

> 2 , then transmissibility (e) increases as 

damping factor (x) is increased.
 7. For a given value of damping factor (x), the 

transmissibility (e) starts at 1.0 corresponding to 
w
wn

= 0 and keeps on increasing to reach a maximum 

value at 
w
wn

= 1  and then keeps on decreasing as 

w
wn

becomes greater than 1. At 
w
wn

= 2 , then 

transmissibility (e) again becomes equal to one and 

becomes less than 1 for all values of 
w
wn

> 2 .

The phase angle (fT) between the maximum resultant trans-
mitted force (FT) and the amplitude of the applied force F0 
is given by the expression

fT = f − tan tan− −⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

1 1F

F

c A

sA
d

s

f
w

= f − tan− ⎛
⎝⎜

⎞
⎠⎟

1 c

s

w

∵
c

s n

=
⎛
⎝⎜

⎞
⎠⎟

2x
w

i.e. fT = f − tan− ⎛
⎝⎜

⎞
⎠⎟

1 2xw
wn

, where

f = tan−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2

1

x w
w

w
w

n

n

which is the phase difference 

between F0 and A. This is graphically shown below.

φ

Fd = cωA

Fi = mω 2A

Fs = sA

FTF0

φ1

φ T
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Example 40: For an under damped harmonic oscillator, 
resonance
(A)  occurs when excitation frequency is greater than un-

damped natural frequency.
(B)  occurs when excitation frequency is less than un-

damped natural frequency.
(C)  occurs when excitation frequency is equal to undamped 

natural frequency.
(D) never occurs.

Solution:
Resonance occurs when the frequency of excitation is such 
that the amplitude of forced vibration is maximum. In the 
case of undamped forced vibration, resonance occurs when 
the excitation frequency w  = natural frequency of vibration 
wn. But in the case of under damped forced vibrations, the 
maximum amplitude of forced vibration occurs when  w = 

w xn 1 2 2− , which is less than wn, the undamped natural 

frequency when 0
1

2
< <⎛

⎝⎜
⎞
⎠⎟

x .

Example 41: An automotive engine weighing 240 kg is 
supported on four springs with linear characteristics. Each 
of the front two springs have a stiffness of 16 MN/m. The en-
gine speed (in rpm), at which resonance is likely to occur is
(A) 6040   (B) 3020   (C) 1424   (D) 955

Solution:
Mass of system m = 240 kg
 All springs are connected in parallel.
 ∴ Effective stiffness of spring, s

= (2 × s1 + 2 × s2)

 = (2 × 16 × 106) + (2 × 32 × 106)

= 96 × 106 N/m

 Natural frequency of vibration

fn = 
1

2

1

2p
w

p
. n

s

m
=

= 
1

2

96 10

240

6

p
×

Hz

= 100.66 Hz

= 100.66 × 60 rpm

= 6039.6 rpm
 No damper is used.
 ∴ f = fn for resonance
⇒ Engine speed at resonance

= 6039.6 rpm
= 6040 rpm 

Example 42:

m F(t ) = 100 cos (100t) N
K = 3000 Nm�1

A mass m attached to a spring is subjected to a harmonic 
force as shown in figure. The amplitude of the forced motion 
is observed to be 50 mm. The value of m (in kg) is
(A) 0.1  (B) 1.0   (C) 0.3   (D) 0.5

Solution:
F0 = maximum exciter force = 100 N
 No damper is used A = 50 mm

 = 0.05 m

 ∴ F0 =  sA m A−⎡⎣ ⎤⎦w 2

∵F sA m A c A0
2 2 2= −( ) + ( ) =⎧

⎨
⎩

⎫
⎬
⎭

w w , here 0c  

⇒ mw2A = sA − F0

= (3000 × 0.05) − 100

= 50 N

 w  = 100 rad/s (= Exciter frequency from data)

∴ m = 
50 50

100 0 05
0 1

2 2w A
=

( ) ×
=

.
. kg

 Hence, mass of system is 0.1 kg. 

Example 43:

m

F = 10 cos (25t)

c
k

A mass-spring-dashpot system with mass m = 10 kg, spring 
constant k = 6250 N/m is excited by a harmonic excitation 
of 10 cos(25 t) N. At the steady state, the vibration amplitude 
of the mass is 40 mm. The damping coefficient c (in Ns/m) 
of the dashpot is ______.

Solution: For steady state forced-damped vibrations,
we have

A = 
F

s m c

0

2 2 2−⎡⎣ ⎤⎦ + ( )w w

Here, A = 0.04 m, F0 = 10 N,
s = 6250 N/m
m = 10 kg, w = 25 rad/s ; c = ?
⇒ (s − mw 2)2 + (cw)2

= F

A
0

2 2
210

0 04
250

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=
.

∴ (cw)2 = 2502 − (s − mw 2)2

= 2502 − (6250 − 10 × 252)2

= 62, 500 − 0 = 62, 500

∴ cw = 62500 250=
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 ⇒ c = 
250 250

25w
=

= 10
N s

m
.

Hence, the damping coefficient of the dashpot is 10
N s

m

Example 44: A single degree of freedom system has a 
mass of 2  kg, stiffness 8 N/m and viscous damping ratio 
0.02. The dynamic magnification factor at an excitation fre-
quency of 1.5 rad/s is _________ . 

Solution: Given m = 2 kg, s = 8 N/m, x = 0.02, w = 1.5 rad/s

wn = 
s

m
= =

8

2
2 rad s/

Magnification factor,

MF = 1

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

w
w

x w
wn n

 = 
1

1
1 5

2
2 0 02

1 5

2

2 2 2

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ × ×⎛
⎝⎜

⎞
⎠⎟

.
.

.

= 1

1 0 5625 0 032 2( . ) ( . )− +

= 1

0 4375 0 00092( . ) .+

= 
1

0 1923

1

0 4385
2 28

. .
.= =

∴ The dynamic magnification factor is 2.28.

Example 45: A machine of 250 kg mass is supported on 
springs of total stiffness 100 kN/m. Machine has an unbal-
anced rotating force of 350 N at speed of 3600 rpm. Assuming 
a damping factor of 0.15, the value of transmissibility ratio is
(A) 0.0531 (B) 0.9922
(C) 0.0162 (D) 0.0028

Solution:
Mass m = 250 kg
 Stiffness of spring, s = 100 × 103 N/m

 = 105 N/m
 F0 = 350 N

w  = 
2

60

2 3600

60
120

p p
p

N
=

×
=

= 376 99. rad s/

x  = 0.15

wn = 
s

m
=

10

250

5

   = 20 rad/s

 Transmissibility,

e = 

1 2

1
2

2

2 2 2

+
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
⎛
⎝⎜

⎞
⎠⎟

x w
w

w
w

xw
w

n

n n

 =
1

2 0 15 376 99

20

1
376 99

20

2 0 15

2

2 2

+ × ×⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ × ×

. .

. . 3376 99

20

2
.⎛

⎝⎜
⎞
⎠⎟

= 1 31 977

1 355 304 31 9772

+

− +

.

[ . ] .

= 
32 977

125531 324 31 977

.

. .+

= 
5 7426

354 349
0 0162

.

.
.=   

Example 46: Consider a single degree of freedom system 
with viscous damping, excited by a harmonic force. When 
the frequency of exciter is equal to the natural frequency of 
oscillation of the system, the phase angle (in degree) of the 
displacement with respect to the exciting force is
(A) 0   (B) 45   (C) 90   (D) 135

Solution:
We have tan f

= 
c A

sA m A

c

s m

w
w

w
w( ) ( )−

=
−2 2

= 

c

s

m

s

n

n

⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

w

w

x w
w

w
w

1

2

1
2

2

= 
2

1 1

x
w w

( )
( )

−
=∵ n

= ∞
∴ f = tan−1(∞) = 90°

w  = wn is NOT resonance for underdamped-forced-

vibrating system. wr = w = w xn 1 2 2− gives the 

maximum amplitude for that case, when 0 < x <
1

2
.

NOTE

Example 47: A vibrating machine is isolated from the 
floor using springs. If the ratio of the excitation frequency 
of vibration of machine to the natural frequency of the iso-
lation system is equal to 0.5, the transmissibility ratio of 
isolation is
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(A) 
1

2
  (B) 

3

4

(C) 
4

3  
 (D) 2

Solution: Given 
w
w

x
n

= =0 5 0. ;

∵nodamper is used( )
Transmissibility e

= 

1 2

1 2

2

2 2

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦

x w
w

w
w

x w
w

n

n n
⎥⎥

2

= 
1 0

1 0 5 0

1

1 0 52 2

+

− ( ) +⎡
⎣

⎤
⎦

=
− ( ). .

= 
1

1 0 25

1

0 75

4

3−
= =

. .
  

Example 48: In vibration isolation, which one of the follow-
ing statements is not correct regarding transmissibility (T)?
(A) T is nearly unity at small excitation frequencies.
(B)  T can always be reduced by using higher damping at 

any excitation frequency.
(C) T is unity at the frequency ratio of 2
(D) T is infinity at resonance for undamped systems.

Solution: The variation of transmissibility (e) with

ratio of frequencies w
wn

⎛
⎝⎜

⎞
⎠⎟

for various values of damping 

factor (x ) is shown in figure below.

ξ = 0

ξ = 0.1

ξ = 0.2
ξ = 1.0

ωn

ω

Tr
an

sm
is

si
bi

lit
y 

(ε
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0

1

2

3

4
5

6

7

8

9

10

11

ξ = 1

ξ = 0.2

ξ = 0.1

It can be seen that for small excitation frequency w
wn

<
⎛
⎝⎜

⎞
⎠⎟

0 3. ,

e ≈ 1 → statement (A) is correct.

We have e = 
1 2

1 2

2

2 2 2

+
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

x w
w

w
w

x w
w

n

n n

when 
w
wn

= 2 , e = 1 ⇒ (C) is correct

If x = 0 (undamped), when 
w
wn

= 1(i.e. resonance), e is ∞.

⇒ (D) is correct.

If 
w
wn

> 2 , then transmissibility (e) increases as 

damping factor (x ) is increased. For 0.3 < 
w
wn

< 2  only, 

transmissibility decreases as damping factor (x ) is increased 
⇒ statement (B) is wrong. Choice (B)

Example 49: There are four samples P, Q, R and S with 
natural frequencies 64, 96, 128 and 256 Hz respectively. 
They are mounted on test setups for conducting vibration 
experiments. If a loud pure note of frequency 144 Hz is pro-
duced by some instrument, which of the samples will show 
the most perceptible induced vibration?
(A) P   (B) Q   (C) R   (D) S

Solution: The most perceptible induced vibration will have the 
largest magnification factor (MF) among the given frequencies.

MF = 1

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

w
w

x w
wn n

As no data is given on x, we assume it as zero.

∴ MF = 1

1
2

± −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w
wn

Here, w = 144 Hz

For wn = 64 Hz,

MF1 = 
1

1
144

64

1

1 5 06252

− − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
− −[ ].

= 
1

4 0625
0 2462

.
.=

For wn= 96 Hz., MF2 = 
1

1
144

96

2

− − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 
1

1 2 25− −[ ].
 = 

1

1 25
0 8

.
.=
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For wn = 128 Hz.,

MF3 = 
1

1
144

128

2

− − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 
1

1 1 2656− −[ ].

= 
1

0 2656
3 765

.
.=

For wn = 256 Hz., MF4 = 
1

1
144

256

2

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 
1

1 0 3164−( ).

  = 
1

0 6836.

  = 1.463

MF is maximum for wn = 128 Hz
⇒ Most perceptible induced vibration will be produced for 
natural frequency of 128 Hz. (i.e. R).
Hence the option is (C)

Example 50:

c = 150 Ns/m

m = 5 kg

k = 10000 N/m

F

The figure shows a spring-mass-dashpot system. The mass 
has a harmonic disturbing force applied to it given by  
F = 400 sin(30t) N. The amplitude of displacement of 
induced vibration of mass (in mm) and the maximum 
phase angle (in degree) of the displacement with 
the applied force are respectively ___________ and 
___________ .

Solution: m = 5 kg; k = s = 10000 N/m;
 c = 150 Ns/m
 F0 = 400 N; w = 30 rad/s

wn = 
s

m
= =

10000

5
44 72.  rad/s

 ∴ Static deflection, d = 
F

s
0 400

10000
=

= 0 04. m

 cc = 2mwn = 2 ms  = 2 × 5 10000×

= 447.21 rad/s

x = = =
c

cc

150

447 21
0 3354

.
.

 Magnification factor, MF = 
A

d

=

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

1

1 2
2 2 2

w
w

x w
wn n

= 
1

1
30

44 72

2 0 3354 30

44 72

2 2 2

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ × ×⎛
⎝⎜

⎞
⎠⎟.

.

.

= 
1

0 3025 0 2025. .+

= 
1

0 505.

= 1.407

 ∴ Amplitude of oscillation,

A = 1.407 × d
 = 1.407 × 0.04

 = 0.05628 m

 = 56.28 mm

If f is the phase difference between F0 and A,

tan f = 
2

1
2

x w
w

w
w

n

n

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
× × ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 0 3354
30

44 72

1
30

44 72

2

.
.

.

 = 
0 45

0 55

.

.

 = 0.8182

∴ f = tan .− ( )1 0 8182

 = 39.29°

Hence, the maximum amplitude of displacement of the 
induced vibration is 56.28 mm and the phase difference of 
displacement amplitude with the applied force is 39.29°.
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Forced-Damped Vibrations Involving 
 Harmonic Movement of the Support
So far we had discussed the forced-damped vibrations in 
which the support is fixed. Let us now consider forced 
vibrations in which the support is also subjected to har-
monic movement. There are two cases; (i) when the damper 
is located between the mass and a fixed support, spring con-
nected to a moving support (ii) when the damper and spring 
are located between the mass and moving support. We will 
discuss each of these cases.

Case 1: Damper between mass and fixed support

Displacement of
mass (x)

Equilibrium position
of mass

Massless
spring of
stiffness s

Moving
support

Mass m

Mean position of
support

Displacement of
support (y)

Fixed support 

Dashpot of damping
coefficient c

The arrangement of spring-mass-damper system is as 
shown in the above figure. The mass m is constrained to 
move vertically up and down only. The movable support 
moves vertically up and down at a circular frequency of w 
(rad/s) and with a displacement amplitude of a. This is usu-
ally achieved using a cam arrangement. At time t = 0, the 
movable support passes through its mean position. The dis-
placement of the movable support at any time t (measured 
from its mean position) is y, so that the equation of simple 
harmonic motion of the support is y = a sinwt

The displacement of the mass m, measured from its mean 
position is denoted as x and the amplitude of this displace-
ment is A. It is not necessary that the oscillation of mass m 
is in phase with the oscillation of support. If the oscillation 
of mass m has a phase difference of f with the oscillation 
of the support, then we can write the displacement of mass 
m as given by

x = A sin(wt + f)

Hence, the velocity of damper piston is v = 
dx

dt
At any given time t, the spring is stretched or compressed 

by an amount (x − y) so that spring force Fs = s(x − y)

The damper force, Fd = c
dx

dt

⎛
⎝⎜

⎞
⎠⎟

The inertial force, Fi = m d x

dt

2

2

There is no applied force on the mass
Hence, the dynamic balance gives

0 = m
d x

dt
c

dx

dt
s x y

2

2
+ + −( )

⇒ sy = m
d x

dt
c

dx

dt
sx

2

2
+ +  [But y = a sinwt]

  i.e. s asinwt = m
d x

dt
c

dx

dt
sx

2

2
+ +

The above equation is of the form

F0 sinwt = m
d x

dt
c

dx

dt
sx

2

2
+ + , which is the equation for 

forced-damped vibration. Hence, in the equation of forced-
damped vibration, replace F0 with sa (i.e. F0 = sa) to obtain 
the steady state solution for this vibration

 ∴ A = 
sa

s m c−( ) + ( )w w2 2 2

= 
a

m

s

c

s
1 2

2 2

− ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

+ ⎛
⎝⎜

⎞
⎠⎟

w w

⇒ A = a

n n

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

w
w

x w
w

, where

wn = 
s

m
and

x
w

= = =
c

c

c

m

c

msc n2 2

Also, phase f = tan−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

1
2

2

1

x w
w

w
w

n

n

Case 2: Damper between the mass and moving support

Displacement of
mass (x)

Mean position
of mass

Light spring
of stiffness s

Moving
support

Mass m

Mean position of
support

Displacement of
support (y)

Dashpot of damping
coefficient c
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The displacement of support from mean position is y = a 
sin wt. The support passes through its mean position at time 
t = 0

The change in length of spring is (x − y), hence the spring 
force is Fs = s(x − y)

As the damper is now between the moving support and 
the mass, velocity of mass with respect to damper is now

v = 
d

dt
x y

dx

dt

dy

dt
−( ) = −

∴ Damping force, Fd = c
dx

dt

dy

dt
−⎛

⎝⎜
⎞
⎠⎟

Inertial force on mass, Fi = m 
d x

dt

2

2

As y = a sinwt [i.e. displacement of support]

dy

dt
a t= w wcos

As there are no other forces on m, we have

0 = Fi + Fd + Fs

⇒ 0 = m 
d x

dt
c

dx

dt

dy

dt
s x y

2

2
+ −⎛

⎝⎜
⎞
⎠⎟

+ −( )

⇒ c 
dy

dt
sy m

d x

dt
c

dx

dt
sx+ = + +

2

2

⇒ c(aw cosw t) + s(a sinw t)

= m 
d x

dt
c

dx

dt
sx

2

2
+ +

LHS is the sum of two SHMs having a phase difference 

of 
p
2

rad

⇒ ca sa tw w a( ) + ( ) +( )2 2
sin

= + +m
d x

dt
c

dx

dt
sx

2

2

where a = tan− ⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

1 2
c

s n

w
x

w
w

Compare this equation with

F0sinw t = m 
d x

dt
c

dx

dt
sx

2

2
+ + . The steady state solution 

for the vibration of mass m is

x = Asin [(w t + a) + f], where

A = 
sa

s m c( ) ( )− +w w2 2 2

⇒ A = a

n n

1 2
2 2 2

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎛
⎝⎜

⎞
⎠⎟

w
w

x w
w

, where

wn
s

m
=  and x = =

c

c

c

msc 2

The phase difference f = tan−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
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⎞
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⎡

⎣
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⎤
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⎥
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2
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Example 51:

Spring of stiffness s = 104 N/m 

Moving support

y = 6 sin(40t ) mm

Mass m = 5 kg

Dashpot, c = 150 Ns/m 

Fixed support

m

The figure shows a spring-mass-dashpot system. The 
dashpot is in between the mass m = 5 kg and the fixed sup-
port. The damping coefficient is 150 Ns/m. The spring of 
stiffness 104 N/m is connected to a moving support which is 
moved vertically as per the relation y = 6 sin(40t) mm, where 
y represents the vertical displacement of the support from 
its mean position at time t. The amplitude of displacement 
of mass m (in mm) and the phase difference (in degree) of 
the displacement of mass m with the displacement of sup-
port are respectively __________ and ________ .

Solution: Given s = 104 N/m; c = 150 Ns/m,

m = 5 kg

wn = 
s

m
= =

10

5
44 72

4

.  rad/s

cc = 2 2 5 104ms = ×

 = 447.21 Ns/m

x = 
c

cc

= =
150

447 21
0 335

.
.

From the equation of motion of support, a = 6 × 10−3 m 
and w = 40 rad/s

∴  A = a

n n
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2 2 2
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 = 
6 10

1
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 = 9.499 × 10−3 m

 = 9.5 mm

tan f = 
2

1
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⎣
⎢
⎢
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⎥
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2 0 335
40

44 72

1
40

44 72

2

.
.

.

 = 
0 5993

1 0 8

0 5993

0 2

.

.

.

.−[ ] = = 2.9965

⇒ f = tan−12.9965 = 71.54°

Hence, the maximum phase difference between displace-
ment of mass and displacement of support is 71.54°.

Torsional Oscillations
When a shaft, fixed at one end, is subjected to a disturbing 
torque at its free end and about the axis of the shaft, the 
shaft gets twisted in the direction of the disturbing torque. 
Owing to the elasticity of the shaft (more specifically 
due to the torsional stiffness of the shaft), a torque which 
opposes this twist, called restoring torque is setup in the 
shaft. When the disturbing torque is removed, this restoring 
torque untwists the shaft. In this process, the strain energy 
in the shaft gets converted to rotational kinetic energy. So 
the shaft, on reaching the original position, overshoots and 
gets twisted in the opposite sense. Again restoring torques 
are set up which untwists the shaft and this process goes on. 
This process is known as torsional vibration.

We know from the lessons on torsion of shafts (in 

Strength of Materials) that 
T

J

G

L
=

q
, where 

T = torque on shaft
J = polar second moment of area of cross section of shaft
G = modulus of rigidity of material of shaft
L = length of shaft and
q = angle of twist of shaft
The torsional stiffness of shaft (q) is defined as the 

restoring torque per unit twist.

∴ q = 
T GJ

Lq
=

For a circular solid shaft of diameter d,

J = 
pd4

32

Natural Frequency of Free Torsional 
 Vibrations (Single Rotor)

Fixed end

Shaft

L

Position after time ‘t ’

Mean position
Torque

Torque
θ

Consider a uniform shaft of length L, whose upper end is 
fixed and the lower end carries a heavy uniform disc of mass 
m. The plane of disc is parallel to the cross sectional area of 
the shaft. The moment of inertia of the shaft about its axis 
is negligible.

Let the disc be subjected to a disturbing torque about the 
axis of the shaft. On releasing this torque, the shaft executes 
torsional vibrations. If q is the angular displacement of shaft 
from its mean position after time t, the angular acceleration 

a = 
d

dt

2

2

q
 for the shaft.

m = mass of disc
k = radius of gyration of disc about axis of shaft
I = mass moment of inertia of disc about axis of shaft 

= mk2

q = torsional stiffness of shaft 

= 
GJ

L
 where L = length of shaft

 J = polar second moment of area
 G = modulus of rigidity of shaft material

In the free-torsional vibration of the shaft, at any instant t, 
the torques acting on the disc are

 (i) ti = Inertial torque = Ia

      = I 
d

dt

2

2

q
(acting opposite to direction of a)

 (ii) tr = Restoring torque
 = qq (opposite direction of q )

As per D’ Alembert’s, principle, ti + tr = 0

⇒ I
d

dt
q

2

2
0

q
q+ =
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⇒ 
d

dt

q2

2
0

q
q+ ⎛

⎝⎜
⎞
⎠⎟

=
I

 which is the differential equation 

for free torsional vibration, which is SHM.

∴ wn
2 = coefficient of q = 

q

I

⇒ wn
q

=
I

, where wn = natural circular frequency of 

free - torsional oscillations.

Time period, Tn = 
2

2
p

w
p

n q
=

I
 and natural frequency

fn = 
1 1

2T

q

n

=
p I

 for free-torsional vibrations.

If the mass moment of inertia of the shaft about its axis 
is not negligible, then it can be shown that the effective mass 
moment of inertia of system will be equal to mass moment 
of inertia of disc plus one-third of the mass moment of iner-
tia of the shaft.

i.e. I I
I

eff = + 1

3
, where

I = mass moment of inertia of disc and
I1 = mass moment of inertia of shaft

In that case, f
q

n
eff

=
1

2p I
 = 1

2
3
1p

q

I
I+⎛

⎝⎜
⎞
⎠⎟

At the fixed end of the shaft, the amplitude of torsional 
vibrations is zero for a single rotor system and it forms a 
node. The amplitude of torsional vibration is maximum 
at the free end (at the location of the rotor). In torsional 
vibrations, the shaft remains undisturbed by the vibrations 
at the node, which is the section of the shaft where the 
amplitude of vibration is zero.

Free Torsional Vibrations  
(Two Rotor  System)
In a two-rotor system, there are two discs (or rotors), one 
at each free end of the shaft. For torsional vibrations, the 
discs are twisted in opposite directions and released (if 
the discs are twisted in same direction, the shaft will only 
rotate and will not get twisted). Consequently certain length 
of the shaft twists in one direction, while the remaining 
length twists in opposite direction. There is a section of 
the shaft which does not get twisted and remains unaffected 
by the vibrations. This section is called node. Hence, the 
section of the shaft at the node can be considered fixed. The 
section of shaft from the node to one rotor and the section 
of shaft from the node to the other rotor vibrate with same 
frequency but in opposite directions. The amplitudes of 
oscillations at the rotors may or may not be equal. These 
are explained in the following Figure.

L

A B

LBLA

Node
N

D

f

C

e

L is the length of the shaft. Two rotors A and B are fixed 
at the free ends. The rotors are twisted in opposite direc-
tions and released. The section at point N of the shaft is not 
affected by twisting and it is the node. LA is the length of 
the shaft from node N to rotor A and LB is the length of shift 
from node N to rotor B. The length LA and LB get twisted 
in opposite directions but vibrate with same frequency. 
Ce and Df are the amplitudes of oscillations at rotor A and 
B respectively. The line ef, known as the elastic line of the 
shaft, passes through the node N.

We have LA + LB = L, length of shaft

I A  
= mass moment of inertia of rotor A

IB = mass moment of inertia of rotor B

qA = torsional stiffness of length LA

= GJ

LA

qB = torsional stiffness of length LB

= GJ

LB

The length LA can be considered as a single rotor system, 
fixed at node N.

A

N

LA

∴ fnA =  natural frequency of torsional vibration of rotor 
A

 = 1

2

1

2p p
q GJ

L
A

A A AI I
=
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Similarly, the length LB can be considered to be a single 
rotor system, fixed at N.

B

N

LB

fnB = natural frequency of torsional vibration of rotor B

 = 1

2

1

2p p
q GJ

L
B

B B BI I
=

As the natural frequency of LA and LB are same,

fnA = fnB

⇒ 1

2

1

2p p
GJ

L

GJ

LA A B BI I
=

⇒ LAIA = LBIB

or 
L

L
A

B

B

A

=
I

I

⇒ ( )L L

L
A

B

B A

A

+
=

+( )B I I

I

⇒ L

LB

B A

A

=
+I I

I

or LB = I

I I
A

A B

L

+( )
 and LA = I

I I
B

A B

L

+( )
If IA, IB and L are known, the location of node N can be 

determined using the expressions for LA and LB. A two rotor 
system has one natural frequency of torsional vibration. 
The node in this case is located between the rotors and 
nearer to the rotor of larger mass moment of inertia.

Free Torsional Vibration of  
Three Rotor System
In this case, three rotors A, B and C are mounted on a shaft. 
There are two possible nodes of torsional vibrations of this 
shaft and hence there are two natural frequencies of tor-
sional vibration of a three rotor system. In one mode there 
is only one node and in the other mode, there are two nodes.

Three-Rotors Single Node System 
When rotors A and B are twisted in same sense and rotor 
C is twisted in opposite sense, a single node is formed 
between rotors B and C.

When rotors B and C are twisted in one sense and rotor 
A is twisted in opposite sense, a single node is formed 
between rotors A and B.

The amplitudes of vibration of rotor A, rotor B and 
rotor C are a1, a2 and a3, respectively. 

CBA

L2L1

LC

a3

a2

LA

a1

(LA  L1)

Actual node

Rotors A and B rotate in same sense, rotor C rotates in 
opposite sense. An actual node is formed between B and 
C. The length LA > L1 but LA does not give the actual node 
point. The actual node point in this case is given by Lc.

We have a

L

a

L LA A

1 2

1

=
−( )

Also, 
a

L

a

L L
c c

3 2

2

=
−( )

Now let us look at the case when rotors B and C rotate in 
same sense and rotor A rotates in opposite sense.

CBA

L2L1

LA

a3
a2

LC

a1

(LC  L2)

Actual node 

CBA

L2L1

LA

a3
a2

LC

a1

(LC  L2)

Actual node 
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Actual node in this case is obtained in between A and B 
and LA gives the location of actual node. Lc does not give 
location of actual node. Lc > L2

Also, a

L

a

L Lc c

3 2

2

=
−( )

 and

a

L

a

L LA A

1 2

1

=
−( )

Three - Rotors Double Node System
When the rotors at the free ends (A and C) rotate in the same 
sense and rotor in between them (B) rotates in the opposite 
sense, two nodes are produced, one between A and B and 
then other between B and C. The shaft can be assumed to be 
fixed at the nodes.

BA

L2
L1

C

LA a2

a3

Lc

N2N1
Nodes

LB1 LB2

Let IA, IB and IC = mass moment of inertia of rotors A, B 
and C respectively

L1 = distance between rotors A and B
L2 = distance between rotors B and C
LA = distance of rotor A from node N1

LB1
= distance of rotor B from node N1

LB2
= distance of rotor B from node N2

LC = distance of rotor C from node N2

G = modulus of rigidity of shaft material
d = diameter of shaft
J = polar moment of inertia of shaft cross section

 = 
p
32

4d .

N1

A

LA

The natural frequency of torsional vibration of rotor A, 

fnA = 1

2

1

2p p
q GJ

L
A

A A AI I
=

N2

C

LC

The Natural Frequency of Torsional  Vibration of Rotor C

fnC = 1

2p
qc

cI
= 1

2p
GJ

Lc cI

qB1
=Torque required to produced unit twist on length LB1

= GJ

LB1

qB2
=Torque required to produce unit twist on length LB2

= GJ

LB2

∴ qB = Torque required to produce unit twist on rotor B

= q q GJ
L L

B B
B B

1 2

1 2

1 1
+ = +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= GJ 1 1

1 2 1L L L LA−( ) +
−( )

⎡

⎣
⎢

⎤

⎦
⎥

Hence, natural frequency of vibration of rotor B,

fnB = 1

2p I
qB

B

= 1

2

1 1

1 2 1p
GJ

L L L LB AI −( ) +
−( )

⎡

⎣
⎢

⎤

⎦
⎥

The natural frequencies of torsional vibration of 
rotor A, rotor B, and rotor C are all equal.

∴ fnA = fnB = fnC

fnA = fnC ⇒ 
1

2p
GJ

L

GJ

LA A C CI p I
=

1

2

⇒ LAIA = LCIC

or 
L

L
A

C

C

A

=
I
I

 ⇒ LA = I
I

C

A
CL

⎛
⎝⎜

⎞
⎠⎟

Also, fnC = fnB

⇒  1 1 1 1

1 2L L L L Lc c B A cI I
=

−
+

−
⎡

⎣
⎢

⎤

⎦
⎥( ) ( )
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By eliminating LA from the above equation, we obtain 
a quadratic equation in LC, which gives two values of LC 
and corresponding two values of LA. One value of LA and 
corresponding value of LC gives the position of nodes. The 
fundamental frequency determined using the two nodes 
positions is called the two-node frequency.

In a multi rotor torsional vibration system, the number of 
nodes that can occur is equal to number of rotors minus one.

NOTE

Torsionally Equivalent Shaft
When a compound shaft (made of different diameters and 
different lengths) is subjected to equal and opposite tor-
ques, the shaft twists through some angle. The torsionally 
equivalent shaft of this compound shaft is a shaft of uni-
form diameter and certain length which undergoes the 
same amount of angular twist as the compound shaft, 
when subjected to same amount of equal and opposite 
torques.

T
T

J3
J2

J1 J4d3d1

L1
L2

L3 L4

T T

J

L

d2 d4

d

T
T

J3
J2

J1 J4d3d1

L1
L2

L3 L4

T T

J

L

d2 d4

d

Figure shows a compound shaft subjected to equal and 
opposite torque T and Figure shows its torsionally equiva-
lent shaft of diameter d and length L.

The torsion equation for a shaft is 
T

J

G

L
=

q

⇒ q = 
TL

GJ
,  where J d=

p
32

4

For shaft of diameter d1 and length L1 angle of twist q1 is 

given by q1 = 
TL

J G

TL

d G

1

1

1

1
4

32

=
⎛
⎝⎜

⎞
⎠⎟

p

Similarly, q2 = 
TL

d G

2

2
4

32

p⎛
⎝⎜

⎞
⎠⎟

 q3 = 
TL

d G

3

3
4

32

p⎛
⎝⎜

⎞
⎠⎟

 and

 q4 = 
TL

d G

4

4
4

32

p⎛
⎝⎜

⎞
⎠⎟

For torsionally equivalent shaft,

q = q1 + q2 + q3 + q4

⇒ 
TL

d G

TL

d G

TL

d G
p p p
32 32 32

4

1

2
4

2

2
4⎛

⎝⎜
⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

   +

 

TL

d G

TL

d G

3

3
4

4

4
4

32 32

p p⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

⇒ 
L

d

L

d

L

d

L

d

L

d4
1

1
4

2

2
4

3

3
4

4

4
4

= + + +

or L = L
d

d
L

d

d
L

d

d
L

d

d
1

1

4

2
2

4

3
3

4

4
4

4⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

Here, we assumed that all shafts are made of same mate-
rial i.e. G is same for all shafts.

NOTE

Example 52: A flywheel of moment of inertia 30 kg m2 is 
fitted at the lower end of a uniform vertical shaft of diameter 
20 mm and length 800 mm, made of material of modulus of 
rigidity 80 GPa. The upper end of the shaft is rigidly fixed. 
The natural frequency of torsional vibration of the system 
(in Hz) is
(A) 2.31  (B) 1.15
(C) 4.76  (D) 9.31

Solution:

Polar moment of inertia, J = 
p
32

4d

= 
p
32

0 02 1 57 10
4 8 4× ( ) = × −. . m

Torsional stiffness,

q = 
GJ

L
=

× × × −80 10 1 57 10

0 8

9 8.

.

= 1570 Nm/rad

fn = 
1

2

1

2

1570

30p p
q

Ι
=  = 1.15 Hz.
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Direction for questions (Examples 53 and 54):

s

m

Force

Rest  position

x

A large drum of radius 0.5 m is mounted on a horizontal 
shaft. A belt runs over it as shown in figure with a mass 
of 400 kg on one end. The other end is restrained with a 
spring of stiffness 300 kN/m. The drum has a moment of 
inertia 60 kg m2 about its axis. The belt does not slip on 
the drum. The maximum displacement of the mass is 5 mm 
from its mean position, when it is pulled down and released, 
resulting in its vertical free undamped oscillations.

Example 53: The natural frequency of vibration of the sys-
tem (in Hz) is
(A) 1.73   (B) 5.94   (C) 3.45   (D) 7.36

Solution:
At time t, the extension of spring is x
If a is the angular acceleration of the drum, the torque (t) 
required to accelerate the drum is t = Ia, where I = moment 
of inertia of drum
But torque = Force × radius ⇒ t = FR

⇒ F = 
t a
R

I

R
=

Hence, inertia force required to accelerate the drum, Fi1 = 
Ia
R

If a is the linear acceleration of the mass, inertia force 
required to accelerate the mass,

Fi2 = ma

For no slip of belt, the linear acceleration a is related to the 
angular acceleration a as

a = Ra ⇒ a = 
a

R

∴ Fi1 = 
I Ia
R

a

R
=

2

Spring force Fs = sx (s = stiffness of spring)
 For free vibrations, for dynamic equilibrium,

Fi1 + Fi2 + Fs = 0

⇒ 
I a

R
ma kx

2
0+ + =

⇒ 
I

R
m a kx

2
+⎛

⎝⎜
⎞
⎠⎟

= −

∴ a = 
−

+⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

k

R
m

xI
2

 ⇒ SHM

∴ wn
2 = 

k

R
m

I
2

+⎛
⎝⎜

⎞
⎠⎟

⇒ wn = 
k

R
m

I
2

+⎛
⎝⎜

⎞
⎠⎟

=
×

+⎛
⎝⎜

⎞
⎠⎟

300 10

60

0 5
400

3

2.

= 21.65 rad/s

∴ fn = 
w

p p
n

2

21 65

2
3 45= =

.
. Hz. 

Example 54: The magnitudes of the maximum and mini-
mum forces in the belt are respectively
(A) 5424 N, 2424 N (B) 4862 N, 2986 N
(C) 4862 N, 2424 N (D) 5424 N, 2986 N

Solution:
Consider the portion of the belt connected to the spring. The 
static force on belt (when at rest)

= weight of block
= mg = 400 × 9.81= 3924 N

When the oscillation changes the length of spring by 5 mm, 
the tension is reduced or increased by

kx = 300 × 103 × 5 × 10−3 = 1500 N
Hence, maximum force on this part of belt  
= mg + kx = 3924 + 1500 = 5424 N
Minimum force on this part of belt

= mg − kx
= 3924 − 1500 = 2424 N

Now, let us consider the portion of belt connected to the 
mass
The maximum acceleration occurs when the mass is about 
to reverse direction and this is when amplitude A = 5 mm. 
In SHM, we have
amax = w  2A = (21.65)2 × 5 × 10−3

= 2.344 m/s2

 Force in the belt to accelerate mass
= mamax
= 400 × 2.344
= 937.6 N
≈ 938 N

∴ Force in belt when maximum acceleration of mass is 
upwards

= mg + mamax

= 3924 + 938 = 4862 N
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Force in belt when maximum acceleration of mass is 
downwards

= mg − mamax

= 3924 − 938 = 2986 N

Hence, the maximum tension in belt is 5424 N and minimum 
tension in belt is 2424 N. 

Direction for questions (Examples 55 and 56):

c k

Fixed support

400 mm

500 mm

kθ Bar

A uniform rigid slender bar of mass 10 kg, hinged at 
the left end is suspended horizontally with the help of 
spring and damper arrangement as shown in the figure, 
where k = 2  kN/m, c = 500 Ns/m and the stiffness of 
the torsional spring kq is 1 kNm/rad. Ignore the hinge 
dimensions.

Example 55: The undamped natural frequency of oscilla-
tions of the bar about the hinge point is
(A) 42.43 rad/s (B) 30 rad/s
(C) 17.32 rad/s (D) 14.14 rad/s

Solution:
Mass of rod m = 10 kg
Length of rod, L = 0.5 m

Mass moment of inertia of rod about the hinge,

I = 
mL2 2

3

10 0 5

3
=

× .

= 0.833 kg m2

Consider the instant when the rod has undergone a small 
angular displacement q from its equilibrium position. The 

angular velocity of rod, w = 
d

dt

q
 and angular acceleration 

of rod, a  = 
d

dt

2

2

q
 at that instant.

Extension of spring x1 = Lq = 0.5q
Spring force Fs = kx1 = 2 × 103 × 0.5q

= 1000 q
Restoring torque due to spring force, ts = FsL

= 1000 q × 0.5

= 500 q (Nm)
Damping force, Fd = cv = crw

= 500 × 0.4 × 
d

dt

q

= 200
d

dt

q

Restoring torque due to damper, tD = Fdr

 = 200 
d

dt

q
× 0 4.

 = 80 
d

dt

q
(Nm)

Restoring torque due to torsional spring, tq = kqq
= 1000 q (Nm)

Inertial torque on rod, ti = Ia

= 0.833 ×  d

dt

2

2

q

For dynamic equilibrium for free vibration, ti + tD + ts + 
tq = 0

⇒ 0.833 
d

dt

d

dt

2

2
80

q q
+ + 500 1000 0q q+ =

⇒ 0.833 
d

dt

d

dt

2

2
80 1500 0

q q
q+ + =

⇒ 
d

dt

d

dt

2

2

80

0 833

1500

0 833
0

q q
q+ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

=
. .

,  

which is the differential equation for transverse vibration of 

the rod. This is of the form 
d

dt

d

dt
n n

2

2
22 0

q
xw

q
w q+ ⎛

⎝⎜
⎞
⎠⎟

+ =

Comparing the coefficients of q,
we get

wn
2 = 

1500

0 833
1800 72

.
.=

⇒ wn = 1800 72 42 43. .=  rad/s. 

Example 56: The damping coefficient in the vibration 
equation is given by
(A) 500 Nms/rad (B) 500 Ns/m
(C) 80 Nms/rad (D) 80 Ns/m

Solution:
The differential equation for the vibration is 

0 833 80 1500 0
2

2
.

d

dt

d

dt

q q
q+ + =  as established earlier.

This is of the form I
q q

q
d

dt
c

d

dt
keq eq

2

2
0+ + =  where

keq = equivalent torsional spring constant and ceq = equivalent 
torsional damping coefficient (in Nms/rad)
⇒ ceq = 80 Nms/rad. 

Example 57:

A B

49 cm
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The above figure shows two rotors A and B connected by an 
elastic shaft undergoing torsional vibration. The rotor A has 
a mass of 6 kg and a radius of gyration of 80 cm, while the 
rotor B has a mass of 4 kg and a radius of gyration of 40 cm. 
The distance �  (from rotor B) at which the node of torsional 
vibration occurs is
(A) 7 cm (B) 33 cm
(C) 36 cm (D) 42 cm

Solution:

     I A A Am k= = × =2 26 0 8 3 84. .  kg m2

 I B B Bm k= = × =2 24 0 4 0 64. . kg m2

We have IALA = IBLB, where LA = distance from rotor A to 
node and LB = distance from rotor B to node = �
 Also, LA = (L − LB) = (49 − LB)

 ∴ LB = I
I

I
I

A

B
A

A

B
BL L L= −( )

= 
3 89

0 64
49 6 49

.

.
−( ) = −( )L LB B

 ⇒ 7 LB = 6 × 49

 ⇒ LB = 
6 49

7
42

×
= cm 

Example 58: Two heavy rotating masses are connected by 
shafts of lengths L1, L2 and L3 and the corresponding diam-
eters are d1, d2 and d3. The system is reduced to a torsionally 
equivalent system having uniform diameter d1 of the shaft. 
The equivalent length of the shaft is

(A) 
L L L1 2 3

3

+ +

(B) L L
d

d
L

d

d
1 2

1

2

3

3
1

3

3

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

(C) L L
d

d
L

d

d
1 2

1

2

4

3
1

3

4

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

(D) L1 + L2 + L3

Solution:
If d and L are the diameter and length of torsionally 
equivalent shaft, then

L = L
d

d
L

d

d
L

d

d
1

1

4

2
2

4

3
3

4⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

Here, d = d1

⇒ L = L1 + L2
d

d
L

d

d
1

2

4

3
1

3

4⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

Example 59:

k1
k2

k3

Fixed end

Fixed end

J

1
2 3

Consider the arrangement shown in the figure where J is the 
combined polar mass moment of inertia of the disc and 
the shafts, k1, k2 and k3 are the torsional stiffnesses of shafts 
1, 2 and 3, respectively. The natural circular frequency of 
torsional oscillation of the disc is given by

(A) 
k k k

J
1 2 3+ +

(B) k k k k k k

J k k
1 2 2 3 3 1

1 2

+ +
+( )

(C) k k k

J k k k k k k
1 2 3

1 2 2 3 3 1+ +( )

(D) k k k k k k

J k k
1 2 2 3 3 1

2 3

+ +
+( )

Solution:

wn =
qeff

effI
;  Given Ieff = J

qeff = effective torsional stiffness of system

T1 = Torque required to produce a twist of 1 radian on shaft 1

= torsional stiffness of shaft 1

= k1 (data)

T2 = Torque required to produce a twist of 1 radian on shaft 2

= torsional stiffness of shaft 2

= k2 (data)

 T3 = torque required to produce a twist of 1 radian on shaft 3

= torsional stiffness of shaft 3

= k3 (data)

 ∴ T = torque required to rotate the rotor through 1 radian

= T1 + T2 + T3

= k1 + k2 + k3

= effective torsional stiffness of system

 ⇒ qeff = k1 + k2 + k3

 ∴ wn = q k k k

J
eff

effI
=

+ +1 2 3
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 1.        

20 kN/m

Nm�1

100 kg

   A mass of 100 kg is held between two massless springs, 
each of spring constant 20 kN/m. The natural frequency 
of vibration of the system in cycles/second is

 (A) 
1

2p
 (B) 

5

p

 (C) 
10

p
 (D) 

20

p
 2. The equation of the vibration of a system is

      ��x + 36p 2x = 0. Its natural frequency is
 (A) 46 Hz (B) 3p Hz
 (C) 3 Hz (D) 6p Hz

 3.      

m

Fig (i)

Fig (ii)

x

k k

m

k

  For the spring mass system shown in

  Fig. (i), the frequency of vibration is N. When one more 
identical spring is added in series (as in Fig. (ii)), the 
frequency of vibration becomes(springs are massless)

 (A) 
N

2
 (B) 

N

2

 (C) 2 N  (D) 2N

 4. If a block of mass m oscillates on a spring having a 
mass ms and stiffness k, then the natural frequency of 
the system is given by

 (A) k

m
ms+⎛

⎝⎜
⎞
⎠⎟3

 (B) 
k

m
m

s3
+











 (C) 
3k

m ms+( )
 (D) 

k

m ms+( )
 5. A rod of uniform diameter is suspended from one of 

its ends in vertical plane. The mass of the rod is m and 

length � . The natural frequency of oscillation of this 
rod (in Hz) for small amplitude angular oscillation is

 (A) 
1

2p
g

�
 (B) 

1

2 3p
g

�

 (C) 
1

2

2

3p
g

�  (D) 
1

2

3

2p
g

�

 6. A uniform rigid rod of mass m = 1 kg and length L = 1 m 
is hinged at its centre and laterally supported at one end 
by a spring of spring constant k = 300 N/m. The natural 
frequency wn in rad/s is

 (A) 10   (B) 20   (C) 30   (D) 40

 7. 

k

m

L L

  A concentrated mass m is attached at the centre of a 
uniform rod of length 2L as shown in figure. The mass 
of rod is negligible and it is kept in a horizontal position 
by a spring of stiffness k. For a very small amplitude of 
vibration, neglecting the weights of the rod and spring, 
the undamped natural frequency of the system is

 (A) 
k

m
 (B) 

2k

m

 (c) 
k

m2
 (D) 

4k

m

 8. 

k

a
O

b

W

L

  For the system shown in figure, the moment of inertia 
of the weight W and the bar about the pivot point is 
I0. The system will execute transverse vibrations in the 
vertical plane, when

 (A) b
ka

W
<

2

 (B) b
ka

W
=

2

 (C) b
ka

W
>

2

 (D) a = 0

 9. A shaft has two heavy rotors mounted on it. The trans-
verse natural frequencies, considering each of the rotor 

Exercises

Practice Problems 1



3.308 | Part III • Unit 3 • Theory of Machine, Vibrations and Design

separately, are 100 cycles/second and 200 cycles/second, 
respectively. The lowest critical speed of the shaft is

 (A) 5367 rpm (B) 6000 rpm
 (C) 9360 rpm (D) 12,000 rpm

 10. The critical speed of a rotating shaft depends upon
 (A) mass.
 (B) stiffness.
 (C) mass and stiffness.
 (D) mass, stiffness and eccentricity.

 11. The critical speed of a uniform shaft with a rotor at the 
centre of the span can be reduced by

 (A) reducing the shaft length.
 (B) reducing the rotor mass.
 (C) increasing the rotor mass.
 (D) increasing the shaft diameter.

 12. The static deflection of a shaft under a flywheel is 
4 mm. Take g = 10 m/s2. The critical speed of the shaft 
in rad/s is

 (A) 50 (B) 20 (C) 10 (D) 5

 13. 

  A U-tube of cross sectional area ‘a’, contains a liquid 
of density s. The total length of the liquid column is �  
(see figure). With a light tight-fitting plunger, the liquid 
column in one limb is pushed down by a small distance 
x and released. The natural frequency of subsequent 
free oscillations of the liquid column is

 (A) 
2g

�
 (B) 

g

�  
(C) 

g

2�  (D) 
3

2

g

�

 14. When a uniform solid shaft, supported horizon-
tally on needle bearings (treat as simply supported), 
rotates at a speed of 1233 rpm, two nodes were 
observed between the two bearings. The speed at 
which the shaft should rotate so that only one node 
is observed in between the two bearings is

 (A) 822 rpm (B) 548 rpm
 (C) 616.5 rpm (D) 137 rpm

Direction for questions 15 to 17: A rolor has a mass of 
12 kg and mounted midway on a 30 mm diameter shaft sup-
ported at the ends on short bearings. The bearings are 1 m 
apart. The centre of mass of rolor is 0.11 mm away from the 
axis of the shaft. The shaft rotates at 2500 rpm.

Take E = 2 × 1011 N/m2 for material of shaft. Mass of 
shaft is negligible.

 15. The fundamental frequency (in rad s–1) of the system is
 (A) 123.74 (B) 207.46
 (C) 193.25 (D) 178.35

 16. The amplitude of steady state vibration (in mm) is
 (A) 0.3392 (B) 0.1895
 (C) 0.2053 (D) 0.4133

 17. The dynamic force on the bearing (in N) is
 (A) 127.36 (B) 94.15
 (C) 168.85 (D) 78.36

 18. The equation of motion for a single degree freedom 
system with viscous damping is 16 ��x  + 5 �x  + 4x = 0. 
The damping ratio (x) of the system is

 (A) 
5

64
 (B) 

5

16
 (C) 

5

4 2
 (D) 

2

5

 19. In a vibrating system, the spring has stiffness 32 N/m 
and the mass 2 kg. The system is having a damper 
whose coefficient of viscous damping is 18 N s/m. The 
system is

 (A) over damped. (B) under damped.
 (C) critically damped. (D) undamped.

Direction for questions 20 and 21: A vibrating system 
consists of a mass 12.5 kg, a spring of stiffness 1000 N/m 
and a dashpot with damping coefficient of 15 Ns/m.

 20. The value of critical damping coefficient of the system 
is (in Ns/m)

 (A) 0.223 (B) 17.88 (C) 71.4 (D) 223.6

 21. The value of logarithmic decrement is
 (A) 1.35 (B) 0.42 (C) 0.68 (D) 0.66

 22. A free-damped vibrating system has a mass of 200 
kg, a spring of stiffness 40 N/mm and a damping fac-
tor (x) of 0.22. The time (in second) in which the mass 

would settle down to deflection equal to 
1

50

th

of its ini-

tial deflection and the number of oscillations completed 
to reach this value of deflection are respectively

 (A) 1.73, 3.54 (B) 0.9, 2.8
 (C) 1.26, 2.76 (D) 2.2, 4.6

 23. Large field guns which come to initial position after 
firing in shortest possible time are

 (A) under damped.
 (B) critically damped.
 (C) over damped.
 (D) undamped.

 24. A vibrating system has mass 3 kg, stiffness 21 N/m and 
damper having damping coefficient 10 Ns/m. An excit-
ing force of magnitude 27sin2t N is acting on the system. 
The time period of oscillation in the transient state is

 (A) 3.14 s (B) 3.06 s (C) 3.27 s (D) 2.95 s

 25. Transmissibility ratio will be equal to unity for all val-

ues of damping factor, if 
w
wn

is equal to .
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 26. 

I1
I2

  In the two rotor system shown in the figure, (I1 <  I2), a 
node of torsional vibration is situated

 (A) between I1 and I2 but nearer to I1.
 (B) between I1 and I2 but nearer to I2.
 (C) exactly at the middle of the shaft.
 (D) nearer to I1 but outside.

Direction for questions 27 and 28:

m

C = 300 Ns/m 

S = 30000 N/m

m = 20 kg 

Fixed

Fixed

F

  A harmonic force F = 800 sin(30t) N is applied to a 
spring- mass- damper system shown in figure.

 27. The amplitude of forced vibrations (steady state) will be 
(in mm)

 (A) 26.7 (B) 53.4 (C) 48.06 (D) 65.42

 28. The phase angle between the displacement and applied 
force in the steady state is

 (A) 23.71° (B) 47.35° (C) 53.64° (D) 36.92°

Direction for questions 29 and 30: A machine of mass 
700 kg is supported on four identical springs, connected in 
parallel, each spring having a stiffness of 350 kN/m. There 
is an unbalanced rotating element in the machine, which 
results in a disturbing force of 700 N at a speed of 4500 rpm. 
Assume a damping factor (x) of 0.25.

 29. The transmissibility of the system is
 (A) 0.049 (B) 0.09 (C) 0.13 (D) 0.19

 30. The magnitude of the maximum force transmitted to 
the foundation is

 (A) 133 N (B) 34.3 N 
 (C) 63 N (D) 91 N

 31. 

m = 150 kg

1 = 0.8 m

2 = 1.0 m

  A disc of mass m = 150 kg and radius of gyration 0.5 m 
is mounted on a vertical shaft of diameter 50 mm as 
shown in figure. The modulus of rigidity of shaft mate-
rial is 80 GN/m2. The distance of disc from fixed sup-

ports are �1 0 8= . m  and �2 1 0= . m respectively. The 

frequency of torsional vibration of the disc (in Hz) is
 (A) 5.19 (B) 19.67
 (C) 8.64 (D) 13.44

Practice Problems 2

 1. 

1 kg

x

K

K

  A mass of 1 kg is attached to two identical springs, each 
with stiffness K = 20 kN/m as shown in the figure. Under 
frictionless conditions, the natural frequency of the sys-
tem (in Hz) is close to

 (A) 32 (B) 23 (C) 16 (D) 1

 2. 

150 mm

W = 300 N

k

150 mm

Q

  A uniform stiff rod of length 300 mm and having a 
weight of 300 N is pivoted at one end and connected to 
a spring at the other end. For keeping the rod vertical 
in a stable equilibrium position, the minimum value of 
spring constant k needed is

 (A) 300 N/m (B) 400 N/m
 (C) 500 N/m (D) 1000 N/m

 3. Under logarithmic decrement, the amplitudes of succes-
sive vibrations are

 (A) constant.
 (B) in arithmetic progression.
 (C) in geometric progression.
 (D) in logarithmic progression. 

 4. A simple spring mass vibrating system has a natural 
frequency of N. If the spring stiffness is halved and 
the mass is doubled, then the natural frequency will 
become

 (A) 
N

2
 (B) 2N (C) 4N (D) 8N

 5. A mass of 1 kg is attached to the end of a spring with a 
stiffness of 0.7 N/mm. The critical damping coefficient 
of this system in (N s/m) is ________.
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 6. 

m

k1
a

k2

A
B

L

  In the system shown in figure, bar AB is assumed to be 
rigid and weightless. The natural frequency of vibration 
of the system is given by

 (A) f

k k
a

L

m k
a

L
k

n =

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2

1 2

2

2

2

1

p

 (B) f
k k a

mL k k
n =

+
1

2
1 2

1 2p ( )

 (C) f
k L

mk a
n =

1

2
1

2p

 (D) f
L

a

k k

k k m
n = ⎛

⎝⎜
⎞
⎠⎟ +( )

1

2
1 2

1 2p

 7. The value of the natural frequency obtained by 
Rayleigh’s method

 (A)  is always greater than the actual fundamental 
 frequency.

 (B)  is always less than the actual fundamental frequency.
 (C)  depends upon the initial deflection curve chosen 

and may be greater than or less than the actual fun-
damental frequency.

 (D)  is independent of the initial deflection curve chosen.

 8. The mass moment of inertia of the two rotors in a 
two-rotor system are 100 kg m2 and 10 kg m2 respec-
tively. The length of shaft of uniform diameter 
between the rotors is 110 cm. The distance of the 
node from the rotor of lower moment of inertia is

 (A) 80 cm (B)  90 cm
 (C) 100 cm (D) 110 cm

 9. If a spring- mass dashpot system is subjected to excita-
tion by a constant amplitude harmonic force, then at 
resonance (w  = wn), its amplitude of vibration will be

 (A) infinity.

 (B) inversely proportional to damping factor (x).

 (C) directly proportional to damping factor (x).

 (D) decreases exponentially with time.

 10. The natural frequency (in rad/s) of transverse vibra-
tions of a massless simply supported beam of length L, 
having a mass m attached at its mid span is given by

 (A) 
mL

E

3

48

1
2

I
⎛
⎝⎜

⎞
⎠⎟

 (B) 
48 3

1
2

mL

EI
⎛
⎝⎜

⎞
⎠⎟

 (C) 
48

3

1
2E

mL

I⎛
⎝⎜

⎞
⎠⎟  (D) 

3
3

1
2E

mL

I⎛
⎝⎜

⎞
⎠⎟

 11. During torsional vibration of a shaft, the node is char-
acterised by the

 (A) maximum angular velocity.
 (B) maximum angular displacement.
 (C) maximum angular acceleration.
 (D) zero angular displacement.

 12. A shaft of 50 mm diameter and 1 m length carries a 
disc which has mass eccentricity equal to 190 micron. 
The displacement of the shaft at a speed which is 90% 
of initial speed, expressed in micron, is

 (A) 810 (B) 900 (C) 800 (D) 820
 13. The differential equation of a vibrating system is given as

  4 8 15 20 4
2

2

d x

dt

dx

dt
x t+ + = cos . In the steady state, the

  maximum amplitude of vibration of the system is 
(x is in metre, t in second)

 (A) 52.1 cm (B) 45.7 cm
 (C) 34.2 cm (D) 25.3 cm
 14. A vibrating system consists of a mass of 250 kg a 

spring of stiffness 80 N/mm and a damper with damp-
ing coefficient

   1280 
N s

m
. The frequency of vibration of this system is

 (A) 2.82 Hz (B) 4.37 Hz
 (C) 7.93 Hz (D) 12.31 Hz
 15. The differential equation for a vibrating system is 

given as 12 1000 0
2

2

d x

dt
x+ = . The time period of vibra-

tion of the system is

 (A) 3.14 s (B) 1.57 s (C) 0.32 s (D) 0.69 s

Direction for questions 16 to 20:

m = 10 kg Mass

F = 1000 sin ωt

Spring
(s = 156.25 N/mm)

Fixed support

Dashpot

c = 500
Ns
m

  A spring-mass-dashpot system has a mass of 10 kg, 
connected by a massless spring of stiffness 156.25 N/mm and a 

dashpot of damping coefficient 500 
Ns
m  as shown in figure. 

A periodic force F = 1000 sinw t N acts on the mass such 
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that it executes 1-D force- damped oscillations in the 
vertical plane. The value of w (in rad/s) is such that 
the amplitude of oscillation of the system in the steady 
state is the maximum possible value of amplitude for 
this system.

 16. The frequency of applied force, w (in rad/s) is
 (A) 125 (B) 119.9 (C) 122.5 (D) 130.3

 17. The magnification factor (MF) is equal to
 (A) 2.50 (B) 2.55 (C) 2.46 (D) 2.73

 18. The phase difference between the applied force and the 
displacement of the mass is

 (A) 90° (B) 50.33° 
 (C) 78.22° (D) 45°

 19. The transmissibility of the system is
 (A) 2.96 (B) 2.50 (C) 2.55 (D) 2.73

 20. The magnitude of the maximum force transmitted to 
the support (in N) is

 (A) 2730 (B) 2960
 (C) 1000 (D) 2500

Direction for questions 21 to 23: A machine is mounted 
on three springs connected in parallel and also fitted with a 
dashpot. The other ends of springs and dashpot are rigidly 
fixed. The mass of the machine is 100 kg and the stiffness of 
springs are 12 N/mm, 14 N/mm and 16 N/mm, respectively. 
The amplitude of vibration decreases from 60 mm to 12 mm 
in 2 oscillations.

 21. The damping factor (x) of the system is
 (A) 0.0985 (B) 0.1265
 (C) 0.1539 (D) 0.1743

 22. The damping coefficient of the damper in
Ns

m
⎛
⎝⎜

⎞
⎠⎟

is

 (A) 225.7 (B) 369.8
 (C) 469.3 (D) 518.5

 23. The time period of damped vibration (in s) is
 (A) 0.152 (B) 0.247
 (C) 0.309 (D) 0.336

 24. 

c

k

m

Smooth floor

  In the system shown in figure, the stiffness of the spring is 
100 N/mm and the damping coefficient of the dashpot is 
1000 Ns/m. The system with the damper is known to be a 
critically damped system. If the dashpot is now removed 
and the system is set into 1 D longitudinal vibrations, the 
frequency of free vibrations will be (in Hz) nearly

 (A) 300 Hz (B) 200 Hz
 (C) 50 Hz (D) 32 Hz

 25. The logarithmic decrement of a damped single degree 
of freedom system is d. If the stiffness of the spring is 
doubled and the mass is made half, then the logarithmic 
decrement of the new system will be equal to

 (A) 
d
4

 (B) d
2

 (C) d (D) 2d
 26. In a multi-rotor system of torsional vibrations, maxi-

mum number of nodes that can occur is
 (A) Two.
 (B) equal to number of rotors.
 (C) equal to number of rotors plus one.
 (D) equal to number of rotors minus one.

 27. 

X
X sin φ

O

A

ωnt

  A damped free vibration is expressed by the general 

equation x = Xe tnt
n

−( ) − +( )xw x w fsin 1 2 , which is 

shown graphically above. The envelope A has the equation.

 (A) Xe– t (B) X tnsin 1 2−( )x w

 (C) e nt−xw  (D) Xe nt−xw

 28. 

k
R

Thin cylindrical shell

Mass m

  A thin cylindrical shell of radius R and mass m is con-
nected to a light, horizontal spring of stiffness k shown 
in figure. If the thin cylindrical shell is free to roll on 
horizontal surface without slipping, its natural fre-
quency (in rad/s) is

 (A) 
2

3

k

m
 (B) 

k

m2

 (C) 
k

m
 (D) 

2k

m
 29. Rayleigh’s method computing the fundamental natural 

frequency is based on
 (A) conservation of energy.
 (B) conservation of momentum.
 (C) conservation of masses.
 (D) laws of statics.
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 30. Consider the following statements. Transmissibility of 
vibrations

   (i) is more than 1, when 
w
wn

< 2

  (ii) is less than 1, when 
w
wn

> 2

 (iii) increases as damping is increased.

  The correct statements are
 (A) (i), (ii) and (iii) 
(B) (i) and (ii) only
 (C) (ii) and (iii) only 
(D) (i) and (iii) only

 31. Which of the following type of viscous damping will 
give periodic motion to the vibrating body?

   (i) under-damping
  (ii) critical-damping
 (iii) over-damping
 (A) (i) only (B) (ii) only
 (C) (iii) only (D) (i) and (ii) only

 32. In case of free vibrations with viscous damping, the 
damping force is proportional to

 (A) the displacement.
 (B) the velocity.
 (C) the acceleration. 
 (D) the natural frequency.

 33. A reciprocating engine, running at 80 rad/s, is sup-
ported on springs. The static deflection of the spring is 
1 mm. Take g = 10 m/s2. When the engine runs, what 
will be the frequency of vibration of the system?

 (A) 80 rad/s (B) 90 rad/s
 (C) 100 rad/s (D) 160 rad/s

 34. A uniform vertical bar, fixed at upper end, carries a 
heavy concentrated mass at the other end. The system 
is executing longitudinal vibrations. The inertia of the 
bar may be taken into account by which one of the fol-
lowing portions of the mass of the bar at the free end?

 (A) 
5

384
 (B) 

1

48

 (C) 
33

140
 (D) 

1

3

 35. The equation of motion of a damped viscous vibration 
is 3 9 27 0�� �x x x+ + = . The logarithmic decrement is

 (A) 1.57 (B) 2.63 (C) 3.63 (D) 5.31

 36. Critical speed of a shaft with a disc supported in between 
is equal to the natural frequency of the system in

 (A) Transverse vibrations.
 (B) Torsional vibrations.
 (C) Longitudinal vibrations.
 (D)  Longitudinal vibrations provided the shaft is vertical.

 37. A shaft has two heavy rotors mounted on it. The 
transverse natural frequencies, considering each of 
the rotor separately, are 150 cycles/second and 250 
cycles/second, respectively. The lowest critical speed 
is (the shaft is weightless).

 (A) 11357 rpm (B) 5367 rpm
 (C) 9367 rpm (D) 7717 rpm

 38. A shaft carries a weight W at the centre. The CG of the 
weight is displaced by an amount e from the axis of 
rotation. If y is the additional displacement of the CG 
from the axis of rotation due to the centrifugal force, 
Then, the ratio of y to e (where wc = critical speed of 
shaft and w = angular speed of shaft) is given by

 (A) 
1

1
2w

w
c⎛

⎝⎜
⎞
⎠⎟

+
 (B) 

1

1
2w

w
c⎛

⎝⎜
⎞
⎠⎟

−

 (C) 
w
w

c⎛
⎝⎜

⎞
⎠⎟

+
2

1 (D) 
w

w
w

c⎛
⎝⎜

⎞
⎠⎟

−
2

1

 39. Consider a harmonic motion x = 1.25 sin 5
6

t −⎛
⎝⎜

⎞
⎠⎟

p
 cm. 

Match List-I with List-II and select correct answer using the 
codes gives below the lists.

List-I List-II 

 P. Amplitude (cm)
1. 

5
2p

Q. Frequency (cycle/s) 2. 1.25

 R. Initial phase angle (rad)
3. 2

5
p

 S. Time period (s) 4. 
p
6

 

  Codes:

P Q R S

(A) 4 1 2 3

(B) 2 3 4 1

(C) 4 3 2 1

(D) 2 1 4 3

 40. A vertical shaft 90 mm in diameter and 1200 mm long 
has its upper end fixed to the ceiling. The lower end car-
ries a disc of weight 4000 N, having a radius of gyra-
tion of 300 mm. The modulus of rigidity of the material 
of the shaft is 0.8 × 105 N/mm2. The frequency of tor-
sional vibrations of the shaft is

 (A) 25.25 Hz
 (B) 17.22 Hz
 (C) 37.63 Hz
 (D) 10.18 Hz
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Previous Years’ Questions

 1. A vibrating machine is isolated from the floor using 
springs. If the ratio of excitation frequency of vibra-
tion of machine to the natural frequency of the iso-
lation system is equal to 0.5, the transmissibility of 
ratio of isolation is [2004]

 (A) 
1

2
 (B) 

3

4
 (C) 

4

3
 (D) 2

 2. A uniform stiff rod of length 300 mm and having 
a weight of 300 N is pivoted at one end and con-
nected to a spring at the other end. For keeping 
the rod vertical in a stable position the minimum 
value of spring constant K needed is [2004]

150 mm

W

k

150 mm

O

 (A) 300 N/m (B) 400 N/m
 (C) 500 N/m (D) 1000 N/m

 3. A mass M, of 20 kg is attached to the free end of a 
steel cantilever beam of length 1000 mm having a 
cross-section of 25 × 25 mm. Assume the mass of the 
cantilever to be negligible and Esteel = 200 GPa. If the 
lateral vibration of this system is critically damped 
using a viscous damper, the damping constant of the 
damper is [2004] 

M

 (A) 1250 Ns/m (B) 625 Ns/m
 (C) 312.50 Ns/m (D) 156.25 Ns/m

 4. There are four samples P, Q, R and S, with natural fre-
quencies 64, 96, 128 and 256 Hz respectively. These are 
mounted on test setups for conducting vibration experi-
ments. If a loud pure note of frequency 144 Hz is pro-
duced by some instrument, which of the samples will 
show the most perceptible induced vibration? [2005]

 (A) P (B) Q (C) R (D) S

 5. In a spring-mass system, the mass is 0.1 kg and the 
stiffness of the spring is 1 kN/m. By introducing a 
damper, the frequency of oscillation is found to be 
90% of the original value. What is the damping coef-
ficient of the damper? [2005]

 (A) 1.2 N.s/m (B) 3.4 N.s/m
 (C) 8.7 N.s/m (D) 120.N.s/m

 6. A weighing machine consists of a 2 kg pan resting 
on a spring. In this condition, the pan resting on the 
spring, the length of the spring is 200 mm. When 
a mass of 20 kg is placed on the pan, the length of 
the spring becomes 100 mm. For the spring, the un-
deformed length I0 and the spring constant k (stiff-
ness) are [2006]

 (A) I0 = 220 mm, k = 1862 N/m
 (B) I0 = 210 mm, k = 1960 N/m
 (C) I0 = 200 mm, k =1960 N/m
 (D) I0 = 200 mm, k = 2156 N/m

 7. The differential equation governing the vibrating sys-
tem is: [2006]

m

xy

c

k

 (A) mx��+ cx�  + k(x–y) = 0

 (B) m x y( )� �− + c x y( )� �− + kx = 0

 (C) mx��+ c � �x y− + kx = 0

 (D) m x y( )�� ��− + c x y( )� �− + k(x – y) = 0

 8. A machine of 250 kg mass is supported on springs 
of total stiffness 100 kN/m. Machine has an unbal-
anced rotating force of 350 N at speed of 3600 rpm. 
Assuming a damping factor of 0.15, the value of 
transmissibility ratio is: [2006]

 (A) 0.0531 (B) 0.9922
 (C) 0.0162 (D) 0.0028

  Direction for questions 9 and 10: A vibratory system 
consists of a mass 12.5 kg, a spring of stiffness 1000 N/m, 
and a dashpot with damping coefficient of 15 Ns/m.

 9. The value of critical damping of the system is: [2006]

 (A) 0.223 Ns/m (B) 17.88 Ns/m

 (C) 71.4 Ns/m (D) 223.6 Ns/m

 10. The value of logarithmic decrement is: [2006]
 (A) 1.35 (B) 1.32 (C) 0.68 (D) 0.66

 11. For an under-damped harmonic oscillator, resonance 
 [2007]

 (A)  occurs when excitation frequency is greater than 
 undamped natural frequency

 (B)  occurs when excitation frequency is less than 
 undamped natural frequency

 (C)  occurs when excitation frequency is equal to un-
damped natural frequency

 (D) never occurs
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 12. The natural frequency of the system shown below is 
 [2007]

m
k

k/2

k/2

 (A) 
k

m2
 (B) 

k

m

 (C) 
2k

m
 (D) 

3k

m

 13. The equation of motion of a harmonic oscillator is 

given by 
d x

dt

dx

dt
xn n

2

2
22 0+ + =zw w , and the initial 

conditions at t = 0 are x(0) = X, dx

dt
0( ). The amplitude 

of x(t) after n complete cycles is [2007]

 (A) Xe
n−

−
2

1 2
p z

z  (B) Xe
n2

1 2
p z

z−

 (C) Xe
n−

−
2

1 2

p
z

z  (D) X

 14. The natural frequency of the spring mass system 
shown in the figure is closest to [2008]

k1 = 4000 N/m k2 = 1600 N/m

m = 1.4 lg

 (A) 8 Hz (B) 10 Hz
 (C) 12 Hz (D) 14 Hz

 15. A uniform rigid rod of mass m = 1 kg and length  
L = 1 m is hinged at its center and laterally supported 
at one end by a spring of spring constant k = 300 N/m. 
The natural frequency wn in rad/s is [2006]

 (A) 10 (B) 20 (C) 30 (D) 40

 16. The rotor shaft of a large electric motor supported 
between short bearings at both ends shows a deflec-
tion of 1.8 mm in the middle of the rotor. Assuming 
the rotor to be perfectly balanced and supported at 
knife edges at both the ends, the likely critical speed 
(in rpm) of the shaft is [2009]

 (A) 350 (B) 705 (C) 2810 (D) 4430

 17. A vehicle suspension system consists of a spring and 
a damper. The stiffness of the spring is 3.6 kN/m and 
the damping constant of the damper is 400 Ns/m.  
If the mass is 50 kg, then the damping factor (d) 
and damped natural frequency (fn), respectively, are 
 [2009]

 (A) 0.471 and 1.19 Hz
 (B) 0.471 and 7.48 Hz
 (C) 0.666 and 1.35 Hz
 (D) 0.666 and 8.50 Hz

 18. The natural frequency of a spring-mass system on 
earth is wn. The natural frequency of this system on 
the moon (gmoon = gearth /6) is [2010]

 (A) wn (B) 0.408wn

 (C) 0.204wn (D) 0.167wn

 19. A mass m attached to a spring is subjected to a har-
monic force as shown in figure. The amplitude of the 
forced motion is observed to be 50 mm. The value of 
m (in kg) is [2010]

m F(t ) = 100 cos (100t) N
K = 3000 Nm�1

 (A) 0.1 (B) 1.0 (C) 0.3 (D) 0.5

 20. A mass of 1 kg is attached to two identical springs 
each with stiffness k = 20 kN/m as shown in the figure. 
Under frictionless condition, the natural frequency of 
the system in Hz is close to [2011]

1 kg

x

K

K

 (A) 32 (B) 23 (C) 16 (D) 11

 21. A disc of mass m is attached to a spring of stiffness 
k as shown in the figure. The disc rolls without slip-
ping on a horizontal surface. The natural frequency of 
vibration of the system is. [2011]

k m

 (A) 
1

2p
k

m
 (B) 

1

2p
2k

m
 

 (C) 
1

2p
2

3
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m
 (D) 

1

2p
3

2

k

m

 22. A concentrated mass m is attached at the centre of a 
rod of length 2L as shown in the figure. The rod is kept 
in horizontal equilibrium position by a spring of stiff-
ness k. For very small amplitude of vibration, neglect-
ing the weights of the rod and spring, the undamped 
natural frequency of the system is [2011]

m

LL

k
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 (A) 
k

m
 (B) 

2k

m

 (C) 
k

m2
 (D) 

4k

m

 23. If two nodes are observed at a frequency of 1800 rpm 
during whirling of a simply supported long slender 
rotating shaft, the first critical speed of the shaft in 
rpm is [2013]

 (A) 200 (B) 450
 (C) 600 (D) 900

 24. A single degree of freedom system having mass 1 kg 
and stiffness 10 kN/m initially at rest is subjected to 
an impulse force of magnitude 5 kN for 10

_
4 seconds. 

The amplitude in mm of the resulting free vibration is
 [2013]

 (A) 0.5 (B) 1.0
 (C) 5.0 (D) 10.0

 25. Critical damping is the [2014]
 (A)  largest amount of damping for which no oscilla-

tion occurs in free vibration.
 (B)  smallest amount of damping for which no oscil-

lation occurs in free vibration.
 (C)  largest amount of damping for which the motion 

is simple harmonic in free vibration.
 (D)  smallest amount of damping for which the 

 motion is simple harmonic in free vibration.

 26. A rigid uniform rod AB of length L and mass m is 
hinged at C such that AC = L/3, CB = 2L/3. Ends A 
and B are supported by springs of spring constant k. 
The natural frequency of the system is given by 
 [2014]

L/3

BA
C

kk

2L/3

 (A) 
k

m2
 (B) 

k

m

 (C) 
2k

m
 (D) 

5k

m

 27. In vibration isolation, which one of the following state-
ments is NOT correct regarding Transmissibility (T)?

 [2014]

 (A) T is nearly unity at small excitation frequencies.
 (B)  T can be always reduced by using higher damp-

ing at any excitation frequency.

 (C) T is unity at the frequency ratio of 2 .

 (D) T is infinity at resonance for undamped systems.

 28. What is the natural frequency of the spring mass sys-
tem shown below? The contact between the block 
and the inclined plane is frictionless. The mass of the 
block is denoted by m and the spring constants are 
denoted by k1 and k2 as shown below. [2014]

m

k1

k2

θ

 (A) k k

m
1 2

2

+  (B) 
k k

m
1 2
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+

 (C) 
k k

m
1 2−

 (D) 
k k

m
1 2+

 29. Consider a single degree-of-freedom system with vis-
cous damping excited by a harmonic force. At reso-
nance, the phase angle (in degree) of the displacement 
with respect to the exciting force is [2014]

 (A) 0   (B) 45
 (C) 90   (D) 135

 30. The damping ratio of a single degree of freedom 
spring-mass-damper system with mass of 1 kg, stiff-
ness 100 N/m and viscous damping coefficient of 
25 N.s/m is ______ [2014]

 31. A point mass is executing simple harmonic motion 
with an amplitude of 10 mm and frequency of 4 Hz. 
The maximum acceleration (m/s2) of the mass is 
_____ [2014]

 32. A single degree of freedom system has a mass of 
2 kg, stiffness 8 N/m and viscous damping ratio 0.02. 
The dynamic magnification factor at an excitation fre-
quency of 1.5 rad/s is _____ [2014]

 33.  Considering massless rigid rod and small oscillations, 
the natural frequency (in rad/s) of vibration of the sys-
tem shown in the figure is [2015]

2r

m = 1 kg
k = 400 N/m

r
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 (A) 
400

1
 (B) 

400

2

 (C) 
400

3
 (D) 

400

4

 34.  A precision instrument package (m = 1 kg) needs to be 
mounted on a surface vibrating at 60 Hz. It is desired 
that only 5% of the base surface vibration amplitude 
be transmitted to the instrument. Assume that the iso-
lation is designed with its natural frequency signifi-
cantly lesser than 60 Hz, so that the effect of damping 
may be ignored. The stiffness (in N/m) of the required 
mounting pad is ______. [2015]

 35.  In a spring-mass system, the mass is m and the spring 
constant is k. The critical damping coefficient of the 
system is 0.1 kg/s. In another spring-mass system, the 
mass is 2m and the spring constant is 8k. The critical 
damping coefficient (in kg/s) of this system is ______.

 [2015]

 36.  A slider-degree-freedom spring-mass system is sub-
jected to a sinusoidal force of 10 N amplitude and fre-
quency ω along the axis of the spring. The stiffness of 
the spring is 150 N/m, damping factor is 0.2 and the 
undamped natural frequency is 10ω. At steady state, 
the amplitude of vibration (in m) is approximately:
 [2015]

 (A) 0.05 (B) 0.07
 (C) 0.70 (D) 0.90

 37.  Which of the following statements are TRUE for 
damped vibrations? [2015]

 (P)  For a system having critical damping, the value 
of damping ratio is unity and system does not 
undergo a vibratory motion.

 (Q)  Logarithmic decrement method is used to deter-
mine the amount of damping in a physical sys-
tem.

 (R)  In case of damping due to dry friction between 
moving surfaces resisting forces of constant 
magnitude acts opposite to the relative motion.

 (S)  For the case of viscous damping, drag force is 
directly proportional to the square of relative 
velocity.

 (A) P and Q only (B) P and S only
 (C) P, Q and R only (D) Q and S only

 38.  Figure shows a single degree of freedom system. The 
system consists of a massless rigid bar OP hinged at O 
and mass m at end P. The natural frequency of vibra-
tion of the system is: [2015]

aa

O
P

mQ
k
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2 4π
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 39.  A single degree of freedom spring mass system with 
viscous damping has a spring constant of 10 kN/m. 
The system is excited by a sinusoidal force of ampli-
tude 100 N. If the damping factor (ratio) is 0.25, the 
amplitude of steady state oscillation at resonance is 
______ mm. [2016]

 40.  A solid disc with radius a is connected to a spring at a 
point d above the center of the disc. The other end of 
the spring is fixed to the vertical wall. The disc is free 
to roll without slipping on the ground. The mass of 
the disc is M and the spring constants is K. The polar 
moment of inertia for the disc about its center is J = 
Ma2/2.

K

M, J

d

a

  The natural frequency of this system is rad/s is given 
by: [2016]
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 41.  A single degree of freedom mass-spring-viscous 
damper system with mass m, spring constant k and 
viscous damping coefficient q is critically damped. 
The correct relation among m, k and q is: [2016]

(A) q = 2km  (B) q = 2 km

(C) q
 
=

2k

m  
(D) q

 
= 2

k

m

 42.  The system shown in the figure consists of block A of 
mass 5 kg connected to a spring through a mass less 
rope passing over pulley B of radius r and mass 20 kg. 
The spring constant k is 1500 N/m. If there is no slip-
ping of the rope over the pulley, the natural frequency 
of the system is _____ rad/s. [2016]
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A
k

B

r

 43.  The static deflection of a spring under gravity, when a 
mass of 1 kg is suspended from it, is 1 mm. Assume 
the acceleration due to gravity g = 10 m/s2. The natural 

frequency of this spring-mass system (in  rad/s) is 
______.

 [2016]

 44.  A single degree of freedom spring-mass is subjected 
to a harmonic force of constant amplitude. For an 

excitation frequency of 
3k

m
,  the ratio of the ampli-

tude of steady state response to the static deflection of 
the spring is __________. [2016]

m  
k

F sin ωt

Answer Keys

Exercises
Practice Problems 1
 1. C 2. C 3. B 4. A 5. D 6. C 7. D 8. A 9. A 10. C
 11. C 12. A 13. A 14. B 15. D 16. C 17. D 18. B 19. A 20. D
 21. B 22. C 23. B 24. B 25. 2  26. B 27. B 28. D 29. A 30. B
 31. C

Practice Problems 2
 1. A 2. C 3. C 4. A 5. 52.92 6. A 7. A 8. C 9. B 10. C
 11. D 12. A 13. C 14. A 15. D 16. B 17. B 18. C 19. D 20. A
 21. B 22. D 23. C 24. D 25. C 26. D 27. D 28. B 29. A 30. B
 31. A 32. B 33. A 34. D 35. C 36. A 37. D 38. B 39. D 40. B

Previous  Years’ Questions
 1. C 2. C 3. A 4. C 5. C 6. B 7. C 8. C 9. D
 10. None 11. C 12. A 13. A 14. B 15. C 16. B 17. A 18. A 19. A
 20. A 21. C 22. D 23. D 24. C 25. B 26. D 27. B 28. D 29. C
 30. 1.24 to 1.26 31. 6.3 to 6.4  32. 2 to 2.4 33. D 34. 6750 to 7150 35. 0.38 to 0.42
 36. B 37. C 38. A 39. 20 40. A 41. B 42. 10 43. 100 44. 0.5
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