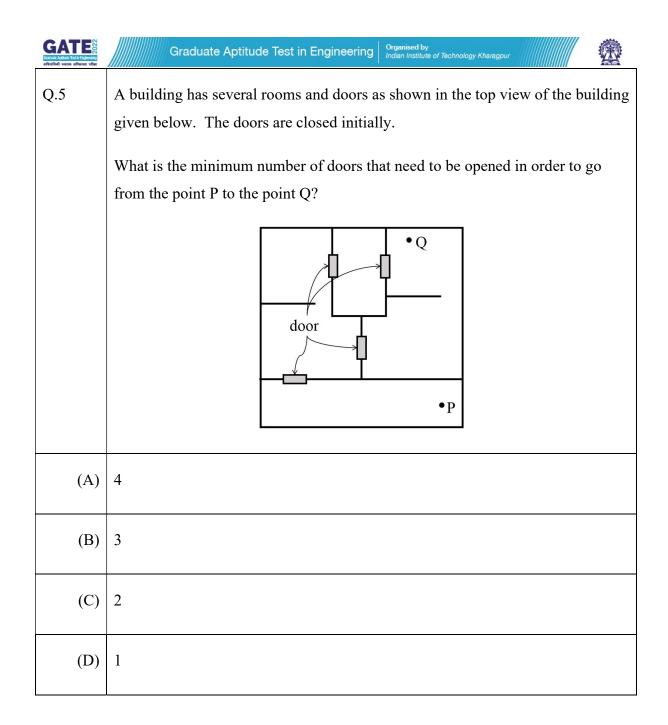


GATE 2022 General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark each.

Q.1	Inhaling the smoke from a burning could you quickly.
(A)	tire / tier
(B)	tire / tyre
(C)	tyre / tire
(D)	tyre / tier

Q.2	A sphere of radius r cm is packed in a box of cubical shape. What should be the minimum volume (in cm ³) of the box that can enclose the
	sphere?
(A)	$\frac{r^3}{8}$
(B)	r ³
(C)	2r ³
(D)	8r ³


GATE हारप्रायर म्रह्मार्थ अपनिकार अभियरिकी भनातक अभिवाशा सीका	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.3	Pipes P and Q can fill a storage tank in full with water in 10 and 6 minutes, respectively. Pipe R draws the water out from the storage tank at a rate of 34 litres per minute. P, Q and R operate at a constant rate.If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously, what is the capacity of the storage tank (in litres)?
(A)	26.8
(B)	60.0
(C)	120.0
(D)	127.5

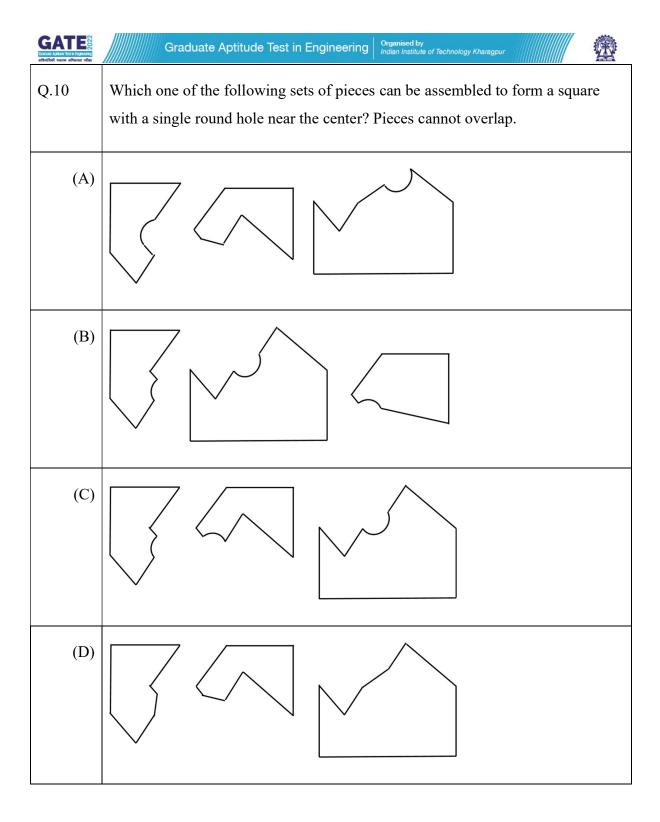
٦

Q.4	Six persons P, Q, R, S, T and U are sitting around a circular table facing the center not necessarily in the same order. Consider the following statements:
	 P sits next to S and T. Q sits diametrically opposite to P. The shortest distance between S and R is equal to the shortest distance between T and U. Based on the above statements, Q is a neighbor of
(A)	U and S
(B)	R and T
(C)	R and U
(D)	P and S

Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Rice, a versatile and inexpensive source of carbohydrate, is a critical component of diet worldwide. Climate change, causing extreme weather, poses a threat to sustained availability of rice. Scientists are working on developing Green Super Rice (GSR), which is resilient under extreme weather conditions yet gives higher yields sustainably. Which one of the following is the CORRECT logical inference based on the information given in the above passage?
(A)	GSR is an alternative to regular rice, but it grows only in an extreme weather
(B)	GSR may be used in future in response to adverse effects of climate change
(C)	GSR grows in an extreme weather, but the quantity of produce is lesser than regular rice
(D)	Regular rice will continue to provide good yields even in extreme weather

A game consists of spinning an arrow around a stationary disk as shown below. Q.7 When the arrow comes to rest, there are eight equally likely outcomes. It could come to rest in any one of the sectors numbered 1, 2, 3, 4, 5, 6, 7 or 8 as shown. Two such disks are used in a game where their arrows are independently spun. What is the probability that the sum of the numbers on the resulting sectors upon spinning the two disks is equal to 8 after the arrows come to rest? 1 1 8 8 7 7 2 2 6 3 6 3 4 5 4 5 $\frac{1}{16}$ (A) 5 64 (B) 3 32 (C) $\frac{7}{64}$ (D)



Q.8	Consider the following inequalities.
	(i) $3p - q < 4$
	(ii) $3q - p < 12$
	Which one of the following expressions below satisfies the above two
	inequalities?
(A)	p+q<8
(B)	p + q = 8
(C)	$8 \le p + q < 16$
(D)	$p + q \ge 16$

Q.9	Given below are three statements and four conclusions drawn based on the statements.
	Statement 1: Some engineers are writers.
	Statement 2: No writer is an actor.
	Statement 3: All actors are engineers.
	Conclusion I: Some writers are engineers.
	Conclusion II: All engineers are actors.
	Conclusion III: No actor is a writer.
	Conclusion IV: Some actors are writers.
	Which one of the following options can be logically inferred?
(A)	Only conclusion I is correct
(B)	Only conclusion II and conclusion III are correct
(C)	Only conclusion I and conclusion III are correct
(D)	Either conclusion III or conclusion IV is correct

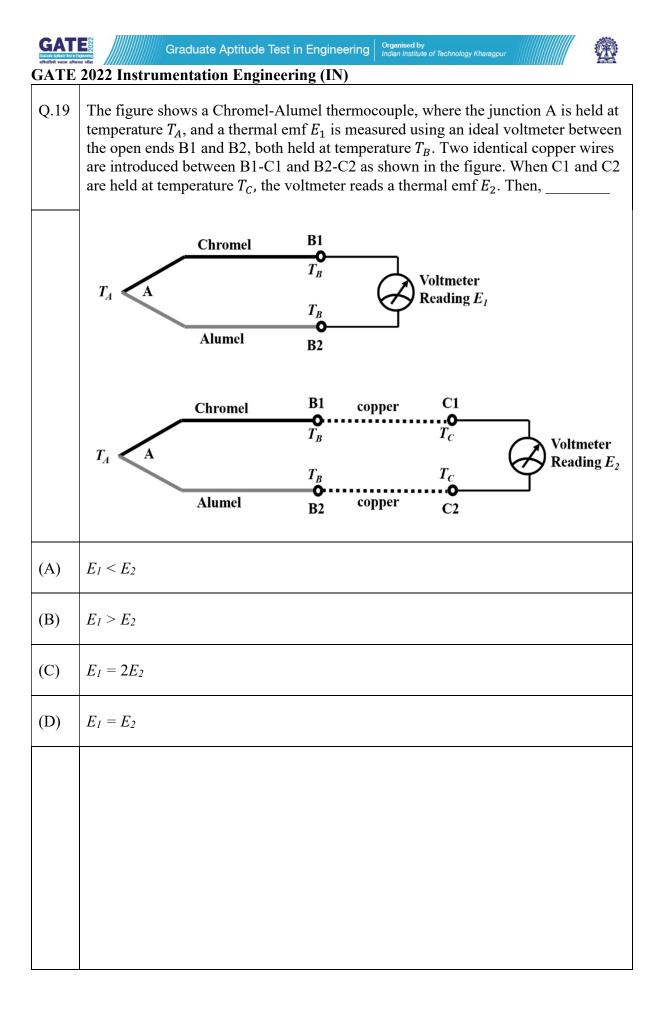
GATE 2022 Instrumentation Engineering (IN) Q.11 – Q.35 Carry ONE mark Each

MCQ

0.11	
Q.11	The input $x(t)$ to a system is related to its output $y(t)$ as
	$\frac{dy(t)}{dt} + y(t) = 3x(t-3)u(t-3)$
	Here $u(t)$ represents a unit-step function.
	The transfer function of this system is
(A)	p ^{-3s}
(11)	$\frac{e^{-3s}}{s+3}$
(B)	$\frac{3e^{-3s}}{s+1}$
	5 T 1
(C)	$\frac{3e^{-(s/3)}}{s+1}$
	<u>s+1</u>
(D)	$e^{-(s/3)}$
	$\frac{e^{-(s/3)}}{s+3}$
Q.12	A pneumatic nozzle-flapper system is conventionally used to convert
(A)	Small changes in flapper's velocity to large changes in output temperature
(B)	Small changes in flapper's displacement to large changes in output temperature
(C)	Small changes in flapper's velocity to large changes in output pressure
(D)	Small changes in flapper's displacement to large changes in output pressure

GAT हत्रवंध्याः Açस्वयांः किल	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE	2022 Instrumentation Engineering (IN)
Q.13	A periodic function $f(x)$, with period 2, is defined as
	$f(x) = \begin{cases} -1 - x & -1 \le x < 0\\ 1 - x & 0 < x \le 1 \end{cases}$
	The Fourier series of this function contains
(A)	Both $\cos(n\pi x)$ and $\sin(n\pi x)$ where $n = 1, 2, 3,$
(B)	Only sin $(n\pi x)$ where $n = 1, 2, 3,$
(C)	Only $\cos(n\pi x)$ where $n = 1, 2, 3,$
(D)	Only $\cos(2n\pi x)$ where $n = 1, 2, 3,$
Q.14	The output of a system $y(t)$ is related to its input $x(t)$ according to the relation $y(t) = x(t) \sin(2\pi t)$. This system is
(A)	Linear and time-variant
(B)	Non-linear and time-invariant
(C)	Linear and time-invariant
(D)	Non-linear and time-variant

Organised by Indian Institute of Technology Kharagpur



GATE 2022 Instrumentation Engineering (IN)		
Q.15	A unity-gain negative-feedback control system has a loop-gain $L(s)$ given by	
	$L(s) = \frac{6}{s(s-5)}$	
	The closed-loop system is	
(A)	Causal and stable	
(B)	Causal and unstable	
(C)	Non-causal and stable	
(D)	Non-causal and unstable	
Q.16	A sinusoidal carrier wave with amplitude A_c and frequency f_c is amplitude modulated with a message signal $m(t)$ having frequency $0 < f_m \ll f_c$ to generate the modulated wave $s(t)$ given by	
	$s(t) = A_c[1 + m(t)]\cos\left(2\pi f_c t\right)$	
	The message signal that can be retrieved completely using envelope detection is	
(A)	$m(t) = 0.5\cos(2\pi f_m t)$	
(B)	$m(t) = 1.5\sin(2\pi f_m t)$	
(C)	$m(t) = 2\sin(4\pi f_m t)$	
(D)	$m(t) = 2\cos\left(4\pi f_m t\right)$	

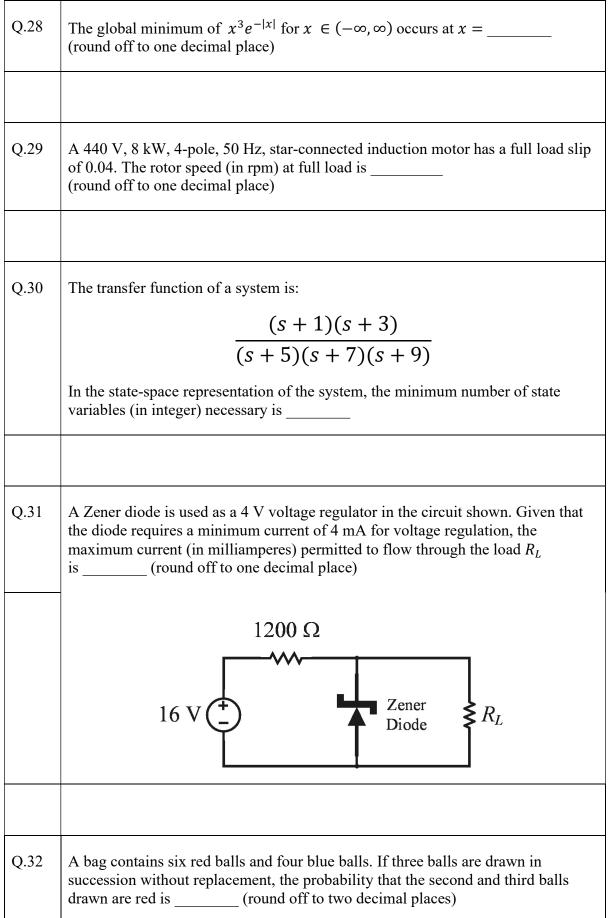
GATE 2022 Instrumentation Engineering (IN)		
Q.17	A Hall sensor is based on the principle of	
(A)	Photoelectric effect	
(B)	Seebeck effect	
(C)	Piezoelectric effect	
(D)	Lorentz force	
Q.18	A signal $x(t)$ is band-limited between 100 Hz and 200 Hz. A signal $y(t)$ is related to $x(t)$ as follows:	
	y(t) = x(2t - 5)	
	The statement that is always true is	
(A)	y(t) is band-limited between 50 Hz and 100 Hz	
(B)	y(t) is band-limited between 100 Hz and 200 Hz	
(C)	y(t) is band-limited between 200 Hz and 400 Hz	
(D)	y(t) is not band-limited	

Q.20	The resistance of a pure copper wire of length 10 cm and diameter 1 mm is to be measured. The most suitable method from amongst the choices given below is
(A)	Two wire method
(B)	Three wire method
(C)	Four wire method
(D)	Ellipsometry

GAT Ensuite Artitute Test In E affetfikel venue affet	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE	2022 Instrumentation Engineering (IN)
Q.21	The logic block shown has an output F given by
(A)	A + B
(B)	$A.\overline{B}$
(C)	$A + \overline{B}$
(D)	\overline{B}

GATE 2022 Instrumentation Engineering (IN) MSQ (1-mark)

Q. 22	In which of the following bridge(s) is the balancing condition frequency-independent?
(A)	Maxwell bridge
(B)	Wien bridge
(C)	Schering bridge
(D)	Wheatstone bridge
Q.23	The output F of the digital circuit shown can be written in the form(s)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(A)	$\overline{A.B}$
(B)	$\bar{A} + \bar{B}$
(C)	$\overline{A+B}$
(D)	$ar{A}.ar{B}$

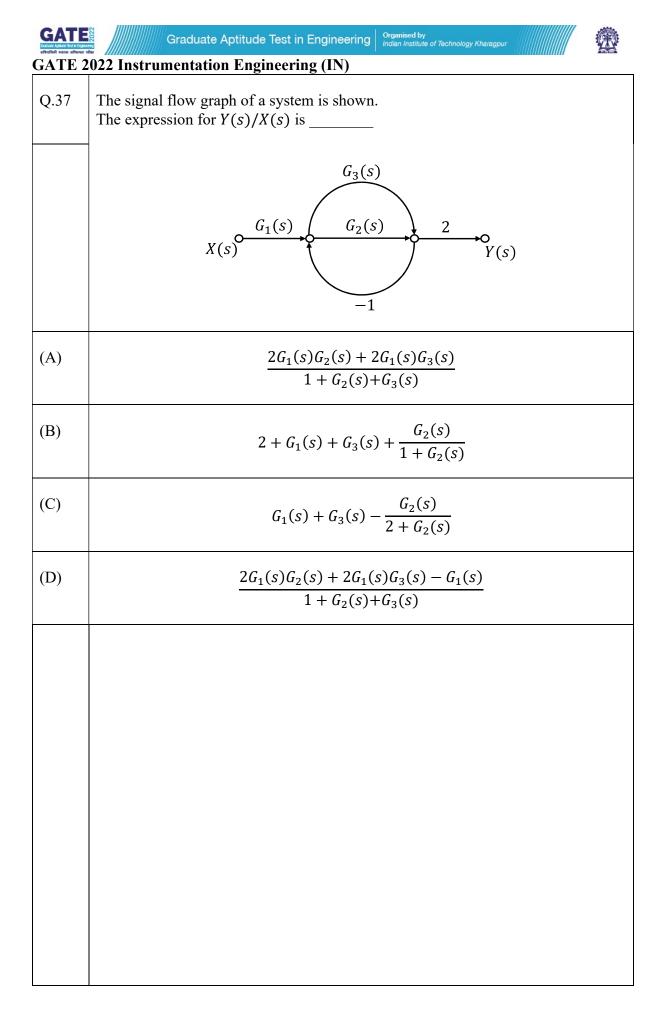

Q.24	Given M = $\begin{bmatrix} 2 & 3 & 7 \\ 6 & 4 & 7 \\ 4 & 6 & 14 \end{bmatrix}$, which of the following statement(s) is/are correct?
(A)	The rank of M is 2
(B)	The rank of M is 3
(C)	The rows of M are linearly independent
(D)	The determinant of M is 0

NAT (1-mark)

Q. 25	An analog-to-digital converter with resolution 0.01 V converts analog signals between 0 V to $+10$ V to an unsigned binary output. The minimum number of bits (in integer) in the output is
Q.26	Consider 24 voice signals being transmitted without latency using time-division multiplexing. If each signal is sampled at 12 kHz and represented by an 8-bit word, the bit-duration (in microseconds) is (round off to two decimal places)
Q.27	A photodiode is made of a semiconductor with a bandgap of 1.42 eV. Given that Planck's constant is 6.626×10^{-34} Js, the speed of light in vacuum is 3×10^8 m/s, and $1 \text{ eV} = 1.6 \times 10^{-19}$ J, the cut-off wavelength (in nanometers) of the photodiode is (round off to one decimal place)

æ

Q.33 In the bandpass filter circuit shown, $R_0 = 50 \Omega$, $L_0 = 1 \text{ mH}$, $C_0 = 10 \text{ nF}$ The Q factor of the filter is (round off to two decimal places	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Q.34	The Newton-Raphson method is applied to determine the solution of $f(x) = 0$ where $f(x) = x - \cos(x)$. If the initial guess of the solution
	is $x_0 = 0$, the value of the next approximation x_1 is (round off to two decimal places)
Q.35	An OPAMP has a gain of 10^4 , an input impedance of $10 \text{ M}\Omega$ and an output impedance of 100Ω . The OPAMP is used in unity-gain feedback configuration in a voltage buffer circuit. The closed-loop output impedance of the OPAMP (in milliohms) in the circuit is (round off to one decimal place)



GATE 2022 Instrumentation Engineering (IN) Q.36 – Q.65 Carry TWO marks Each

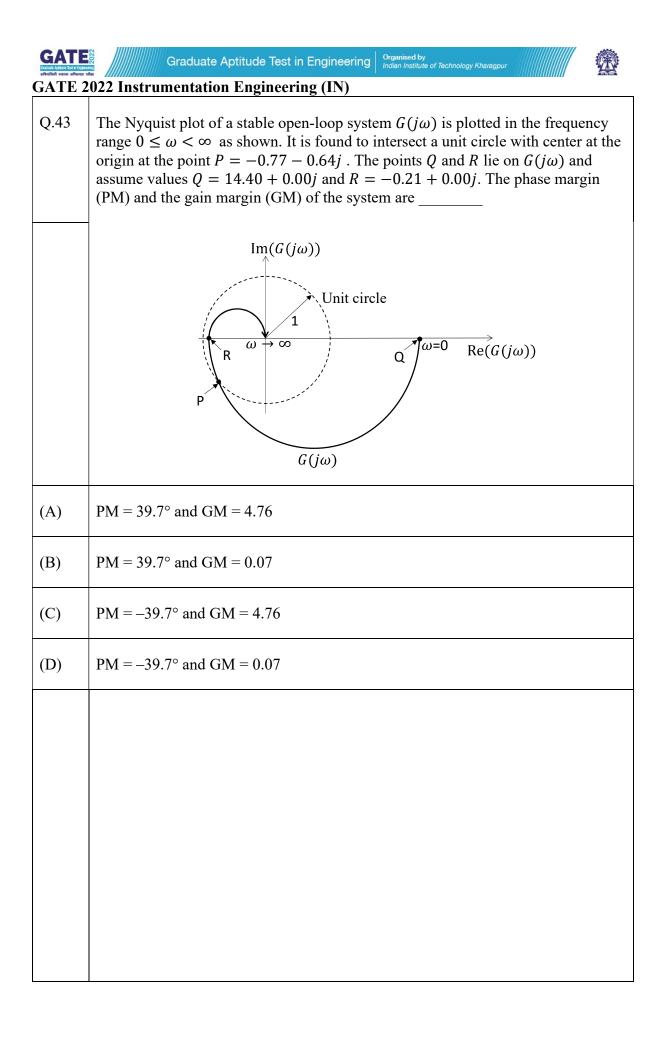
MCQ (2 marks)

Q.36	A signal $V_{in}(t)$ shown is applied from $t = 0$ ms to $t = 6$ ms to the circuit shown. Given the initial voltage across the capacitor is 0.3 V, and that the diode is ideal, the open circuit voltage $V_{out}(t)$ at $t = 5$ ms is	
	$V_{in} (V) = 1.0$ 0.6 0.4 0.4 0.4 0.4 $0.1 \mu F$	
(A)	0.3 V	
(B)	0.6 V	
(C)	0.7 V	
(D)	1.0 V	

Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur

and the state should be state			
GATE 2022	Instrumentation	Engineering	(IN)

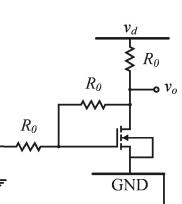
Q.38	Consider the transfer function
	$H_c(s) = \frac{1}{(s+1)(s+3)}$
	Bilinear transformation with a sampling period of 0.1 s is employed to obtain the discrete-time transfer function $H_d(z)$. Then $H_d(z)$ is
(A)	$\frac{(1+z^{-1})^2}{(19-21z^{-1})(23-17z^{-1})}$
(B)	$\frac{(1-z^{-1})^2}{(21-19z^{-1})(17-23z^{-1})}$
(C)	$\frac{(1+z^{-1})^2}{(21-19z^{-1})(23-17z^{-1})}$
(D)	$\frac{(1+z^{-1})^2}{(21-19z^{-1})(17-23z^{-1})}$
Q.39	A car is moving collinearly with a laser beam emitted by a transceiver. A laser pulse emitted at $t = 0$ s is received back by the transceiver 100 ns (nanoseconds) later after reflection from the car. A second pulse emitted at $t = 0.1$ s is received back 90 ns later. Given the speed of light is 3×10^8 m/s, the average speed of the car in this interval is
(A)	54 kmph, moving towards the transceiver
(B)	108 kmph, moving towards the transceiver
(C)	54 kmph, moving away from the transceiver
(D)	108 kmph, moving away from the transceiver



Q.40	The signal $x(t) = (t - 1)^2 u(t - 1)$, where $u(t)$ is the unit-step function, has the Laplace transform $X(s)$. The value of $X(1)$ is
(A)	$\frac{1}{e}$
(B)	$\frac{2}{e}$
(C)	2 <i>e</i>
(D)	e^2
Q.41	A proportional-integral-derivative (PID) controller is employed to stably control a plant with transfer function
	$P(s) = \frac{1}{(s+1)(s+2)}$
	Now, the proportional gain is increased by a factor of 2, the integral gain is increased by a factor of 3, and the derivative gain is left unchanged. Given that the closed-loop system continues to remain stable with the new gains, the steady-state error in tracking a ramp reference signal
(A)	Remains unchanged
(B)	Decreases by a factor of 2
(C)	Decreases by a factor of 3
(D)	Decreases by a factor of 5

GATE 2022 Instrumentation Engineering (IN) Q.42 A resistor ladder digital-to-analog converter (DAC) receives a digital input that results in the circuit having the state as shown in the figure. For this digital input, the Thevenin voltage, V_{th} , and Thevenin resistance, R_{th} , as seen at the output node are _____ OUTPUT $2 \ k\Omega$ 1 kΩ 1 kΩ $\bullet V_{out}$ \sim $2 k\Omega$ $2 k\Omega$ 2 kΩ B Switch A Switch C Switch B $V_{th} = 0.5 \text{ V}, R_{th} = 1 \text{ k}\Omega$ (A) $V_{th} = 0.5 \text{ V}, R_{th} = 2 \text{ k}\Omega$ **(B)** $V_{th} = 1 \text{ V}, R_{th} = 1 \text{ k}\Omega$ (C) $V_{th} = 1 \text{ V}, R_{th} = 2 \text{ k}\Omega$ (D)

GATE 2022 Instrumentation Engineering (IN)	
Q.44	In the small signal circuit shown, the enhancement mode n-channel MOSFET is biased in saturation with transconductance g_m . If channel length modulation is ignored, the small signal impedance looking into the node P is given by
	$\begin{bmatrix} R_L \\ R_L \\ R_L \\ R_S \\ R_$
(A)	$R_S \mid\mid R_L \mid\mid g_m^{-1}$
(B)	$R_S g_m^{-1} $
(C)	$(R_S + R_L) g_m^{-1} $
(D)	$\frac{R_L g_m}{1 + R_S g_m} (R_L g_m^{-1})$
Q.45	Consider the differential equation
	$\frac{dy}{dx} + y\ln(y) = 0$
	If $y(0) = e$, then $y(1)$ is
(A)	e ^e
(B)	<i>e^{-e}</i>
(C)	$e^{(1/e)}$
(D)	$e^{(-1/e)}$



Q.46	The digital circuit shown
	CLK is a divide-by-5 counter
(A)	
(B)	is a divide-by-7 counter
(C)	is a divide-by-8 counter
(D)	does not function as a counter due to disjoint cycles of states

Q.47 In the small signal circuit shown, the enhancement mode n-channel MOSFET is biased in saturation with a transconductance g_m . A small signal low-frequency voltage v_d injected at the supply terminal results in a small signal voltage fluctuation v_0 at the output. If the channel length modulation of the MOSFET is ignored, the small signal gain v_0/v_d is given by _____

	-
(A)	$\frac{-g_m R_0}{1+g_m R_0}$
(B)	$(g_m R_0 + 1)^{-1}$
(C)	$\frac{-g_m R_0}{1 + 2g_m R_0}$
(D)	$\left(\frac{g_m R_0}{2} + \frac{3}{2}\right)^{-1}$

GATE 2022 Instrumentation Engineering (IN)

Q.48	$A = a_1 a_0$ and $B = b_1 b_0$ are two 2-bit unsigned binary numbers. If $F(a_1, a_0, b_1, b_0)$ is a Boolean function such that $F = 1$ only when $A > B$, and $F = 0$ otherwise, then F can be minimized to the form
(A)	$a_1\overline{b}_1 + a_1a_0\overline{b}_0$
(B)	$a_1\overline{b}_1 + a_1a_0\overline{b}_0 + a_0\overline{b}_0\overline{b}_1$
(C)	$a_1a_0\overline{b}_0 + a_0\overline{b}_0\overline{b}_1$
(D)	$a_1\overline{b}_1 + a_1a_0\overline{b}_0 + a_0\overline{b}_0b_1$

MSQ (2 marks)

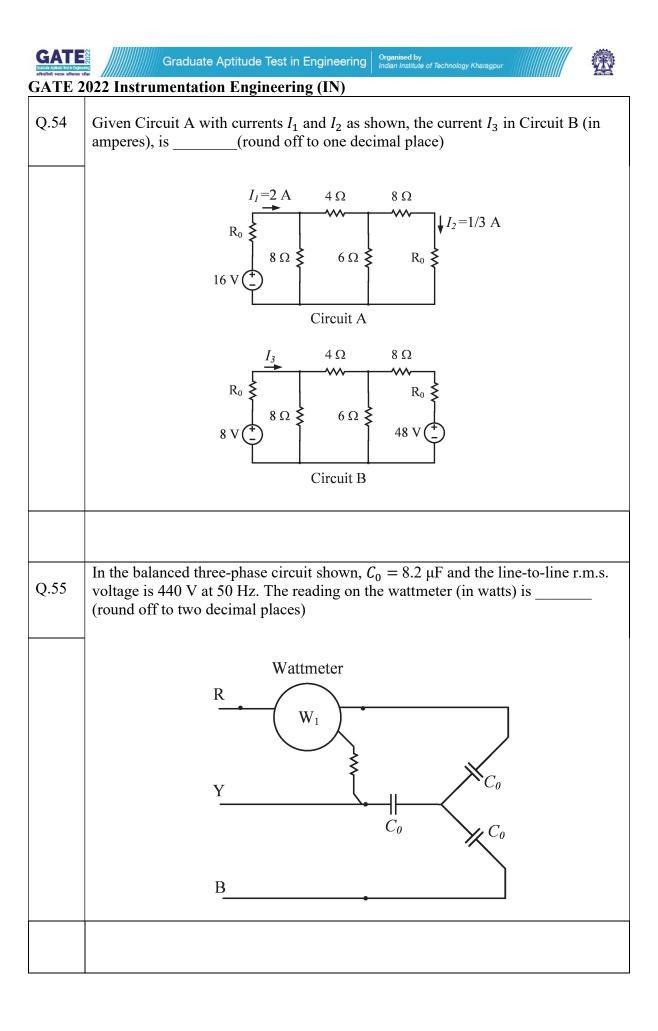
Q.49	The matrix $A = \begin{bmatrix} 4 & 3 \\ 9 & -2 \end{bmatrix}$ has eigenvalues -5 and 7. The eigenvector(s) is/are
(A)	$\begin{bmatrix} 1\\1 \end{bmatrix}$
(B)	$\begin{bmatrix} 3\\4 \end{bmatrix}$
(C)	$\begin{bmatrix} 2\\-6\end{bmatrix}$
(D)	$\begin{bmatrix} 2\\ 8 \end{bmatrix}$

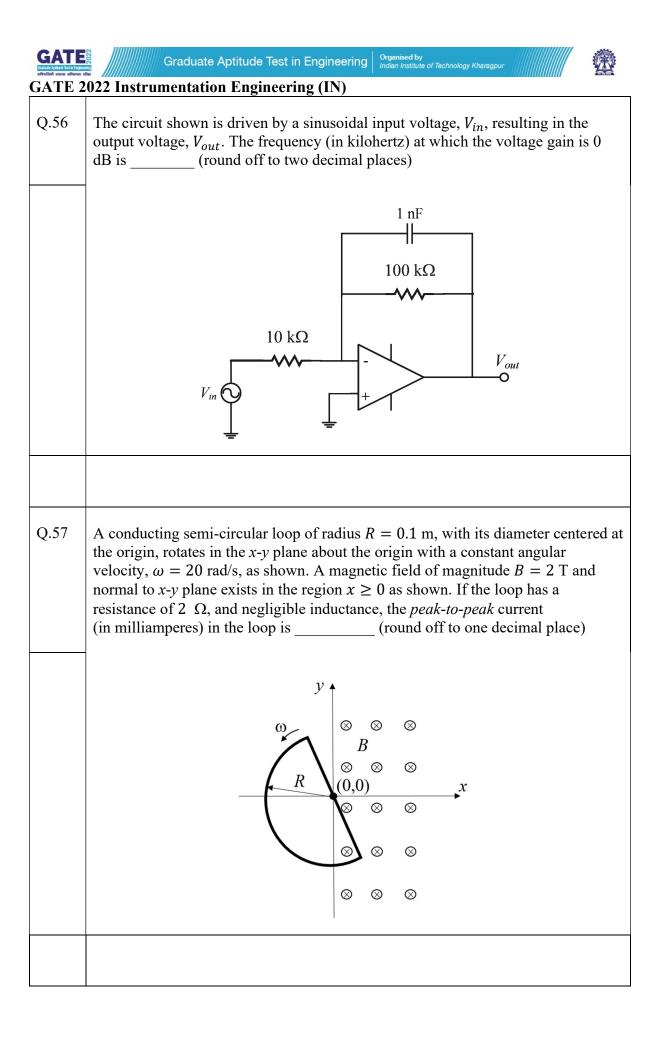
GATE Galactic Addated and and offetfield water addated GATE 2	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur						
Q.50							
	Which of the following statement(s) is/are true?						
(A)	The phase is $2 \tan^{-1} \frac{b}{a}$						
(B)	The phase is $\tan^{-1}\frac{2b}{a}$						
(C)	The magnitude is 1						
(D)	The magnitude is $\sqrt{\frac{a^2+b^2}{a^2-b^2}}$						

NAT

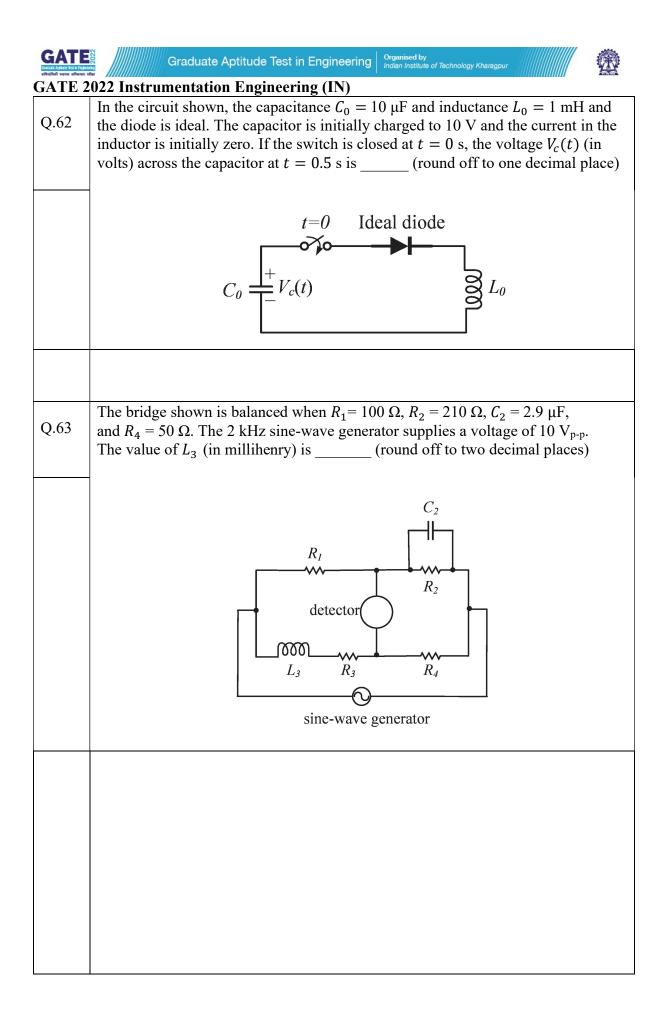
Q.51
 Monochromatic light of wavelength 532 nm is used to measure the absorption coefficient of a material in a UV-Visible Spectrophotometer. The measured light intensity after transmission through a 1 cm thick sample of the material is 0.414 mW/cm². For a sample of thickness 2 cm, the measured light intensity is 0.186 mW/cm². The absorption coefficient (in cm⁻¹) of the material is (round off to two decimal places)

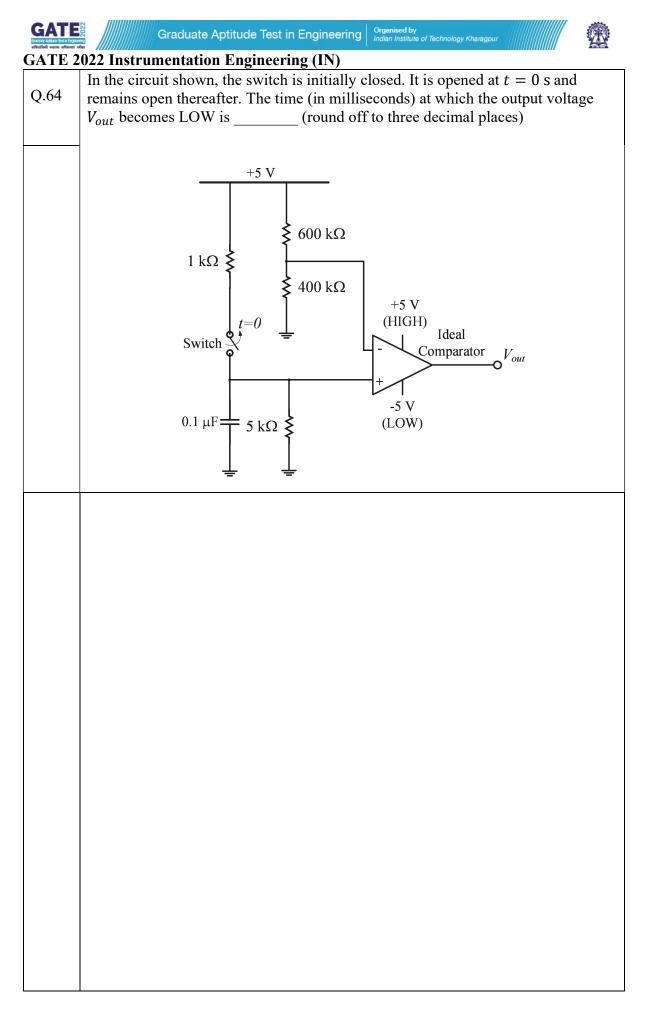
 Q.52
 In the circuit shown, the load is driven by a sinusoidal ac voltage source
$$V_1 = 100 \angle 0^0$$
 V at 50 Hz. Given $R_1 = 20 \ \Omega$, $C_1 = \left(\frac{1000}{\pi}\right) \mu$ F, $L_1 = \left(\frac{20}{\pi}\right)$ mH and $R_2 = 4 \ \Omega$, the power factor is _______ (round off to one decimal place)

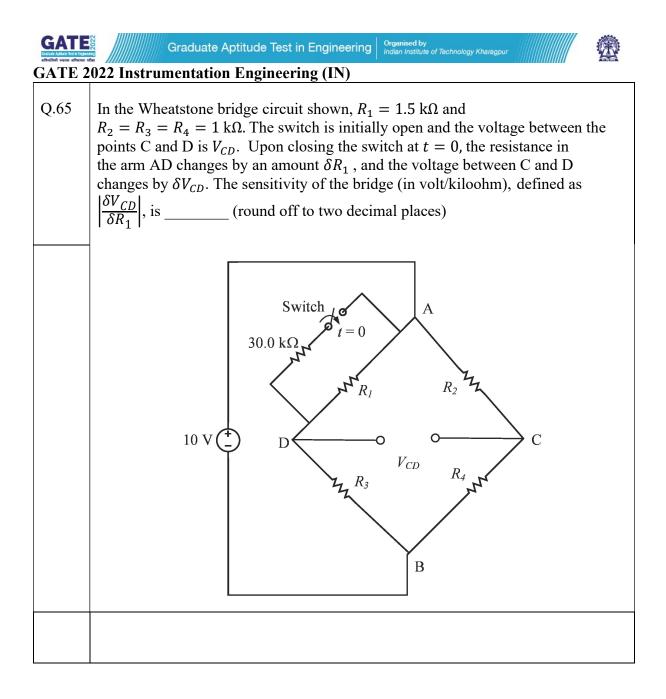

 Q.53
 In a unity-gain feedback control system, the plant


 $P(s) = \frac{0.001}{s(2s+1)(0.01s+1)}$

 is controlled by a lag compensator


 $C(s) = \frac{s+10}{s+0.1}$


 The slope (in dB/decade) of the asymptotic Bode magnitude plot of the loop gain at $\omega = 3$ rad/s is ______(in integer)



	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE 2	2022 Instrumentation Engineering (IN)
Q.58	In the circuit shown, $R_1=100 \text{ k}\Omega$ and $R_2=1 \text{ k}\Omega$. If the base-to-emitter voltage of the npn BJT is 0.7 V and the collector-to-emitter voltage is 5.2 V, the β (current gain) of the BJT is (round off to two decimal places)
	$\begin{array}{c} 12 \text{ V} \\ R_1 \\ R_2 \\ GND \\ \hline \end{array}$
Q.59	A capacitor is constructed using two concentric spheres and air as the dielectric medium (permittivity of air = 8.854×10^{-12} F/m). The radii of the inner and outer spheres are $a = 10$ cm and $b = 15$ cm, respectively. The capacitance (in picofarads)
	is (round off to 2 decimal places)
Q.60	A 1 kHz sine-wave generator having an internal resistance of 50 Ω generates an open-circuit voltage of 10 V _{p-p} . When a capacitor is connected across the output terminals, the voltage drops to 8 V _{p-p} . The capacitance of the capacitor (in microfarads) is (round off to two decimal places)
Q.61	Consider the function $f(z) = \frac{1}{(z+1)(z+2)(z+3)}$. The residue of $f(z)$ at $z = -1$, is

Q. No.	Session	Question Type	Subject Name	Key/Range	Mark
1	4	MCQ	GA	С	1
2	4	MCQ	GA	D	1
3	4	MCQ	GA	С	1
4	4	MCQ	GA	С	1
5	4	MCQ	GA	С	1
6	4	MCQ	GA	В	2
7	4	MCQ	GA	D	2
8	4	MCQ	GA	A	2
9	4	MCQ	GA	С	2
10	4	MCQ	GA	С	2
11	4	MCQ	IN	В	1
12	4	MCQ	IN	D	1
13	4	MCQ	IN	В	1
14	4	MCQ	IN	A	1
15	4	MCQ	IN	В	1
16	4	MCQ	IN	A	1
17	4	MCQ	IN	D	1
18	4	MCQ	IN	С	1
19	4	MCQ	IN	D	1
20	4	MCQ	IN	С	1
21	4	MCQ	IN	D	1
22	4	MSQ	IN	A, C, D	1
23	4	MSQ	IN	А, В	1
24	4	MSQ	IN	A, D	1
25	4	NAT	IN	10 to 10	1
26	4	NAT	IN	0.42 to 0.44	1
27	4	NAT	IN	870.0 to 880.0	1
28	4	NAT	IN	-3.0 to -3.0	1
29	4	NAT	IN	1440.0 to 1440.0	1
30	4	NAT	IN	3 to 3	1
31	4	NAT	IN	6.0 to 6.0	1
32	4	NAT	IN	0.32 to 0.34	1
33	4	NAT	IN	6.22 to 6.42	1
34	4	NAT	IN	0.99 to 1.01	1
35	4	NAT	IN	9.9 to 10.0	1
36	4	MCQ	IN	D	2
37	4	MCQ	IN	A	2
38	4	MCQ	IN	С	2
39	4	MCQ	IN	A	2
40	4	MCQ	IN	В	2
41	4	MCQ	IN	С	2
42	4	MCQ	IN	C	2
43	4	MCQ	IN	A	2
44	4	MCQ	IN	В	2

45	4	MCQ	IN	С	2
46	4	MCQ	IN	A	2
47	4	MCQ	IN	D	2
48	4	MCQ	IN	В	2
49	4	MSQ	IN	A, C	2
50	4	MSQ	IN	A, C	2
51	4	NAT	IN	0.75 to 0.85	2
52	4	NAT	IN	0.8 to 0.8	2
53	4	NAT	IN	-60 to -60	2
54	4	NAT	IN	0.0 to 0.0	2
55	4	NAT	IN	141.80 to 146.20	2
56	4	NAT	IN	15.80 to 16.00	2
57	4	NAT	IN	200.0 to 200.0	2
58	4	NAT	IN	148.00 to 152.00	2
59	4	NAT	IN	32.8 to 33.9	2
60	4	NAT	IN	2.35 to 2.43	2
61	4	NAT	IN	0.49 to 0.51	2
62	4	NAT	IN	-10.1 to -9.9	2
63	4	NAT	IN	14.40 to 14.60	2
64	4	NAT	IN	0.365 to 0.369	2
65	4	NAT	IN	1.62 to 1.72	2