Quadratic Equation

Equation of order (degree) two are called quadratic equations. The general quadratic equation is given by

 $ax^2 + bx + c = 0$

where a, b, c are real numbers and $a \neq 0$.

- A quadratic equation containing both the second power and the first power of the variable is called a complete quadratic equation. *i.e.*, $ax^2 + bx + c = 0$
- A quadratic equation in which first power term is missing is called a pure quadratic equation *i.e.*, ax² + c = 0

Roots of a Quadratic Equation

A value of a variable which satisfies the particular quadratic equation is called root of that equation or solution of the equation.

e.g., The equation is $x^2 - 6x + 8 = 0$.

Here, if x = 2, then $2^2 - 6(2) + 8 = 0$

So, x = 2 is root of the quadratic equation.

Solutions of Quadratic Equations

1. By Factorization

If we are able to factorize $ax^2 + bx + c = 0$

As Then, or $(dx + e) (fx + g), d \neq 0, f \neq 0$ (dx + e) (fx + g) = 0(dx + e) = 0 or (fx + g) = 0dx = -e or fx = -g $x = -\frac{e}{4} \text{ or } x = -\frac{g}{4}$

So, x = -e/d and -g/f are roots of equation.

Example 1. Solve the equation $x^2 - 7x + 12 = 0$, then the value of x is

(a) -3, -4 (b) -3, 4 (c) 3, -4 (d) 3, 4Sol. (d) $x^2 - 7x + 12 = 0$ Splitting the middle term

CHAPTER

 $x^{2}-3x-4x+12=0$ $\Rightarrow x(x-3)-4(x-3)=0$ $\Rightarrow (x-3)(x-4)=0$ $\Rightarrow (x-3)=0 \text{ or } (x-4)=0 \Rightarrow x=3 \text{ or } x=4$ So, x=3, 4 are roots of equation.

Example 2. Solve the equation $3a^2x^2 + 8abx + 4b^2 = 0, a \neq 0.$

then the value of x is (a) $\frac{2b}{3a}, \frac{2b}{a}$ (b) $\frac{-2b}{3a}, \frac{2b}{a}$ (c) $\frac{-2b}{3a}, \frac{-2b}{3a}$ (d) $\frac{2b}{3a}, \frac{-2b}{a}$ Sol. (c) The equation is $3a^2x^2 + 8abx + 4b^2 = 0$ or $3a^2x^2 + 2abx + 6abx + 4b^2 = 0$

or ax (3ax + 2b) + 2b (3ax + 2b) = 0 $\therefore (3ax + 2b)(ax + 2b) = 0$ $\Rightarrow 3ax + 2b = 0 \text{ or } ax + 2b = 0 \Rightarrow x = \frac{-2b}{2} \text{ or } \frac{-2b}{2}$

2. By Using the Quadratic Formula.

The roots of the equation $ax^2 + bx + c = 0$, where $a, b, c \in a \neq 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 If α and β be considered as roots of the quadratic equation then

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

- 20

• The quantity $b^2 - 4ac$ is called the discriminant of b^2 quadratic equation $ax^2 + bx + c = 0$ and is denoted by b^2 .

So,
$$D = b^2 - 4ac$$

145 -

Example 3. Solve the equation $x^2 - 9x + 18 = 0$, then the value of x is

(a) 3, 6 (b)
$$-3, -6$$
 (c) $-3, 6$ (d) $3, -6$
sol. (a) We have, $x^2 - 9x + 18 = 0$ Here $a = 1$ b -2 and $a = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-9) \pm \sqrt{(-9)^2 - 4(1)(2)}}{2(1)}$$
$$= \frac{9 \pm \sqrt{81 - 72}}{2} = \frac{9 \pm \sqrt{9}}{2} = \frac{9 \pm 3}{2}$$
$$x = \frac{9 + 3}{2} \text{ or } x = \frac{9 - 3}{2} \Rightarrow x = 6 \text{ or } 3$$

18)

Nature of Roots of Equation

.....

Let $D = b^2 - 4ac$ be the discriminant of the given equation, then $ax^2 + bx + c = 0$

- (i) If D > 0, then the two roots are real and unequal.
- (ii) If D = 0, then the two roots are real and equal.
- (iii) If D < 0, then there are no real root *i.e.*, imaginary roots. (iv) The roots are real when $D \ge 0$.
- If D > 0 and D is perfect square, then roots are rational.
- If D>0 and D is not a perfect square, then roots are irrational.
- If one of the root of the quadratic equation is $a + \sqrt{b}$, then its other root is $a - \sqrt{b}$.

Sum and Product of the Roots

Let α , β be the roots of the equation $ax^2 + bx + c = 0$

(i) The sum of the roots
$$= \alpha + \beta = -\frac{b}{a} = \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$$

(ii) The product of the roots $= \alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

Some Important Conditions for the Roots of Quadratic Equation

1. Condition for having both the roots positive

$$\frac{-b}{a} > 0$$
 and $\frac{c}{a} > 0$.

2. Condition for having both the roots negative

$$\frac{-b}{a} < 0$$
 and $\frac{c}{a} < 0$

- 3. Condition for having both roots equal in magnitude but opposite in sign $\frac{-b}{a} = 0$ or b = 0.
- 4. Condition for having both the roots common of two quadratic equations $ax^2 + bx + c = 0$ and $a'x^2 + b'x + c' = 0$

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

5. Condition for having only one root common of two quadratic equations $ax^2 + bx + c = 0$ and $a'x^2 + b'x + c' = 0$

$$\frac{x^2}{b_1 c_2 - c_1 b_2} = \frac{-x}{a_2 c_1 - c_2 a_1} = \frac{1}{a_1 b_2 - a_2 b_1}$$

6. If the roots of the equation $ax^2 + bx + c = 0$ are α and β , the equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ will be $cx^2 + bx + a = 0$

i.e., for this condition a = c

7. If the roots of the equation $ax^2 + bx + c = 0$ are reciprocals of each other *i.e.*, roots are α and $\frac{1}{\alpha}$, then a = c

Formation of a Quadratic Equation

If the roots of equation are ogiven. Let roots be
$$\alpha$$
 and β , then
 $S = sum f roots = \alpha + \beta$

 $P = \text{product of roots} = \alpha\beta$

Then, quadratic equation is $x^2 - (\alpha + \beta) x + \alpha\beta = 0$

$$x^2 - Sx + P$$

Equations Reducible to Quadratic Equations

The equations which at the out set are not quadratic equations, but can be reduced to quadratic equations by suitable substitutions are called equations reducible to quadratic equations.

We will explain the method of solution by the example.

Type I
$$ax^{2n} + bx^n + c = 0$$

Here, put $x^n = y \Rightarrow x_1^{2n} = y^2$ and equation reduces to
 $ay^2 + by + c = 0$

Example 4. Solve the quadratic equation

$$x^4 - 26x^2 + 25 = 0$$
,
then the value of x is
(a) $\pm 1, \pm 25$ (b) $\pm 1, \pm 5$ (c) 1, 5 (d) 1, 25
Sol. (b) Put $x^2 = z \Rightarrow x^4 = z^2$
 $x^4 - 26x^2 + 25 = 0$ can be written as
 $z^2 - 26z + 25 = 0$
 $z^2 - 25z - z + 25 = 0$
 $z(z - 25) - 1(z - 25) = 0$
 $(z - 1)(z - 25) = 0 \Rightarrow z = 1 \text{ or } z = 25$
when $z = 1 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$
when $z = 25 \Rightarrow x^2 = 25 \Rightarrow x = \pm 5$
Hence, $x = \pm 1 \pm 5$ is solution.

or

Type II $P_{X+} \stackrel{Q}{=} R$

Here, reduce the given equation to a quadratic equation by multiplying both sides by 'x'. So, $Px^2 + Q = Rx$

$$Px^2 - Rx + Q = 0$$

Example 5. Solve for x, $2x - \frac{3}{x} = 5$, then the value of x is (a) 1/3, -3 (b) 1/2, -3 (c) -1/2, 3 (d) 1/2, 4 Sol. (c) Here, $2x - \frac{3}{-3} = 5$ $2x^2 - 3 = 5x$ $2x^2 - 5x - 3 = 0$ $2x^2 - 6x + x - 3 = 0$ $(2x + 1)(x - 3) = 0 \implies x = -1/2 \text{ or } x = 3$ Hence, x = -1/2, 3 is solution. **Type III** $\sqrt{x+b} = c \text{ or } \sqrt{a-x^2} = bx+c$

 Squaring both sides gives a quadratic equation without the radical.

- Solve the factorization or by quadratic formula.
- **Example 6.** Solve $\sqrt{2x+9} + x = 13$, then the value of x is

(a) 4, 10 (b) 8, 20 (c) 3, 15 (d) -4, -10 Sol. (b) $\sqrt{2x+9+x}=13$ $\sqrt{2x+9} = 13-x$ Squaring both sides $(\sqrt{2x+9})^2 = (13-x)^2$ $2x+9=169+x^2-26x$ $x^2 - 28x + 160 = 0$ $x^2 - 20x - 8x + 160 = 0$ $(x-8)(x-20)=0 \Rightarrow x=8 \text{ or } x=20$ Hence, x = 8, 20 is solution.

Example 7. Solve $\sqrt{2x^2 - 2x + 1 - 2x + 3} = 0$, then the

value of x is (b) -1, -4 (a) 1, 4 (d) None of these (c) 2, 3 (a) $\sqrt{2x^2 - 2x + 1 - 2x + 3} = 0$ Sol. $\sqrt{2x^2 - 2x + 1} = 2x - 3$ Squaring both sides $(\sqrt{2x^2-2x+1})^2 = (2x-3)^2$ $2x^2 - 2x + 1 = 4x^2 + 9 - 12x$ $x^2 - 5x + 4 = 0$ $x^2 - 4x - x + 4 = 0$ $(x-4)(x-1)=0 \Rightarrow x=4 \text{ or } 1$ Hence, x = 4, 1 is solution. **Type IV** Equation of the form $\sqrt{ax+b} \pm \sqrt{cx+d} = e$ $\sqrt{ax+b} \pm \sqrt{cx+d} \pm \sqrt{ex+f} = 0$ or

- Squaring both sides once, so that only one term containing
- Keep only the term containing radical on one side and, other terms on the other side.

 Squaring again and solve the quadratic equation so obtained Example 8. Solve the following equation $\sqrt{4-x} + \sqrt{x+9} = 5$ then the value of x is (c) 0, -5 (a) 1, 5 (b) -1, 3 (d) 1, 4 $\sqrt{4-x} + \sqrt{x+9} = 5$ Sol. (c) Squaring both sides $(\sqrt{4-x} + \sqrt{x+9})^2 = 25$ $(4-x)+(x+9)+2(\sqrt{4-x}\sqrt{x+9})=25$ $2(\sqrt{4-x})(\sqrt{x+9}) = 12$ $(\sqrt{4-x})(\sqrt{x+9}) = 6$ Again, squaring both sides (4-x)(x+9)=36 $-x^{2}+36-5x=36$ $x^{2} + 5x = 0$ $x(x+5)=0 \Rightarrow x=0 \text{ or } x=-5$ Hence, x = 0, -5 is solution. **Example 9.** Solve $\sqrt{11y-6} + \sqrt{y-1} - \sqrt{4y+5} = 0$, then the value of y is (a) {5, 6/5} (b) {1, 2} · (c) {3, 5/2} (d) None of these $\sqrt{11y-6} + \sqrt{y-1} - \sqrt{4y+5} = 0$ Sol. (a) $\sqrt{11y-6} + \sqrt{y-1} = \sqrt{4y+5}$ Squaring both sides $[\sqrt{11y-6} + \sqrt{y-1}]^2 = [\sqrt{4y+5}]^2$ $(11y-6)+(y-1)+2\sqrt{(11y-6)(y-1)}=(4y+5)$ $12y - 7 + 2\sqrt{11y^2 - 17y + 6} = 4y + 5$ $2\sqrt{11y^2 - 17y + 6} = 12 - 8y$ $\sqrt{11y^2 - 17y + 6} = 6 - 4y$ Again, squaring both sides $11y^2 - 17y + 6 = (6 - 4y)^2$ $11y^2 - 17y + 6 = 36 + 16y^2 - 48y$ $5y^2 - 31y + 30 = 0$ Here, a = 5, b = -31 c = 30 $y = \frac{+31 \pm \sqrt{(-31)^2 - 4(5)(30)}}{2 \times 5}$ = $y = \frac{31 \pm \sqrt{361}}{10} \Rightarrow y = \frac{31 \pm 19}{10}$ = $y = \frac{31+19}{10}$ and $y = \frac{31-19}{10}$ $y = \left\{5, \frac{6}{5}\right\}$ is solution of equation.

Type V Equation of the type

(x+a)(x+b)(x+c)(x+d)+k=0

Here, k may or may not be zero.

- Sum of any two constants a, b, c, d is equal to the sum of the other.
- · Multiply the products which satisfies first condition.
- Put first two term containing x^2 and x and solve it as follows.

Example 10. Solve the equation

(x+1)(x+2)(x+3)(x+4)-8=0then the number of real roots of this equation is (b) 2 (a) 1 (d) No real roots (c) 4 **Sol.** (b) (x + 1)(x + 2)(x + 3)(x + 4) - 8 = 0

Here, 1+ 4 = 2 + 3, so,

[(x + 1)(x + 4)][(x + 2)(x + 3)] - 8 = 0 $[x^{2}+5x+4][x^{2}+5x+6]-8=0$

Put $x^2 + 5x = T$

(T+4)(T+6)-8=0 $T^2 + 10T + 24 - 8 = 0$

$$T^{2} + 10T + 16 = 0$$

$$T^{2} + 8T + 2T + 16 = 0$$

$$T(T+8) + 2(T+8) = 0$$

$$(T+8)(T+2)=0 \Rightarrow T=-8 \text{ or } -2$$

Now,

Type

Here.

$$x^{2}+5x = -8$$

$$x^{2}+5x+8=0$$

$$x = \frac{-5 \pm \sqrt{25-32}}{2}$$

$$x = \frac{-5 \pm \sqrt{-7}}{2}$$
No real roots.
Hence, $x = \frac{-5 \pm \sqrt{17}}{2}$ are roots.

Example 11. Solve the equation $2^{x+2} + 2^{-x} = 5$, then the roots of the equation is

(d) {-1,0} (c) {0, 1} (a) {0, 2} (b) {-2,0} Sol. (b) The given equation is $2^{x+2}+2^{-x}=5$

 $2^{x}2^{2}+2^{-x}=5$ $4 \cdot 2^{x} + \frac{1}{2^{x}} = 5$ $2^{x} = y$ Put $=5y \Rightarrow 4y^2 - 5y + 1 = 0$ Solving equation, we have

$$(y-1)(4y-1)=0$$

 $y-1=0 \text{ or } 4y-1=0$

-

-

$$2^{x} = y$$

$$2^{x} = 1$$

$$2^{x} = 2^{0}$$

$$x = 0$$

$$2^{x} = \frac{1}{4}$$

$$2^{x} = \frac{1}{2^{2}} = 2^{-2}$$

$$x = -2$$

(y-1)(4y-1)=0

 $y = 1 \text{ or } 4y = 1 \Rightarrow y = 1, -$

Here, $x = \{0, -2\}$ are roots of equation.

Example 12. Solve the equation $2^{2y+3} = 65(2^{y}-1)+57,$ then the value of y is (d) {-2, 2} (c) {-3,0} (b) {0, 3} (a) {-3, 3} $2^{2y+3} = 65(2^{y}-1)+57$ Sol. (a) $2^{2y} \cdot 2^3 = 65 \cdot 2^y - 65 + 57 \implies 8 \cdot 2^{2y} = 65 \cdot 2^y - 8$ - $8 \cdot 2^{2y} - 65 \cdot 2^{y} + 8 = 0$ - $2^{y} = x \Longrightarrow 2^{2y} = x^{2} \Longrightarrow 8x^{2} - 65x + 8 = 0$ Put $(8x-1)(x-8)=0 \implies x=1/8,8$ = By condition,

$$2^{y} = \frac{1}{8}$$

$$2^{y} = \frac{1}{2^{3}}$$

$$2^{y} = 2^{-3}$$

$$y = -3$$

$$2^{y} = 3$$

So, $y = \{3, -3\}$ is the solution.

Type .VII Equation of the form

(i)
$$a\left(x^{2} + \frac{1}{x^{2}}\right) + b\left(x + \frac{1}{x}\right) + c = 0$$

(ii) $a\left(x^{2} + \frac{1}{x^{2}}\right) + b\left(x - \frac{1}{x}\right) + c = 0$
Put $\left(x + \frac{1}{x}\right) = y$ in case (i) and find $x^{2} + \frac{1}{x^{2}}$ and $\left(x - \frac{1}{x}\right)$

= y in

case (ii) and find $x^2 + \frac{1}{y^2}$ and evaluate as follows.

Example 13. Solve for value of x $4\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)-7=0; x \neq 0$, which is (a) {-2, -1/2} (b) {0, 2} (d) None of these (c) {2, 1/2} **Sol.** (c) $4\left(x^2 + \frac{1}{x^2}\right) - 4\left(x + \frac{1}{x}\right) - 7 = 0$...(i) $x + \frac{1}{x} = y$ Put

Squaring both sides

$$\begin{pmatrix} x + \frac{1}{x} \end{pmatrix}^{2} = y^{2} \Rightarrow x^{2} + \frac{1}{x^{2}} + 2 = y^{2} \Rightarrow x^{2} + \frac{1}{x^{2}} = y^{2} - 2$$

$$\Rightarrow \quad 4(y^{2} - 2) - 4y - 7 = 0 \qquad [from Eq. (i)]$$

$$\Rightarrow \quad 4y^{2} - 8 - 4y - 7 = 0 \Rightarrow 4y^{2} - 4y - 15 = 0$$

$$\Rightarrow \quad (2y - 5)(2y + 3) = 0 \Rightarrow y = \frac{5}{2} \text{ or } -\frac{3}{2}$$
But $x + \frac{1}{x} = y$, so
For $y = \frac{5}{2}$

$$x + \frac{1}{x} = \frac{5}{2}$$

$$\frac{x^{2} + 1}{x} = \frac{5}{2}$$

$$2x^{2} + 2 = 5x$$

$$2x^{2} - 5x + 2x^{2} = 0$$

$$(x - 2)(2x - 1) = 0$$

$$\Rightarrow \quad x = 2 \text{ or } x = \frac{1}{2}$$

$$\begin{bmatrix} x^{2} + 1 \\ x = -\frac{3}{2} \\ 2x^{2} + 2 = -3x \\ 2x^{2} + 3x + 2 = 0 \\ \text{Here, } D = 9 - 16 \\ (\because D = b^{2} - 4ac) \\ D = -7 \\ \text{So, no real root.} \end{bmatrix}$$

Here, x =is solution.

Type VIII Equation of the type $ax^4 + bx^3 + cx^2 + bx + a = 0$

- Coefficient of x⁴ and constant value should be same.
- Coefficient of x³ and coefficient of x should be same.
- Divide the equation by x².
- Collect the like term.
- Now, follow steps of type VII

Example 14. Solve $x^4 - 3x^3 - 2x^2 + 3x + 1 = 0$, then the roots of the equation is

(a)
$$\left\{\pm 2, \frac{-3 \pm \sqrt{13}}{2}\right\}$$
 (b) $\left\{\pm 1, \frac{3 \pm \sqrt{13}}{2}\right\}$
(c) $\left\{\pm 3, \frac{3 \pm \sqrt{11}}{2}\right\}$ (d) None of these

Sol. (b) $x^4 - 3x^3 - 2x^2 + 3x + 1 = 0$

On dividing throughout by x^2 and rearranging the term

Put

Squaring both sides

$$x^{2} + \frac{1}{x^{2}} - 2 = y^{2}$$

$$x^{2} + \frac{1}{x^{2}} = y^{2} + 2$$

$$(y^{2} + 2) - 3y - 2 = 0$$
 [from Eq. (i)]
$$y^{2} - 3y = 0$$

$$y(y-3) = 0$$

$$y = 0 \text{ or } 3$$
For $y = 0$

$$x - \frac{1}{x} = 0$$

$$\frac{x^2 - 1}{x} = 0$$

$$x^2 = 1$$

$$x = \pm 1$$

$$x = \frac{3 \pm \sqrt{9 + 4}}{2}$$

$$x = \frac{3 \pm \sqrt{13}}{2}$$
is solution of equation.

Symmetric Functions of the Roots

An expression in α , β is called symmetrical if by interchanging and B, the expression is not changed.

eg. $\alpha^2 + \beta^2, \alpha^3 + \beta^3, \frac{\alpha}{\alpha} + \frac{\beta}{\alpha};$ etc.

Formulae to be Remember $\Box (\alpha^2 + \beta^2) = [(\alpha + \beta)^2 - 2\alpha\beta]$ $\Box (\alpha^3 + \beta^3) = [(\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta)]$ $\Box (\alpha - \beta)^2 = [(\alpha + \beta)^2 - 4\alpha\beta]$ $\Box (\alpha^3 - \beta^3) = [(\alpha - \beta)^3 + 3\alpha\beta (\alpha - \beta)]$ $\Box (\alpha^2 - \beta^2) = (\alpha + \beta)(\alpha - \beta) = (\alpha + \beta)[\sqrt{(\alpha + \beta)^2 - 4\alpha\beta}]$ $\Box \ (\alpha^{4} + \beta^{4}) = (\alpha^{2} + \beta^{2})^{2} - 2\alpha^{2}\beta^{2} = [(\alpha + \beta)^{2} - 2\alpha\beta]^{2} - 2(\alpha\beta)^{2}$ $\Box \alpha^4 - \beta^4 = (\alpha + \beta) (\alpha^2 + \beta^2) (\alpha - \beta)$ $= (\alpha + \beta) [(\alpha + \beta)^2 - 2\alpha\beta] \cdot \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$

Inequation

...(i)

So. x =

An inequation is a statement involving a sign of inequality. An inequation may contain one or more variables just like a equation. e.g., $px + q \ge 0$, $ax + by + c \le 0$, ax + by + c > 0 etc. 22 inequations.

- The symbol > , <, ≥, ≤ are called the signs of inequations
- The values of the variables for which an inequations hold true are called the solutions of the inequation or solution space or solution set of inequation.

General Rules for Solving an Inequation Algebraically

- A quantity or constant can be added to or subtracted for both sides of an interact can be added to or subtracted for both sides of an inequation. e.g., If $p \le q$, then $p + x \le q^{+x}$
- We can multiply (or divide) both sides of an inequation b^{12} positive number. e.g., $a \le b \implies 4a \le 4b$

• When an inequation is multiplied both sides by a negative number, the signs of inequality are reversed.

 $eg, \qquad x \le y \implies -2x \ge -2y \\ a \ge b \implies -3a \le -3b$

 The square root on both the sides of an inequation cannot be taken in the new take the square root on both sides of an equation.

eg, $x^2 = 16 \implies x = \pm 4$ But $x^2 \le 16 \implies x \le \pm 4$ But, it is taken as $x^2 \le 16 \implies |x| \le 4 \implies -4 \le x \le 4$ or $x^2 \ge 16 \implies |x| \ge 4 \implies x \le -4$ or $x \ge 4$

Linear Inequations

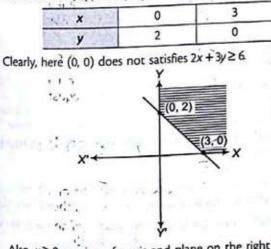
An inequation is said to be linear if each term of the algebraic expressions of the inequation contains variable of first degree. eg. $px + qy \le 0$

Graphical Solution of Linear Inequations in Two Variables

Let inequation be $ax + by + c \ge 0$.

Step 1 Consider it as ax + by + c = 0. Draw the graph of this equation.

Step 2 Choose any point [if possible (0, 0)]


If it satisfied the given inequation, then the shaded part of the plane contains the point, otherwise shaded the other part as solution.

Example 15. The solution set of inequation $2x + 3y \ge 6$, $x \ge 0$ and $y \ge 0$ is

(a) x = 1, y = 1(b) x = -1, y = -1(c) x = 3, y = 1(d) None of these

Sol. (c) Here, draw the graph of $2x + 3y \ge 6$. Let 2x + 3y = 6

Let 2x + 3y = 6The values of (x, y) satisfying 2x + 3y = 6 are

Also, $x \ge 0$ consists of y-axis and plane on the right hand side of y-axis.

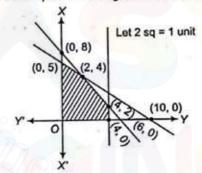
While $y \ge 0$ consists of x-axis and the plane above x-axis. Hence, the shaded region represents the solution set of the given system of inequations.

Example 16. The solution set of the following simultaneous linear inequations $x + 2y \le 10$, $x + y \le 6$, $x \le 4$, $x \ge 0$ and $y \ge 0$ is

(a) x = 6, y = 3(b) x = 4, y = 5(c) x = 2, y = 2(d) None of these **Sol.** (c) Consider $x+y \le 6$

Draw graph for x + y = 6

The values of x, y satisfying x + y = 6 are


×	0	6
y	6	0

...(i)

Also, value of (x,y) satisfying x + 2y = 10 are

×	0	4
V	5	3

Clearly, here (0, 0) does not lies on both equations but satisfies the inequations. The equation x = 4 is a straight line parallel to y-axis and $x \le 4$ represent the region on left hand side of x = 4.

Also, $x \ge 0$ consists of y-axis and plane on the right hand side of y-axis, also $y \ge 0$ consists of x-axis and the plane above x-axis. So, the shaded region represent solution set.

Quadratic Inequations

An equation of the form

	$ax^{2} + bx + c \ge 0$
or	$ax^2 + bx + c \leq 0$
or	$ax^2 + bx + c > 0$
or	$ax^2 + bx + c < 0$

where $a \neq 0$ is called a quadratic inequation in one variable x.

· Can be solved graphically or algebraically.

Solution of Quadratic Inequation

- Factorize the quadratic inequation.
- If discriminant of $b^2 4ac$ of the corresponding equation $ax^2 + bx + c = 0$ is positive, then $ax^2 + bx + c$ will always have distinct linear factor.
- When the product of the two factors is positive or > 0, then either both the factor are positive or both are negative.

- When the product of the two factors is negative, then two factors will be of opposite signs.
- If $b^2 4ac = 0$, then $ax^2 + bx + c$ will be a perfect square.
- If $b^2 4ac < 0$, then $ax^2 + bx + c$ will be not have any real factor *i.e.*, imaginary factors.

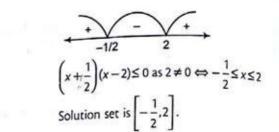
Example 17. The inequation

 $x^2 + 4x + 3 \ge 0$ have the solution is

(a) x < − 3 and x > −1 (b) $x \le -3$ and $x \ge -1$ (c) x < -3 and $x \ge -1$ (d) $x \le -3$ or x > -1Sol. (b) We have, $x^{2} + 4x + 3 \ge 0$ => $x^{2} + 3x + x + 3 \ge 0$ = $(x+1)(x+3) \ge 0$ Either $(x + 1) \ge 0$ and $x + 3 \ge 0$ or $x + 1 \le 0$ and $(x + 3) \le 0$ $x \ge -1$ and $x \ge -3$ or $x \le -1$ and $x \le -3$ \Rightarrow $x \ge -1$ or $x \le -3$ = Let a and b be real numbers, such that a < b(i) $x < b \Leftrightarrow (x-a) > 0$ and $(x-b) > 0 \Leftrightarrow (x-a)(x-b) > 0$ (ii) $x < a \Leftrightarrow (x - a) < 0$ and $(x - b) < 0 \Leftrightarrow (x - a)(x - b) > 0$ (iii) $a < x < b \Leftrightarrow (x-b) < 0$ and $(x-a) > 0 \Leftrightarrow (x-a)(x-b) < 0$

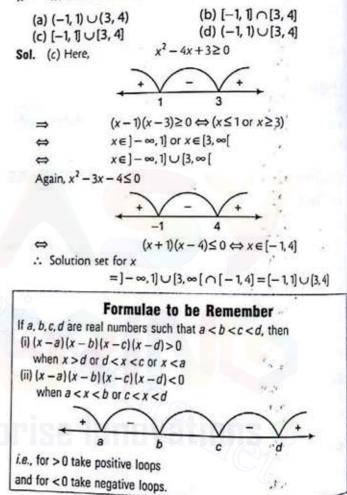
How to be Remember?

Let a and b be real numbers, such that a < b, then (i) (x-a)(x-b) > 0 when x > b also when x < a. If >0, then choose positive loops. (ii) (x-a)(x-b) < 0 when a < x < b.



If < 0 choose the negative loops.

Example 18. The solution set of the inequation $2x^2 - 5x + 2 \le 0$ is


(a) (-1/2, 2) (b) (-1/2, 2) (c) [-1/2, 2) (d) [-1/2, 2]Sol. (d) $2x^2 - 5x + 2 \le 0 \Leftrightarrow (2x+1)(x-2) \le 0$

$2\left(x+\frac{1}{2}\right)(x-2) \le 0$

Example 19. The real values of x which satisfy $x^2 - 4x + 3 \ge 0$ and $x^2 - 3x - 4 \le 0$ is

0

Exercise

1. The solution set for equation $4x^2 - 6x = 0$ when $x \in N$ is

(a) $\{0, 1\}$ (b) $\{1, 2\}$ (c) $\{0\}$ (d) ϕ

- The quadratic equation has the maximum

 (a) one root
 (b) two roots
 (c) four roots
 (d) three roots
- 3. Which of the following are quadratic equations?

I.
$$x^{2} + \frac{1}{x^{2}} = 2$$

II. $x + \frac{3}{x} = x^{2}$
III. $2x^{2} - x + 2 = x^{2} + 4x$

IV. $x^3 + 6x^2 + 2x - 1 = 0$ (a) I, III are quadratic (b) II, III and IV are quadratic (c) III is only quadratic (d) None of the above In each of the following, determine which of the gives values are solutions of the equation. I. $3x^2 - 2x - 1 = 0$; x = 1. II. $x^2 + \sqrt{2x} - 4 = 0$; $x = \sqrt{2}$, $x = -2\sqrt{2}$.⁺ III. $x^2 + x + 1 = 0$; x = 1, x = -1. IV. $9x^2 - 3x - 2 = 0$; $x = -\frac{1}{3}$, $x = \frac{2}{3}$. (a) I and II only (b) I, II and IV (c) III, IV only (d) IV only

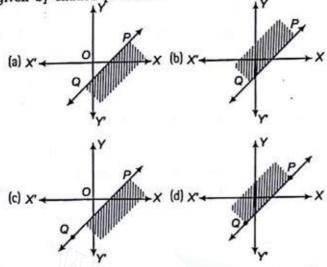
values of x in the 5. The equation 15 $a^{2}b^{2}x^{2} - (a^{2} + b^{2})x + 1 = 0, a \neq 0, b \neq 0$ is (a) 1/02 (b) 1/b2 (c) 1/02, 1/b2 (d) None of these 16 6. If $6 \le x \le 8$, then which one of the following is correct? (CDS 2011 II) (a) $(x-6)(x-8) \ge 0$ (b) (x-6)(x-8) > 017 (c) $(x-6)(x-8) \le 0$ (d) (x-6)(x-8) < 07. The product of the roots of $x^2 - 3kx + 2k^2 - 1 = 0$ is 7 18 for a fixed k. What is the nature of roots?(CDS 2007 I) (a) Integral and positive (b) Integral and negative (c) Irrational (d) Rational but not integral 1 8. The value of 'a' for which the equation $ax^2 - 2\sqrt{5}x + 4 = 0$ has equal roots is (b) 4/5 (a) 5/4 9. Match list I with list II. List I contains quadratic polynomials and list H contains-the conditions forthese polynomials to be factorizable into a product of real linear factors. List I List II $4x^2 + kx + 1$ 1. A $k \leq 1/2$ 2 B. $kx^2 - 4x + k$ 2. $k \ge 4$ or $k \le -4$ $kx^{2} - 2x + 2$ C. 3. $k \ge 8$ or $k \le 0$ $2x^2 - kx + k$ $-2 \le k \le 2$ D. 4 Codes A - B С n R C D (a) 4 3 2 (b) 3 2 4 1 3 2 (d) 2 (c) 1 3 4 10. The equation $(1 + m^2) x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots, if -, -(b) $c^2 = \sigma^2(1 - m^2)$ 2 (a) $\sigma^2 = c^2 (1 - m^2)$ (d) $c^2 = a^2(1+m^2)$ (c) $\sigma^2 = c^2(1 + m^2)$ 11. If one root of $3x^2 = 8x + (2k + 1)$ is seven times the other, then the value of k is (d) -3/2(c) 2/3 (b) -5/3(a) 5/3 🗹 12. Match list I with list II List II List I 7/2 and 1 Roots of $2x^2 - 13x + 21 = 0$ 1. A. 3 and 7/2 Roots of $2x^2 - 9x + 7 = 0$ 2. B. 3 and 3 3. Roots of $x^2 - 6x + 9 = 0$ C. 7 and 7/2 Roots of $2x^2 - 21x + 49 = 0$ D. Codes C D 3 4 3 4 В 3 2 1 (b) (d) (a) 1 2 (c) 2 1 13. The quadratic equation whose roots are $\frac{4+\sqrt{7}}{2}$ $\frac{4-\sqrt{7}}{2}$ is (b) $4x^2 - 16x - 9 = 0$ (a) $4x^2 + 16x + 9 = 0$ (d) $4x^2 + 16x - 9 = 0$ (c) $4x^2 - 16x + 9 = 0$ 14. If one of the roots of the equation $ax^2 + x - 3 = 0$ is (CDS 2010 I) -1.5, then what is the value of a? (d) - 2 (c) 2 (a) 4 · (b) 3

		re real	1.	List II $b^2 - 4ac < 0$
Let $f(\mathbf{x}) = a\mathbf{x}^2 + $	bx + c be	a quadra	tic	
(c) the latter ((d) None of the	of the two is ne above		s	
(a) both of th				
	, the roots		1	
			-2:	
and $\alpha^2 + \beta^2 = 4$	10, then P	is equal 1	tion	(d) 11
(c) 3 values		(d) No '	value	the second second
4	4	4		(d) 1
	her root?			(CDS 2010 II)
If one root of	the equation	on $ax^2 + y$	<-3	=0 is -1 , then
		A		these
	x satisfying			-(4 - x) 15
	State of the second	1000 State State 1		
(a) <i>x</i> ≤ 13	(b) $x \ge 12$	(c) x≥1	3	(d) $x = 13$
The values of :	x satisfying	inequati	on -	$\frac{x-1}{3} \ge 4$ is
(a) x≥8		(b) $x \ge 3$	S	
	(c) $x \ge 6$ The values of $x \le 13$ The values of $(a) \ x \le -4$ The values of $(a) \ x \le -4$ The values of $(a) \ x \le 2$ (c) $x = 2$ If one root of what is the oth (a) $\frac{1}{4}$ How many respect to $x^{2/3} + x^{1/3} - 2 = (a)$ (a) Only 1 values If α and β are and $\alpha^2 + \beta^2 = 4$ (a) 12 With respect to that (a) both of th (b) both of th (c) the latter of (d) None of th Match list I w Let $f(x) = \alpha x^2 + \beta^2$	(c) $x \ge 6$ The values of x satisfying (a) $x \le 13$ (b) $x \ge 12$ The values of x satisfying (a) $x \le -4$ (b) $x \le 4$ The values of x satisfying (a) $x \le 2$ (c) $x = 2$ If one root of the equations what is the other root? (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ How many real values $x^{2/3} + x^{1/3} - 2 = 0$? (a) Only 1 value (c) 3 values If α and β are the roots of and $\alpha^2 + \beta^2 = 40$, then P (a) 12 (b) 10 With respect to the roots that (a) both of them are integ (b) both of them are natu (c) the latter of the two is (d) None of the above Match list I with list II. Let $f(x) = \alpha x^2 + bx + c$ be List I	(c) $x \ge 6$ (d) Nome The values of x satisfying inequalit (a) $x \le 13$ (b) $x \ge 12$ (c) $x \ge 1$ The values of x satisfying $-2x + 3$ (a) $x \le -4$ (b) $x \le 4$ (c) $x \ge 4$ The values of x satisfying $3x + 2 \le 4$ (a) $x \le 2$ (b) $x \ge 4$ (c) $x = 2$ (d) Nom If one root of the equation $ax^2 + 3x^2$ what is the other root? (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ How many real values of x satisfying $3x + 2 \le 6$ (c) $3x = 2$ (d) Nom If one root of the equation $ax^2 + 3x^2$ what is the other root? (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ How many real values of x satisfying $3x + 2x^{2/3} + x^{1/3} - 2 = 0$? (a) Only 1 value (b) 2 values (c) 3 values (d) Nom If α and β are the roots of the equal and $\alpha^2 + \beta^2 = 40$, then P is equal (a) 12 (b) 10 (c) 9 With respect to the roots of $x^2 - x$ that (a) both of them are integers (b) both of them are natural number (c) the latter of the two is negative (d) None of the above Match list I with list II. Let $f(x) = \alpha x^2 + bx + c$ be a quadration List I A. Roots of $f(x) = 0$ are real	(c) $x \ge 6$ (d) None of The values of x satisfying inequation $\frac{3}{4}$ (a) $x \le 13$ (b) $x \ge 12$ (c) $x \ge 13$ The values of x satisfying $-2x + 3 \ge 11$ (a) $x \le -4$ (b) $x \le 4$ (c) $x \ge 4$ The values of x satisfying $3x + 2 \le 5x - (a) x \le 2$ (b) $x \ge 2$ (c) $x = 2$ (d) None of If one root of the equation $ax^2 + x - 3$ what is the other root? (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ How many real values of x satisfy $x^{2/3} + x^{1/3} - 2 = 0$? (a) Only 1 value (b) 2 values (c) 3 values (d) No value If α and β are the roots of the equation and $\alpha^2 + \beta^2 = 40$, then P is equal to (a) 12 (b) 10 (c) 9 With respect to the roots of $x^2 - x - 2$ that (a) both of them are integers (b) both of them are natural numbers (c) the latter of the two is negative (d) None of the above Match list I with list II. Let $f(x) = ax^2 + bx + c$ be a quadratic List I A. Roots of $f(x) = 0$ are real 1.

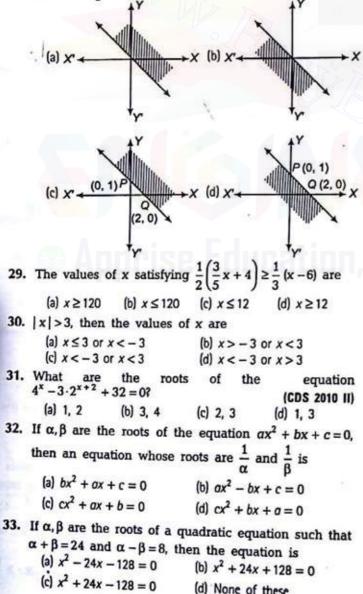
		1.55	COMPLEX NOTING CONTINUES
	Roots of $f(x) = 0$ are real	2.	$b^2 - 4ac > 0$
c.	and distinct Product of roots of $f(x) = 0$	3.	$b^2 - 4ac = 0$
			c/a

5. - b/a Codes C D D A В 5 2 (a) 4 2 1 5 (b) 3 4 (d) 5 2 (c) 1 3 4 5 1.

24. If α and β are the roots of the equation $x^2 - 5x + 6 = 0$, then the value of $\alpha^2 - \beta^2$


(a) 5 (b)
$$-5$$
 (c) ± 5 (d) ± 4

25. What is the magnitude of difference of the roots of $x^2 - ax + b = 0?$ (CDS 2009 I) (a) $\sqrt{a^2 - 4b}$ (b) $\sqrt{b^2 - 4a}$ (c) $2\sqrt{a^2 - 4b}$ (d) $\sqrt{b^2 - 4ab}$


26. The solution set of x for the inequations $2x + 3 \ge 8$ and $3x + 1 \le 12$ is

(a) $\frac{5}{2} < x \le \frac{11}{3}$ (b) $\frac{5}{2} < x < \frac{11}{3}$ (c) $\frac{5}{2} \le x \le \frac{11}{3}$ (d) $\frac{5}{2} \ge x \ge \frac{11}{3}$

27. The region represented by the inequation $2x - y \ge 1$ is given by shaded portion of

28. The region represented by x + 2y > 2 is given by shaded region of

(d) None of these

34.	What are the roots of t $a^2b^2x^2 - (a^2 + b^2)x + b^2$	the quadratic e -1=0?	quation (CDS 2011 m
	$a^{2}b^{2}x^{2} - (a^{2} + b^{2})x +$ (a) $\frac{1}{a^{2}}, \frac{1}{b^{2}}$ (b) $-\frac{1}{a^{2}}, \frac{1}{a^{2}}$		
35.	The side (in cm) of a	right triangle a	are $x - 1$, x and
	x + 1. Then, the area of	triangle is	
	(a) $x(x + 1) \text{ cm}^2$	(b) / cm-	
	(c) 6 cm ²	(d) $(x^2 - t^2)$	cm²
	Divide 16 into two par square of the greater p smaller part by 164. Th (a) 58 (b) 10	art exceeds, the len, the greater (c) 6	e square of the part is (d) 15
37.	The number of straight points is given by the equipoints does a figure have connecting them?	$function y = \frac{x}{2}$	How many
	(a) 15 (b) 10	(c) 6	(d) 5
38.	If α, β are the roots	of the quad	ratic equation
	$2x^2 - 4x + 1 = 0$. Then, the	the value of $\frac{1}{\alpha}$ +	$\frac{1}{2\beta} + \frac{1}{\beta + 2\alpha}$ is
	equal to		12
	(a) $\frac{12}{17}$ (b) $\frac{17}{12}$	(c) $\frac{11}{12}$	(d) 13
	17 12		
39.	An equation equivalent $x^2 - 6x + 5 = 0$ is	to the quadra	tic equation
	(a) $x^2 - 5x + 6 = 0$	(b) $5x^2 - 6x$	+1 = 0
	(c) $ x - 3 = 2$	(d) $6x^2 - 5x$	+1=0
		200	

40. Consider the following statements I. A quadratic equation can have maximum two roots.

II. If α, β are the roots $2x^2 - 3x + 1 = 0$, then roots equation of the equation roots of $x^2 - 3x + 2 = 0$ are $\frac{1}{2}, \frac{1}{2}$ a'B

III. If the roots of the equation $ax^2 + bx + c = 0$ are negative reciprocal of each other, then a + c = 0. IV. If α, β are the roots of

the equation $2x^2 - 4x + 1 = 0$, the value of $\frac{1}{\alpha + 2\beta}$, $\frac{1}{\beta + 2\alpha}$ 12 17

Of these statements

(a) I, II are correct	(b) I, II and IV are correct
(a) All and connect	1.0 11 .

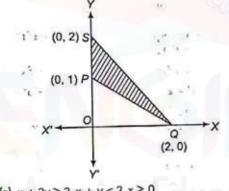
- (c) All are correct (d) None is correct
- 41. The roots of the equation $x^2 + px + q = 0$ are 1 and 2. The roots of the equation $qx^2 - px + 1 = 0$ must be

(a)
$$\frac{-1}{2}$$
 and 1
(b) $\frac{1}{2}$ and 1
(c) $\frac{-1}{2}$ and -1
(d) None of these

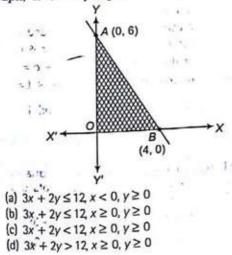
- 42. Which one of the following is the guadratic equation whose roots are reciprocal to the roots of the quadratic equation $2x^2 - 3x - 4 = 0?$ (CDS 2008 II)
 - (a) $3x^2 2x 4 = 0$ (b) $4x^2 + 3x - 2 = 0$ (c) $3x^2 - 4x - 2 = 0$ (d) $4x^2 - 2x - 3 = 0$

43. The sum of the roots of the equation $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ is zero. What is the product of the roots of the equation? (CDS 2010 I)

(a)
$$-\frac{(a+b)}{2}$$
 (b) $\frac{(a+b)}{2}$ (c) $-\frac{(a^2+b^2)}{2}$ (d) $\frac{(a^2+b^2)}{2}$


44. $4x^2 - 1 \le 0$, then the solution set is

(a) $\frac{-1}{2} \le x \le \frac{1}{2}$ (b) $\frac{-1}{2} < x < \frac{1}{2}$ (c) $\frac{-1}{2} \ge x \ge \frac{1}{2}$ (d) None of these


45. $4 + x^2 - 4x \ge 0$, then x belongs to

(a) l^+ (b) l^- (c) l (d) R46. $x^2 - 10x < -25$, then x belongs to

- 47. The region specified by $x \ge 0$, $x + y \ge 0$ includes which of the following as a whole
 - (a) Ist quadrant (b) IInd quadrant
 - (c) Illrd quadrant (d) IVth quadrant
- 48. The shaded region, including the boundary in the given figure is exactly represented by

- (a) $x + 2y \ge 2, x + y < 2, x \ge 0$ (b) $x + 2y \ge 2, x + y \le 2, x > 0$ (c) $x + 2y > 2, x + y \le 2, x > 0$ (d) $x + 2y \ge 2, x + y \le 2, x \ge 0$
- 49. The shaded region, including the boundary in the give graph, 'is exactly represented by

Quadratic Equations and Inequations 153

	(a) 0, 5	the equation $\sqrt{x+4} = x-2$ is (b) 0, 4
	(a) 0, 5 (c) 5	(d) None of these
51.	and the second sec	tural number whose squares
	have sum 221 are	
	(a) 10 and 11	(b) 11 and 12
	(c) - 10 and - 11	(d) None of these
52.	whose squares is 130.	sitive odd integers the sum of
	(a) -7 and -9	(b) 7 and 9
	(c) 7 and 5	(d) 3 and -5
53.	If α and β are the roots of	of the equation $x^2 + px + q = 0$,
		e roots of which one of the (CDS 2010 II)
	following equations?	(b) $q^2 + px + 1 = 0$
	(a) $qx^2 - px + 1 = 0$	
	(c) $x^2 + px - q = 0$	
54.	If the roots of the quad	ratic equation $px^2 + qx + r = 0$
	are reciprocal to each o	other, then
	(a) $q = r$	(b) $\rho = r$ (d) ρ divides q
	(c) q divides r	sum of their reciprocals is 1/6,
55.		sum of men recipiotus is 4-
18	then equation is (a) $x^2 - 6x + 1 = 0$	(b) $x^2 - x + 6 = 0$
	(a) $x^2 = 0x + 1 = 0$ (c) $6x^2 + x + 1 = 0$	(d) $x^2 + x - 6 = 0$
		the state of the s
56.	If sum of the roots of the equal to the sum of the the following is correct	the equation $ax^2 + bx + c = 0$ is er squares, then which one of (CDS 2007 I)
	(a) $o^2 + b^2 = c^2$	(b) $a^2 + b^2 = a + b$
	(c) $2ac = ab + b^2$	(d) $2c + b = 0$
	If the roots of $x^2 - lx + lx$	C Destroyed the set
57.		(b) $l^2 = 4m + 2$
	(a) $l^2 = 4m - 1$	
	(c) $l = 4m^2 + 1$	(d) $l^2 = 4m + 1$
58.		roots of the equation
	1999	$(\alpha^4) = 0$, then $\alpha^2 + \beta^2$ is equal.
	to (a) $a^4 + a^2$	(b) a ²
	(c) $(a^2 + a^4)^2$	(d) None of these
59.	ATK. ATK. 1998.	$\frac{1}{r} = \frac{1}{r}$ are equal in magnitude
	and opposite in sign, t	
		$\rho^{2} + q^{2}$
	(a) $-\frac{1}{2}(p^2+q^2)$	(b) $\frac{p^2 + q^2}{2}$
	(c) $\frac{p+q}{2}$	(d) $\frac{1}{2}(p+q)^2$
60.	If α, β are the roots	of $3x^2 + 2x + 1 = 0$, then the
	equation whose roots	are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$ is
	(a) $x^2 + 2x + 3 = 0$	(b) $x^2 - 2x + 3 = 0$
	(c) $x^2 + 2x - 3 = 0$	(d) $x^2 - 2x - 3 = 0$
	(c) x + 2x - 3 = 0	

-

- 61. If x is real, then the value of the polynomial $\frac{x^2+2x+1}{x^2+2x+7}$ lies between
 - (a) 1 and 2 (b) - 1 and 1

(c) 0 and 1 (d) 1/2 and 1

62. If one root of $px^2 + qx + r = 0$ is double of the other root, then which one of the following is correct? (CDS 2007 II)

(a) $2q^2 = 9pr$ (b) $2q^2 = 9p$ (c) $4q^2 = 9r$ (d) $9q^2 = 2pr$

- 63. If the roots of the equation $x^2 + x + 1 = 0$ are in the ratio m:n, then
 - (a) $\sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}} + 1 = 0$ (b) $\sqrt{m} + \sqrt{n} + 1 = 0$ (c) $\frac{m}{n} + \frac{n}{m} + 1 = 0$ (d) m + n + 1 = 0
- 64. A group of students decided to buy a tape recorder from ₹ 170 to ₹ 195. But at the last moment two students backed out of the decision so that the remaining students had to pay ₹ 1 more than they had planned. What was the price of the tape recorder if the students paid equal shares? (a) ₹ 175
 - (b) ₹ 180 (c) ₹ 185 (d) ₹ 190
- 65. A factory kept increasing its output by the same percentage every year. Find the percentage, if it is known that the output doubled in the last two years (a) 100 (√2 + 1)% (b) 100 $(\sqrt{2} - 1)\%$

(c)
$$\left(\frac{100-1}{\sqrt{2}}\right)\%$$
 (d) 25%

- 66. What is one of the value of x in the equation $\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = \frac{13}{6}$? (CDS 2007 II) (a) $\frac{5}{13}$ (b) $\frac{7}{12}$ (c) $\frac{9}{12}$ (d) 11
- 67. The solution set for the quadratic inequation $x^2 - 5x + 6 > 0$ is
 - (a)] ∞, 2 [∪] 3, ∞ [(b)] - ∞, 2] ∪] 3, ∞ [(c)] - ∞, 2] ∪ [3, ∞[(d) [2, 3]
- 68. The values of x satisfying the quadratic inequation $x^2 - 8x + 16 \le 0$ is/are (a) $1 - \infty 41$ (b) (41 ()

69. All real values of x for which
$$\frac{x-2}{3x+1} < \frac{x-3}{3x-2}$$
 are
(a) $\left[\frac{-1}{3}, \frac{2}{3}\right]$ (b) $\left[\frac{-1}{3}, \frac{2}{3}\right]$ (c) $\left[\frac{-1}{3}, \frac{2}{3}\right]$ (d) R
70. Area of the rectangular region $2 \le x \le 5$

5, $-1 \le y \le 3$ is (a) 9 sq units (b) 10 sq units (c) 12 sq units (d) 15 sq units

71. What are the roots of the equation $(a + b + x)^{-1} = a^{-1}$

(a)
$$a, b$$
 (b) $-a, b$ (c) $a, -b$ (d) $-a, -b$ (d) $-a, -b$

- 72. If a and b are the roots of the equation $x^2 + ax + b_{zy}$ then
 - (b) a = -2(a) a = 1 (d) a = -2 or 0
 - (c) a = 1 or 0
- 73. For the equation $|y|^2 + |y| 6 = 0$
 - (a) there are four distinct roots
 - (b) there are only three distinct roots (c) there are only two distinct roots
 - (d) there is only one root
- 74. The number of roots of the quadratic equation $8 \sec^2 \phi - 6 \sec \phi + 1 = 0$ is

(d) 3

75. If a, b are the roots of the equation $x^2 + x + 1 = 0$, then $a^2 + b^2$ is equal to

76. If $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0$, then which one of the following is correct? (CDS 2011 III (a) $a^2 + b^2 + 2ac = 0$ (b) $a^2 - b^2 + 2ac = 0$

(c)
$$a^2 + c^2 + 2ab = 0$$
 (d) $a^2 - b^2 - 2ac = 0$

77. The equation $(1 + n^2) x^2 + 2ncx + (c^2 - a^2) = 0$ will have equal roots, if (CDS 2011 I) (1) .2 . 2 2 (a) $c^2 = 1 + a^2$

(c)
$$c^2 = 1 + n^2 + a^2$$
 (d) $c^2 = (1 + n^2) a^2$

78. If $e^{\cos x} - e^{-\cos x} = 4$, then the value of $\cos x$ is (a) $\log(2 + \sqrt{5})$ (b) $-\log(3 + \sqrt{5})$ (c) $\log(-2+\sqrt{5})$

(d) None of these 79. The number of real roots of $3^{2x^2} - 7x + 7 = 9$ is (a) 3 (b) 1 - (d) 4 (c) 2

80. The value of x for which $2^{x+4} - 2^{x+2} = 3$ is (a) 2

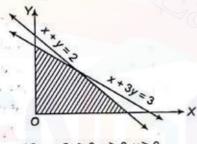
(b) 1 (c) - 2 (d) 3 81. If $x = \sqrt{2} + 2$, then (a) $x^2 + 4x + 2 = 0$ (b) $x^2 - 2x - 2 = 0$ (c) $x^2 - 4x + 2 = 0$ (d) $x^2 - 4x - 2 = 0$

82. For what value of k will the equation $\frac{x^2 - bx}{ax - c} = \frac{k^{-1}}{k+1}$

- have roots reciprocal to each other? (a) $\frac{1+c}{1-c}$ (b) $\frac{c+1}{c-1}$ (c) a-c (d) $\frac{b+c}{c-1}$
- 83. If 'a' and 'b' be the roots of $ax^2 bx + b' = 0$, the value of $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}}$ is
- (a) a/b (b) $\sqrt{b/a}$ (c) $\sqrt{a/b}$ (d) -a/b84. If the equations $2x^2 - 7x + 3 = 0$ and $4x^2 + ax^{-3} = 0$ have a common root, then what is the value of a ····· (CDS 2007 II (a) - 11 or 4 (c) 11 or - 4 (b) - 11 or - 4
 - (d) 11 or 4

85. If α and β are the roots of the equation $x^2 - 6x + 6 = 0$, what is $\alpha^3 + \beta^3 + \alpha^2 + \beta^2 + \alpha + \beta$ equal to?

III)


86. In the first four examination Rahul got 94, 73, 84, 72 marks. If a final average greater than or equal to 80 and less than 90 is needed to obtain a final grade 'B' in a score. What range of marks on the fifth examination will result in Rahul receiving 'B' in the courtse? (a) $77 \le x \le 127$

(0) 11 = 1 = 121	(0) 8/ SX S13
(c) $67 \le x \le 97$	(d) $x = 100$

- 87. The system of linear inequations $x + y \le 0, x \ge 0$ and $y \ge 0$ has
 - (a) three solutions
 - (b) exactly one solution
 - (c) no solution
 - (d) an infinite number of solutions
- 88. If $x + 2y \le 3$, x > 0 and y > 0, then one of the solution is

(a)
$$x = -1, y = 2$$

(b) $x = 2, y = 1$
(c) $x = 1, y = 1$
(d) $x = 0, y = 0$

89. The shaded region in the given figure is the solution set of the inequations

- (a) $x + y \le 2, x + 3y \ge 3, x \ge 0, y \ge 0$ (b) $x + y \ge 2, x + 3y \ge 3, x \ge 0, y \ge 0$ (c) $x + y \ge 2, x + 3y \le 3, x \ge 0, y \ge 0$ (d) $x + y \le 2, x + 3y \le 3, x \ge 0, y \ge 0$
- 90. If the equation
 - $(a^2 + b^2) x^2 2 (ac + bd) x + (c^2 + d^2) = 0$ has equal roots, then which one of the following is correct? (CDS 2010 II)

(a)
$$ab = cd$$
 (b) $ad = bc$
(c) $a^2 + c^2 = b^2 + d^2$ (d) $ac = bd$

91. If the roots of $x^2 + bx + c = 0$, be α and β , also those of $x^2 + px + q = 0$ be $k\alpha$ and $k\beta$, then

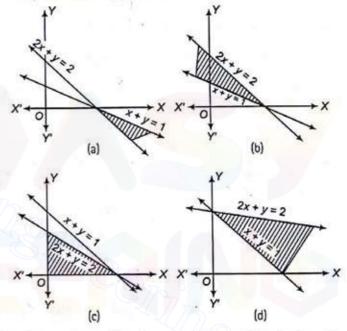
(a)
$$cb^2 = qp^2$$

(b) $qc^2 = b^2p^2$
(c) $qb^2 = cp^2$
(d) None of these

92. If $\left(\frac{14}{5}\right)^{2x-3} = \left(\frac{5}{14}\right)^{x-3}$, then the value of x is (a) 2. (b) 1 (c) 3 (d) 0

(a) 2. (b) 1 (c) 3 (o) 0 93. Find the condition that one root of $px^2 + qx + r = 0$ may be double of the other.

(a) $2p^2 = 9 qr$ (b) $2q^2 = pr$


(c) $2q^2 = 9 pr$ (d) $2r^2 = 9 pq$

Quadratic Equations and Inequations 155

94. If -4 is a root of the equation $x^2 + px - 4 = 0$ and the equation $x^2 + px + q = 0$ has equal roots, then the values of p and q are, respectively

(a) -3 and $\frac{9}{4}$ (b) 3 and $\frac{9}{4}$ (c) $\frac{9}{4}$ and 3 (d) 4 and 3

- 95. What is the condition that the equation $ax^2 + bx + c = 0$, where $a \neq 0$ has both the roots positive? (CDS 2011 II)
 - (a) a, b and c are of same sign.
 - (b) a and b are of same sign.
 - (c) b and c have the same sign opposite to that of a.
 - (d) a and c have the same sign opposite to that of b.
- 96. The region represented by x + y ≥1, 2x + y ≤2 is given by the shaded portion of

97. The water acidity in a pool is considered when the average pH reading of three daily measurement is between 7.2 and 7.8. If the first two pH readings are 7.48 and 7.85, the range of pH value for the third reading x that will result in the acidity level being normal is

(a) 6.2 < x < 8.09	(b) 6.27 < x < 8.07
(c) $6.7 < x < 8.7$	(d) None of these

98. A company manufactures cassettes and its cost equation for a week is C = 300 + 1.5 x and its revenue equation is R = 2x, where x is the number of cassettes sold in a week. How many cassettes must be sold for the company to realise a profit?

(a) x > 700	(b) x > 650
(c) $x > 600$	(d) 500 < x

99. What is the least integral value of k for which the equation $x^2 - 2(k-1)x + (2k+1) = 0$ has both the roots positive? (CDS 2010 I)

(b)
$$-\frac{1}{2}$$
 (c)

(a) 1

(d) O

100. If
$$\alpha$$
, β are the roots of $2x^2 - 6x + 3 = 0$, then the value of (α, β) , $2(1+1) + 2\alpha\beta$ is

$$(\beta \alpha)^{-1}(\alpha \beta)^{-1}(\alpha \beta)$$

(a) 12 (b) 23 (c) 13 (d) -13

101. The solution set of the equation

$$\begin{array}{c} (x+2) (x-5) (x-6) (x+1) = 144 \text{ is} \\ (a) \{7,-3\} & (b) \{7,-3,2\} \\ (c) \{7,-3,2,1\} & (d) \{7,2\} \end{array}$$

102. The solution set of the equation

$$\sqrt{x^{2} - 16} - (x - 4) = \sqrt{x^{2} - 5x + 4}$$
 is
(a) $\left\{4, 5, -\frac{13}{3}\right\}$ (b) $\{4, 5\}$
(c) $\{4\}$ (d) $\left\{5, -\frac{13}{3}\right\}$

103. If (2x - 3y < 7) and (x + 6y < 11), then which one of the following is correct? (CDS 2008 I) (a) x + y < 5 (b) x + y < 6 (c) $x + y \le 5$ (d) $x + y \le 6$

- 104. In a group of children, each child gives a gift to every other child. If the number of gifts is 132, then the number of children
 - (a) 13 (b) 10 (c) 11 (d) 12
- 105. In a flight of 1600 km, an aircraft was slowed down by bad weather. Its average speed for the trip was reduced by 400 km/h and the time of flight increased by 40 min. Then the actual time of flight

a)
$$1\frac{1}{2}$$
 h (b) $1\frac{1}{3}$ h (c) $1\frac{1}{4}$ h (d) 2 h

106. A person on tour has ₹ 360 for his daily expenses. If he exceeds his tour programme by 4 days, he must cut down his daily expenses by ₹ 3 per day. Then the number of days of his tour programme is number of days of his tour programme is

(a) 20 days (b) 24 days (c) 25 days (d) 23 days

107. If $a + b = 2m^2$, b + c = 6m, a + c = 2, where *m* is a real number and $a \le b \le c$, then which one of the following (CDS 2009 II)

13 (0110-1	(L) 10 m 1 A
(a) $0 \le m \le 1/2$	(b) $-1 \le m \le 0$
(c) $1/3 \le m \le 1$ · ·	(d) 1 < m ≤ 2 .
$ C J \ge I \ge 1$	1-1

Answers

ł

1. (d)	2. (b)	3. (c)	4. (b)	5. (c)	6. (c)	7. (c)	8. (a)	9. (d) 19. (c)	10. (d) 20. (b)
11. (b)	12. (c)	13. (c)	14. (c)	15. (b)	16. (c)	17. (a)	18. (b)		
21. (a)	22. (a)	23. (b)	24. (c)	25. (a)	26. (c) Th	27. (a)	28. (c)	29. (b)	30. (d)
	32. (d)	33. (d)	34. (a)	35. (c)	36. (b)	37. (c)	38. (a)	39. (c)	40. (c)
31. (c)			44. (a)	45. (d)	46. (d)	47. (a)	48. (d)	49. (b)	50. (c)
41. (c)	42. (b)	43. (c)				57. (d)	_ 58. (b)	59. (a)	60. (b)
51. (a)	52. (b)	53. (a)	54. (b)	55. (d)	56. (c)				
61. (c)	62. (a)	63. (a)	64. (b)	65. (b)	66. (c)	67. (a)	68. (c)	69. (a)	70. (c)
71. (d)	72. (c)	73. (c)	74. (c)	75. (c)	76. (b)	77. (d)	78. (a)	79. (c)	80. (c)
81. (c)	82. (b)	83. (b)	84. (a)	85. (b)	86. (a)	87. (b)	88. (c)	89. (d)	90. (b)
		93. (c)	94. (b)	95. (d)	96. (b)	97. (b)	98. (c)	99. (c)	100. (c)
91. (c)	92. (a)						00. (0)	00. (0)	
101. (b)	102. (b)	103. (b)	104. (d)	105. (b)	106. (a)	107. (c)			

Hints and Solutions

1. $4x^2 - 6x = 0$ or 2x(2x - 3) = 0

Now, either

$$2x = 0 \text{ or } 2x - 3 = 0$$

x = 0 or x = 3/2

when $x \in N$, the equation has no solution. So, solution set is ϕ or empty set.

- The degree of equation is equal to maximum number of roots it has roots, may be real or imaginary.
- 3. $1 x^{2} + \frac{1}{x^{2}} = 2 \text{ or } x^{4} 2x^{2} + 1 = 0 \text{ is not a quadratic polynomial.}$

II. $x + \frac{3}{x} = x^2 \implies \frac{x^2 + 3}{x} = x^2$ or $x^2 + 3 = x^3 \implies x^3 - x^2 - 3 = 0$

is not a quadratic polynomial.

III. $2x^2 - x + 2 = x^2 + 4x - 4$

or
$$2x^2 - x + 2 - x^2 - 4x + 4 = 0$$

or $x^2 - 5x + 6 = 0$ is a quadratic polynomial.

IV. $x^3 + 6x^2 + 2x - 1 = 0$ is not a quadratic polynomial.

4. $x^{2} + x + 1 = 0; x = 1, x = -1$ Put x = 1 in $x^{2} + x + 1 = 0$, we get $1^{2} + 1 + 1 = 3 \neq 0$ \therefore LHS \neq RHS $\therefore x = 1$ is not a solution.

Substituting x = -1 in the LHS, we get

 $(-1)^2 + (-1) + 1 = 1 - 1 + 1 = 1 \neq 0$

2

$$\therefore x = -1$$
 is not a solution.

5.
$$a^2b^2x^2 - a^2x - b^2x + 1 = 0$$

 $\Rightarrow a^{2}x(b^{2}x-1)-1(bx^{2}-1)=0$ $\Rightarrow (b^{2}x-1)(a^{2}x-1)=0$ $\Rightarrow a^{2}x-1=0 \text{ or } b^{2}x-1=0$ $\Rightarrow a^{2}x=1 \text{ or } b^{2}x=1$ $x=1/a^{2} \text{ or } x=1/b^{2}$

6.
$$65 \times 5^{8}$$

 $x \in [6,8]$
 $x = (6,8]$
 $x^{2} - 3kx + 2k^{2} - 1 = 0$
 $x^{2} - 3kx + 2k^{2} - 1 = 0$
 $x^{2} - 3kx + 2k^{2} - 1 = 0$
 $x^{2} - 3kx + 2k^{2} - 1 = 0$
 $x^{2} - 2kx + 2k^{2} - 1 = 0$
 $x^{2} - 2kx + 2k^{2} - 1 = 0$
 $x^{2} - 2kx + 2k^{2} - 1 = 0$
 $x^{2} - 2k^{2} - 1 = 7 \Rightarrow 2k^{2} = 8 \Rightarrow k^{2} = 4$
 $\Rightarrow \qquad k = \pm 2$
On putting $k = \pm 2$ in given equation, we get $x^{2} + 6x + 7 = 0$
Now, $\sqrt{b^{2} - 4ac} = \sqrt{(6)^{2} - 4x7} = \sqrt{36 - 28} = 2\sqrt{2}$
Hence, roots of given equation are irrational.
8. As $ax^{2} - 2\sqrt{5x} + 4 = 0$ has equal roots.
 \therefore Discriminant $= (-2\sqrt{5})^{2} - 4(a)4 = 0$ ($:D = B^{2} - 4AC$)
 $\Rightarrow \qquad 20 - 16a = 0 \Rightarrow a = 5/4$
9. A $4x^{2} + kx + 1$ is factorizable when $D \ge 0$, i.e., $k^{2} - 16 \ge 0$
i.e., $k^{2} \ge 16$ or $k \ge 4$ or $k \le -4$
B $kx^{2} - 4x + k$ is factorizable when $D \ge 0$, i.e., $k^{2} - 16 \ge 0$
i.e., when $k^{2} \le 4$ or $-2 \le k \le 2$
C $kx^{2} - 2x + 2$ is factorizable when $k^{2} - 8k \ge 0$
But $k(k - 8) \ge 0$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 8 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 8 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 8 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (k \ge 0)$ and $(k - 8 \ge 0)$ or $(k \le 0$ and $k = 3 \le 0)$
 $\Rightarrow \qquad (2 - m^{2}a^{2} - a^{2} = 0 \Rightarrow c^{2} = a^{2}(1 + m^{2})$
11. Here, $3x^{2} = 8x + (2k + 1)$ / or $3x^{2} - 8x - (2k + 1) = 0$
 $x^{2} - 3x^{2} - 8x - (2k + 1) = 0$
 $x^{2} - 3x^{2} - 8x - (2k + 1) = 0$
 $x^{2} - 3x^{2} - 8x - (2k + 1) = 0$
 $x^{2} - 3x^{2} - (2k + 1) \Rightarrow 7x^{2} - 6k - 3 \Rightarrow 10 = -6k \Rightarrow k = \frac{-5}{3}$
12. A 2

x = 7/2 or x = 3B $2x^2 - 9x + 7 = 0 \implies (2x - 7)(x - 1) = 0$ $x = \frac{7}{2}$ or x = 1 $x^2 - 6x + 9 = 0$ C (x-3)(x-3)=0x = 3 or x = 3 $2x^2 - 21x + 49 = 0$ D (2x-7)(x-7)=0 $x = \frac{7}{2}$ or x = 7-13. Here, sum of roots, $S = \frac{4 + \sqrt{7}}{2} + \frac{4 - \sqrt{7}}{2} = 4$ Product of roots, $P = \left(\frac{4+\sqrt{7}}{2}\right) \left(\frac{4-\sqrt{7}}{2}\right)$ $=\frac{16-7}{4}=\frac{9}{4}$ The required equation is $x^2 - Sx + P = 0$ $x^{2} - 4x + \frac{9}{2} = 0 \implies 4x^{2} - 16x + 9 = 0$ 14. Since, -1.5 is a root of $ax^2 + x - 3 = 0$ $a(-1.5)^{2} + (-1.5) - 3 = 0$... $2.25a - 4.5 = 0 \implies a = \frac{4.5}{2.25} \implies a = 2$ 15. Here, $2x + 1 \ge 7 \Rightarrow 2x \ge 7 - 1 \Rightarrow 2x \ge 6 \Rightarrow x \ge 3$ 16. Here, $\frac{x-1}{3} \ge 4 \Rightarrow x-1 \ge 12 \Rightarrow x \ge 13$ 17. Here, $-2x+3 \ge 11 \Rightarrow -2x \ge 8 \Rightarrow 2x \le -8 \Rightarrow x \le -4$ 18. Here, $3x + 2 \le 5x - (4 - x)$ $3x + 2 \le 5x - 4 + x$ \Rightarrow $3x+2 \leq 6x-4$ - $3x-6x\leq -4-2$ $-3x \leq -6$ $-x \leq -2 \Rightarrow x \geq 2$ 19. Since, one root of the equation $ax^2 + x - 3 = 0$ is -1 $a(-1)^2+(-1)-3=0 \Rightarrow a=4$:. $4x^2 + x - 3 = 0$... Let other root of this equation is α . $\therefore P = -1 \cdot \alpha = -\frac{3}{4} \Rightarrow \alpha = \frac{3}{4}$ **20.** Given equation is $x^{2/3} + x^{1/3} - 2 = 0$ $(x^{1/3})^2 + x^{1/3} - 2 = 0 \Rightarrow X^2 + X - 2 = 0$ => where $(X = x^{1/3})$ ⇒ It is a quadratic equation in X. : Discriminant of $X^2 + X - 2 = 0$ is $B^2 - 4AC = 1^2 - 4(1)(-2) = 9 \ge 0$ Hence, two real values of x satisfy the given equation.

157

...(i)

21.
$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

 $40 = (8)^{2} - 2(P)$
 $40 - 64 = -2P$
 $-24 = -2P \Rightarrow P = 12$
22. $x^{2} - x - 2 = 0$
 $(x - 2)(x + 1) = 0$
So, $x = 2, x = -1$ both the roots are integers.
23. Here, $f(x) = 0 \Rightarrow ax^{2} + bx + c = 0$
Sum of roots $= -b/a$, product of roots $= c/a$
If roots are real and equal, then $D = 0$
i.e., $b^{2} - 4ac = 0$
If roots are real and distinct, then $D > 0$
i.e., $b^{2} - 4ac > 0$
24. $\alpha + \beta = 5$ and $\alpha\beta = 6$
 $(\alpha - \beta)^{2} = (\alpha + \beta)^{2} - 4\alpha\beta = (5)^{2} - 4 \times 6 = 1$
 $\alpha - \beta = \pm 1$ and $\alpha + \beta = 5$
 $\alpha^{2} - \beta^{2} = (\alpha + \beta)(\alpha - \beta) = 5(\pm 1)$
 $\alpha^{2} - \beta^{2} = \pm 5$
25. Let the roots of the given equation
 $x^{2} - ax + b = 0$ be α and β .
 \therefore $\alpha + \beta = a$ and $\alpha\beta = b$
Now, $|\alpha - \beta| = \sqrt{(\alpha + \beta)^{2} - 4\alpha\beta} = \sqrt{a^{2} - 4b}$
26. Here, $2x + 3 \ge 8 \Rightarrow 2x \ge 8 - 3 \Rightarrow 2x \ge 5 \Rightarrow x \ge \frac{5}{2}$
Again, $3x + 1 \le 12 \Rightarrow 3x \le 11 \Rightarrow x \le \frac{11}{3}$
Combining values $\Rightarrow \frac{5}{2} \le x \le \frac{11}{3}$

27. Here, consider 2x - y = 1

:. Values of (x, y) satisfying 2x - y = 1 are

x	2	0	1/2
v	3	-1	0

So, points P(2,3) and Q(0, -1) divides the plane of the paper. Also, point (0, 0) does not lies on it. So, shaded part of the plane divided by line PQ does not contain (0, 0).

On replacing inequality sign by equality.
 We get x + 2y = 2
 Values of (x,y) satisfying x + 2y = 2 are

x	0	2
у	1	0

So, points P(0, 1) and Q(2, 0) divides the plane of paper. Also, the point (0, 0) does not lies on it. So, shaded part of plane divided by PQ does not contain (0, 0).

 $\Rightarrow x \le 120$ Thus, all real numbers x which are less than or equal to 1/2 satisfies the inequation. 30. As |x| > 3When $x \ge 0$, then |x| = x $\therefore x > 3$ When x < 0, then |x| = -x $\therefore -x > 3 \Rightarrow x < -3$ $\therefore x > 3$

So,

$$x < -301 \times 2^{3}$$
31. Given,

$$4^{x} - 3 \cdot 2^{x+2} + 32 = 0$$

$$(2^{x})^{2} - 12(2^{x}) + 32 = 0$$

$$2^{2x} - 8 \cdot 2^{x} - 4 \cdot 2^{x} + 32 = 0$$

$$(2^{x} - 8)(2^{x} - 4) = 0$$
Either

$$2^{x} = 8 \Rightarrow x = 3$$
or

$$2^{x} = 4 \Rightarrow x = 2$$

32. Here, $\alpha + \beta = -b/a$ and $\alpha\beta = c/a$

Now, roots of required equation are $\frac{1}{\alpha}$, $\frac{1}{\beta}$

$$S = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-b/a}{c/a} = \frac{-b}{c}$$
$$P = \frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{c/a} = \frac{a}{c}$$

: Quadratic equation is

$$x^{2} - \left(\frac{-b}{c}\right)x + \frac{a}{c} = 0$$
$$cx^{2} + bx + a = 0$$

33. As
$$\alpha + \beta = 24$$
 and $\alpha - \beta = 8$
Solving, we get $\alpha = 16$ and $\beta = 8$
 \therefore Sum of roots $= \alpha + \beta = 24$
Product of roots $= 16 \times 8 = 128$
 \therefore Required equation is $x^2 - 24x + 128 = 0$.

34. Let roots of equation $a^2b^2x^2 - (a^2 + b^2)x + 1 = 0$ be α and β .

$$\alpha + \beta = \frac{a^2 + b^2}{a^{2}b^2}$$
 and $\alpha\beta = \frac{1}{a^{2}b^2}$

...

$$\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{\left(\frac{a^2 + b^2}{a^2b^2}\right)^2 - \frac{4}{a^2b^2}}$$

$$\Rightarrow \qquad \alpha - \beta = \sqrt{\frac{(a^2 - b^2)^2}{(a^2b^2)^2}} = \frac{a^2 - b^2}{a^2b^2}$$

On solving, we get $\alpha = \frac{1}{b^2}$ and $\beta = \frac{1}{a^2}$

35. Here,
$$(x+1)^2 = (x-1)^2 + x^2$$
 (by pythagorus theorem)
 $x^2 + 2x + 1 = x^2$ (by pythagorus theorem)

$$x^{2} - 4x = 0 \Rightarrow x(x - 4) = 0 \Rightarrow x = 4 \text{ or } x = 0$$

But $x \neq 0$ $\therefore x = 4$ and other sides are 3, 5.
 $\therefore \qquad \text{Area} = \frac{1}{2}b \times h = \frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^{2}$

36. Let the smaller part = x and other part = 16 - x $2(16-x)^2-x^2=164$ By condition, $2(256 + x^2 - 32x) - x^2 = 164$ $x^2 - 64x + 348 = 0$ (x-58)(x-6)=0x = 58, x = 6, here $x \neq 58$ = ... x = 6Here, larger part = 16 - x = 16 - 6 = 1037. Here, y = 15, then $15 = \frac{x(x-1)}{2} \Rightarrow x^2 - x - 30 = 0$ $x^2 - 6x + 5x - 30 = 0$ \Rightarrow x(x-6)+5(x-6)=0-(x+5)(x-6)=0= Other x = 6 or x = -5-But $x \neq -5$ so x = 6Thus, figure has 6 points. $\alpha + \beta = \frac{4}{2} = 2$ 38. Here, $\alpha\beta = \frac{1}{2}$ Now, $\frac{1}{\alpha+2\beta} + \frac{1}{\beta+2\alpha} = \frac{\beta+2\alpha+\alpha+2\beta}{(\alpha+2\beta)(\beta+2\alpha)}$ $\frac{3\alpha + 3\beta}{\alpha\beta + 2\alpha^2 + 2\beta^2 + 4\alpha\beta}$ $=\frac{3(\alpha+\beta)}{2(\alpha+\beta)^2+\alpha\beta}=\frac{3(2)}{2(2)^2+\frac{1}{2}}=\frac{12}{17}$ 39. $x^2 - 6x + 5 = 0$ (x-5)(x-1)=0= x=5or 1 \Rightarrow $|x-3|=2 \Leftrightarrow (x-3)=2 \text{ or } -(x-3)=2$ Also, x=50r x=1- $\therefore x^2 - 6x + 5 = 0$ and |x - 3| = 2 are equivalent. I. A quadratic equation has maximum two roots. 40. $11.2x^2 - 3x + 1 = 0$ (2x-1)(x-1)=0= $x = \frac{1}{2}$ and x = 1⇒ $\alpha = \frac{1}{2}$ and $\beta = 1$ i.e., $x^2 - 3x + 2 = 0$ and (x-2)(x-1) = 0 x = 2, x = 1 $\frac{1}{\alpha} = 2 \text{ and } \frac{1}{\beta} = 1$ ⇒ = So, III. Let roots be α and $-\frac{1}{\alpha}$, then product = -1 $\frac{c}{a} = -1 \Rightarrow c = -a \text{ or } c + a = 0$ IV. Here, $\alpha + \beta = 2$ and $\alpha\beta = \frac{1}{2}$

 $\frac{1}{\alpha + 2\beta} + \frac{1}{\beta + 2\alpha} = \frac{(\beta + 2\alpha) + (\alpha + 2\beta)}{(\alpha + 2\beta)(\beta + 2\alpha)}$ $= \frac{3(\alpha + \beta)}{2(\alpha^2 + \beta^2) + 5\alpha\beta}$ $= \frac{3(\alpha + \beta)}{2[(\alpha + \beta)^2 - 2\alpha\beta] + 5\alpha\beta} = \frac{3(\alpha + \beta)}{2(\alpha + \beta)^2 + \alpha\beta}$ $= \frac{3 \times 2}{2 \times 4 + \frac{1}{2}} = \frac{12}{17}$ So, all I, II, III and IV are correct.

41. The equation is $x^2 + px + q = 0$.

Sum of roots = $-p = 1+2 \Rightarrow p = -3$

Product of roots = $q = 1 \times 2 = 2$

: Equation $qx^2 - px + 1 = 0$ becomes

$$2x^{2} - (-3)x + 1 = 0$$
 or $2x^{2} + 3x + 1 = 0$

or
$$(2x+1)(x+1)=0$$
 : $x=-\frac{1}{2}$ or $x=-1$

42. Given equation is $2x^2 - 3x - 4 = 0$

For getting a reciprocal roots, we replace x by $\frac{1}{2}$, we get

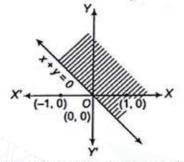
$$2\left(\frac{1}{x}\right)^2 - 3\left(\frac{1}{x}\right) - 4 = 0$$

 $-4x^2 - 3x + 2 = 0 \implies 4x^2 + 3x - 2 = 0$ $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c} \Longrightarrow \frac{(x+b) + (x+a)}{(x+a)(x+b)} = \frac{1}{c}$ 43. Given, $2cx + (a+b)c = x^{2} + (a+b)x + ab$ = $x^2 + (a+b-2c)x + ab - ac - bc = 0$ => Let the roots of above equation be α and β . $\alpha + \beta = 0$ Given, -(a+b-2c)=0-...(i) a+b=2c- $\alpha\beta = ab - ac - bc = ab - (a+b)c$ Now, $=ab-(a+b)\cdot \frac{(a+b)}{a+b}$ [from Eq. (i)]

$$=\frac{2ab-(a^2+b^2+2ab)}{2}=-\frac{(a^2+b^2)}{2}$$

44. We have, $4x^2 - 1 \le 0$ $\Rightarrow \qquad (2x)^2 - 1 \le 0$

 $\Rightarrow (2x-1)(2x+1) \le 0 \qquad \dots(i)$ So, either $(2x-1) \ge 0$ and $(2x+1) \le 0 \qquad \dots(i)$ or $(2x-1) \le 0$ and $(2x+1) \ge 0 \qquad \dots(i)$ From Eq. (i), $2x \ge 1$ and $2x \le -1$ $x \ge \frac{1}{2}$ and $x \le \frac{-1}{2}$ which is not possible. From Eq. (ii), $(2x-1) \le 0$ and $(2x+1) \ge 0$ $2x \le 1$ and $2x \ge -1$ $x \le \frac{1}{2}$ and $x \ge \frac{-1}{2}$ $\therefore \frac{-1}{2} \le x \le \frac{1}{2}$ is the required solution set.


45. Here, $x^2 - 4x + 4 \ge 0 \Longrightarrow (x - 2)^2 \ge 0$

It is true for all real values of x as $(x-2)^2$ is a perfect square. So, $x \in R$.

46. Here, $x^2 - 10x < -25 \Rightarrow x^2 - 10x + 25 < 0$ $\Rightarrow (x-5)^2 < 0$

As $(x-5)^2$ is a perfect square, it is always positive. $\therefore (x-5)^2 \lt 0$, thus $(x-5)^2 \lt 0$ has no solution. Hence, $x \in \phi$.

47. Consider line x = 0 and x + y = 0.

Clearly, x = 0 is y-axis and (x + y) = 0 passes through origin *i.e.* (0, 0) consider any point (-1, 0) inequality $x + y \ge 0$ does not satisfies it so shaded part does not contain (-1, 0).

Also, point (1,0) satisfies the inequality so the shaded part contain (1,0). Here, the first quadrant will be included as a whole in the region of x.

Here, x ≥ 0 is the region of plane to the right hand side of y-axis.

Consider $x + 2y = 2 \Rightarrow \frac{x}{2} + y = 1$. So, this straight line meet x-axis

at (2, 0) and y-axis at (0, 1). So, this is the line joining P(0, 1) and Q(2, 0). Now, (0, 0) does not satisfy $(x + 2y) \ge 2$ so the solution set is the portion of plane on and above the line PQ.

Again, consider $x + y \le 2$ is the portion on line PQ and below QS. The three portion *i.e.* $x \ge 0, x + 2y \ge 2$ and $x + 2y \le 2$ intersect to give the shaded portion PQR.

49. Here, 3x + 2y = 12 passes through the points (0, 6) and (4, 0). So, graph is line AB. Also, $3x + 2y \le 12$ as the shaded region is below AB.

x = 0 and y = 0 are the y-axis and x-axis, respectively. $x \ge 0$ and $y \ge 0 \implies$ the region on the right hand side of y-axis and region above x-axis, respectively.

The three portion $x \ge 0$, $y \ge 0$ and $3x + 2y \le 12$ intersects to give the shaded portion OAB.

50. As $\sqrt{x+4} = x-2$

Squaring both sides, we have

$$(x+4) = (x-2)^2 \Rightarrow x+4 = x^2+4-4$$

$$\Rightarrow \qquad x^2-5x = 0 \Rightarrow x = 0, x = 5$$

But for $x = 0$, $\sqrt{9+4} = 0-2$
 $\sqrt{4} \neq -2$

So, x = 5 is the only solution.

51. Let the natural numbers be x and x + 1.

$$x^{2} + (x+1)^{2} = 221 \Rightarrow 2x^{2} + 2x + 1 = 221$$

0

$$\Rightarrow \qquad 2x^2 + 2x - 220 = 0 \Rightarrow x^2 + x - 110 =$$

 $\Rightarrow (x+11)(x-10)=0$ $\Rightarrow x=-11 \text{ and } x=10$ But x = 10, so next consecutive natural number = x + 1 = 10 + 1 = 11

52. Let the consecutive positive odd integers be 2x + 1 and 2x + 3so $(2x + 1)^2 + (2x + 3)^2 = 130$

$$50 (2x + 9) = 130$$

 $\Rightarrow \qquad (4x^2 + 4x + 0) + (3x^2) = 0$

-

=

=

- (x+5)(x-3)=0
- $x=3, x=-5, but x \neq -5$
- \Rightarrow Two consecutive integers are 2x + 1 = 7 and 2x + 3 = 9 is 7 and 9.
- 53. Since, α and β be the roots of the equation $x^2 + px + q = 0$

$$\alpha + \beta = -p \text{ and } \alpha\beta = q$$

Now,
$$-\alpha^{-1} - \beta^{-1} = -\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = -\left(\frac{\alpha + \beta}{\alpha\beta}\right) = \frac{p}{q}$$

and
$$\left(-\frac{1}{\alpha}\right)\left(-\frac{1}{\beta}\right) = \frac{1}{\alpha\beta} = \frac{1}{q}$$

Hence, required equation is

$$x^{2} - (-\alpha^{-1} - \beta^{-1})x + (-\alpha^{-1})(-\beta^{-1}) = 0$$

$$x^{2} - \frac{p}{q}x + \frac{1}{q} = 0 \Rightarrow qx^{2} - px + 1 = 0$$

54. Let roots of equation be α and $-\alpha$

: Product of roots =
$$\alpha \times \frac{1}{\alpha} = \frac{r}{p}$$
 or $1 = \frac{r}{p} \Rightarrow r = p$

55. Let roots be α and β , then $\alpha + \beta = -1$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{6} \Longrightarrow \frac{\beta + \alpha}{\alpha\beta} = \frac{1}{6}$$
$$\frac{-1}{\alpha\beta} = \frac{1}{6} \Longrightarrow \alpha\beta = -6$$

: Equation is $x^2 + x - 6 = 0$.

56. Let α, β be the roots of the equation

$$ax^2 + bx + c = 0$$

Sum of roots $(\alpha + \beta) = -\frac{\beta}{\alpha}$

and product of roots $(\alpha\beta) = \frac{c}{c}$

By given condition,

....

-

...

$$\alpha + \beta = \alpha^2 + \beta^2 \Longrightarrow \alpha + \beta = (\alpha + \beta)^2 - 2\alpha\beta$$

roots)

$$-\frac{b}{a} = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right)$$

$$-ba=b^2-2ca \Rightarrow 2ac=b^2+ab$$

57. Here, roots are α and $\alpha + 1$.

$$\alpha + (\alpha + 1) = l(\text{sum of} \\ 2\alpha = l - 1 \\ \alpha = \frac{l - 1}{2}$$

 $\alpha(\alpha+1) = m \text{ or } \alpha^2 + \alpha = m$

ISO,

$$\Rightarrow \qquad \left(\frac{l-1}{2}\right)^2 + \left(\frac{l-1}{2}\right) = m$$

$$\Rightarrow \qquad (l-1)^2 + 2(l-1) = 4m$$

$$\Rightarrow \qquad l^2 - 1 = 4m$$

$$\downarrow^2 = 4m + 1$$

58. Here, $\alpha + \beta = (1 + a^2)$

and

$$\alpha\beta = \frac{1}{2}(a^{4} + a^{2} + 1)$$

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= (1 + a^{2})^{2} - (a^{4} + a^{2} + 1)$$

$$= 1 + a^{4} + 2a^{2} - a^{4} - a^{2} - 1$$

$$\alpha^{2} + \beta^{2} = a^{2}$$
[formula]

6

2

 $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ r(x+p+x+q)=(x+p)(x+q) $x^{2} + (p+q-2r)x + pq - (p+q)r = 0$ -Let roots be α and $(-\alpha)$ then

$$\alpha + (-\alpha) = 0$$
$$\Rightarrow -(p+q-2r) = 0 \Rightarrow r = \frac{p+q}{2}$$

So, product of roots = $pq - (p+q)r = pq - (p+q) \cdot \frac{(p+q)}{2}$

$$pq - \frac{(p+q)^2}{2} = \frac{-1}{2}(p^2 + q^2)$$

0. Here,
$$\alpha + \beta = -\frac{2}{3}$$
 and $\alpha\beta = \frac{1}{3}$

$$\Rightarrow S = \frac{1-\alpha}{1+\alpha} + \frac{1-\beta}{1+\beta} = \frac{(1-\alpha)(1+\beta) + (1+\alpha)(1-\beta)}{(1+\alpha)(1+\beta)}$$

$$= \frac{2-2\alpha\beta}{1+(\alpha+\beta)+\alpha\beta} = \frac{2-2\times\frac{1}{3}}{1+(-2/3)+1/3} = \frac{4}{3}\times\frac{3}{2} = 2$$

$$P = \frac{1-\alpha}{1+\alpha} \times \frac{1-\beta}{1+\beta} = \frac{1-(\alpha+\beta)+\alpha\beta}{1+(\alpha+\beta)+\alpha\beta}$$

$$= \frac{1-(-2/3)+1/3}{1+(\alpha+\beta)+\alpha\beta} = \frac{2-3}{1+(\alpha+\beta)+\alpha\beta}$$

The required equation is
$$3^{2}$$
 and 3^{2}

$$x^2 - 5x + P = 0$$
 or $x^2 - 2x + 3 = 0$

61. Let
$$y = \frac{x^2 + 2x + 1}{x^2 + 2x + 7}$$

$$\Rightarrow y(x^2 + 2x + 7) = x^2 + 2x + 1$$

$$\Rightarrow x^2(y-1) + 2x(y-1) + (7y-1) = 0$$

Since, x is real.

$$\Rightarrow Discriminant \ge 0$$

$$\therefore [2(y-1)]^2 - 4(y-1)(7y-1) \ge 0$$

$$\Rightarrow 4(y-1)(y-1-7y+1) \ge 0$$

 $-24y(y-1) \ge 0$ =

The above expression ≥ 0 and coefficient of $y^2 < 0$ ∴y lies between 0 and 1.

161 Quadratic Equations and Inequations

62. Given,
$$px^2 + qx + r =$$

Let the roots be α and β . By given condition, $\beta = 2\alpha$ Product of roots $(\alpha\beta) = \frac{r}{r} = 2\alpha^2$

 $9\alpha^2 = \frac{q^2}{n^2}$

 $\left(\frac{r}{2p}\right) = \frac{q^2}{p^2}$

Sum of roots $(\alpha + \beta) = -\frac{q}{p} = 3\alpha$

On squaring Eq. (ii), we get

63. Let roots be α, β , then $\frac{\alpha}{\beta} = \frac{m}{n}$

(given)

[from Eq. (i)]

...(i)

...(ii)

$$\alpha + \beta = -1, \alpha \beta = 1$$

$$\sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}} + 1 = \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + 1 = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} + \frac{-1}{\sqrt{1}} + 1 = -1 + 1 = 0$$

64. Let price of tape recorder = $\overline{\tau} x$ And number of students be n.

Then, initially contribution per student = $\overline{\mathbf{x}} \stackrel{\times}{=}$

When two students backed out, number of students left to pay = n - 2

:. Contribution per student = $\frac{x}{n-2}$

By condition,

=> But ⇒

= -

> => -

> =

...

$$\frac{x}{n-2} - \frac{x}{n} = 1 \Longrightarrow \frac{xn - x(n-2)}{n(n-2)} = 1$$
$$2x = n^2 - 2n \Longrightarrow x = \frac{n^2 - 2n}{2}$$

$$170 \le x \le 195$$

$$170 \le \frac{n^2 - 2n}{2} \le 195$$

$$340 \le n^2 - 2n \le 390$$

$$341 \le n^2 - 2n + 1 \le 391$$

$$341 \le (n - 1)^2 \le 391$$

$$\sqrt{341} \le n - 1 \le \sqrt{391}$$

$$18.46 \le n - 1 \le 19.77$$

$$18.46 + 1 \le n \le 19.77 + 1$$

$$19.46 \le n \le 20.77$$

and
$$x = \frac{n^2 - 2n}{2} = \frac{(20)^2 - 2(20)}{2} = \frac{360}{2} = ₹ 180$$

20

65. Let the increase in output be x% every year. Let the output two years ago be P. Then, last year's output

$$=P+P\times\frac{x}{100}=P\left(1+\frac{x}{100}\right)$$

Present output =
$$P\left(1+\frac{x}{100}\right)+P\left(1+\frac{x}{100}\right)\times\frac{x}{100}$$

= $P\left(1+\frac{x}{100}\right)\left(1+\frac{x}{100}\right)=P\left(1+\frac{x}{100}\right)^2$
Since, output doubles in last two years.
 $\therefore P\left(1+\frac{x}{100}\right)^2=2P\Rightarrow\left(1+\frac{x}{100}\right)^2=2$
 $\Rightarrow 1+\frac{x}{100}=\sqrt{2}\Rightarrow x=100(\sqrt{2}-1)\%$
Shortcut method
Here, present output =2P
Output two years ago =P
Let rate be x%.
 $\Rightarrow 2P=P\left(1+\frac{x}{100}\right)^2\Rightarrow x=100(\sqrt{2}-1)\%$
66. Let $\sqrt{\frac{x}{1-x}}=y\Rightarrow\sqrt{\frac{1-x}{x}}=\frac{1}{y}$
 $\therefore y+\frac{1}{y}=\frac{13}{6}\Rightarrow(y^2+1)6=13y$
 $\Rightarrow 6y^2-13y+6=0$
 $\Rightarrow 6y^2-9y-4y+6=0$
 $\Rightarrow 3y(2y-3)-2(2y-3)=0\Rightarrow(3y-2)(2y-3)=0$
 $\therefore y=\frac{2}{3}$ and $\frac{3}{2}$
when $y=\frac{2}{3}\Rightarrow\frac{x}{1-x}=\frac{4}{9}\Rightarrow 9x=4-4x\Rightarrow x=\frac{4}{13}$
when $y=\frac{3}{2}\Rightarrow\frac{x}{1-x}=\frac{9}{4}$
 $\Rightarrow 4x=9-9x\Rightarrow x=\frac{9}{13}$
67. $x^2-5x+6>0\Leftrightarrow(x-2)(x-3)>0$

$$\begin{array}{c} + & - & + \\ 2 & 3 \end{array}$$

$$\Leftrightarrow \qquad x < 2 \text{ or } x > 3$$

$$\Leftrightarrow \qquad x \in] - \infty, 2[\text{ or } x \in] 3, \infty[$$

$$\Leftrightarrow \qquad x \in] - \infty, 2[\cup] 3, \infty[$$

68. $x^2 - 8x + 16 \le 0$ [:: $(x - 4)^2$ cannot be negative] $\Leftrightarrow (x - 4)^2 \le 0 \Leftrightarrow x - 4 = 0 \Leftrightarrow x = 4$

59.
$$\frac{x-2}{3x+1} < \frac{x-3}{3x-2} \Leftrightarrow \frac{x-2}{3x+1} - \frac{x-3}{3x-2} < 0$$
$$\Leftrightarrow \qquad \frac{(x-2)(3x-2) - (x-3)(3x+1)}{(3x+1)(3x-2)} < 0$$
$$\Leftrightarrow \qquad \frac{7}{(3x+1)(3x-2)} < 0$$
$$\Leftrightarrow \qquad (3x+1)(3x-2) < 0$$
$$\Leftrightarrow \qquad (3x+1)(3x-2) < 0$$
$$\Leftrightarrow \qquad 3\left(x+\frac{1}{3}\right)3\left(x-\frac{2}{3}\right) < 0$$
$$\Leftrightarrow \qquad \left(x+\frac{1}{3}\right)\left(x-\frac{2}{3}\right) < 0$$

$$\begin{array}{c} + & - & + \\ - & -1/3 & 2/3 & + \infty \\ & & \frac{-1}{3} < x < \frac{2}{3} \\ & x \in \left[\frac{-1}{3}, \frac{2}{3} \right] \end{array}$$

⇔

So,

70. The region is a rectangle bounded by the lines x=2,y=5. y = -1 and y = 3. : Length of rectangle = 5-2=3 units Breadth of rectangle = 3 - (-1) = 4 units : Area of the rectangle = 3 × 4 sq units = 12 sq units $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$ 71. Given, $\frac{1}{1} - \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$... a+b+x x a b $\frac{-(a+b)}{a+b} = \frac{(a+b)}{a+ab} \Longrightarrow x^2 + (a+b)x + ab = 0$ = ab (a+b+x)x \Rightarrow $(x+a)(x+b)=0 \Rightarrow x=-a,-b$ 72. Since, a and b are roots of the equation $x^2 + ax + b = 0$. $a^{2} + a^{2} + b = 0$ and $b^{2} + ab + b = 0$ So, $2a^2 + b = 0$ and b(b + a + 1) = 0= $2a^2 = -b$ and b = 0 or b = -a - 1= b = 0 and $2a^2 + b = 0 \implies a = 0$ Now, b = -a - 1 and $2a^2 + b = 0$ $2a^2 - a - 1 = 0 \Rightarrow a = 1 \text{ or } -1/2$ = So, a = 0 or = 1 or = -1/273. Here, we have $|y|^2 + |y| - 6 = 0$ = (|y|+3)(|y|-2)=0= $|y|=2 \Rightarrow y=\pm 2$ (:: |y|+3=0) So, equation has only two distinct roots. 74. $8 \sec^2 \phi - 6 \sec \phi + 1 = 0 \implies 8 \sec^2 \phi - 4 \sec \phi - 2 \sec \phi + 1 = 0$ ⇒ $(4 \sec \phi - 1)(2 \sin \phi - 1) = 0$ ⇒ sec $\phi = 1/4$ or sec $\phi = 1/2^{-4}$ But $\sec \phi \ge 1$ or $\sec \phi \le -1$ 1. + 1 Hence, the equation has no solution. 75. Here, a+b=-1 1.11 ab = 1 $a^{2}+b^{2}=(a+b)^{2}-2ab=(-1)^{2}-2(+1)=1-2=-1$ 76. Since, $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0.$

$$\therefore \quad \sin\theta + \cos\theta = \frac{b}{a} \text{ and } \sin\theta \cos\theta = \frac{c}{a}$$

$$\Rightarrow \quad (\sin^2\theta + \cos^2\theta) + 2\sin\theta \cos\theta = \frac{b^2}{a^2}$$

$$\Rightarrow \quad 1 + 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} \Rightarrow 2\left(\frac{c}{a}\right) = \frac{b^2 - a^2}{a^2}$$

$$\Rightarrow 2ac = b^2 - a^2 \Rightarrow a^2 - b^2 + 2ac = 0$$

when

-

77. The equation will have equal roots, if $D=B^2-4AC=0$ $(2nc)^2 - 4(1+n^2)(c^2 - a^2) = 0$... $4n^2c^2 - 4(c^2 + n^2c^2 - a^2 - n^2a^2) = 0$ $-4c^{2} + 4a^{2} + 4n^{2}a^{2} = 0 \implies c^{2} = a^{2}(1+n^{2})$ $e^{\cos x} - e^{-\cos x} = 4$ 78. Let $e^{\cos x} = 7$ Put $z - \frac{1}{-} = 4$ $z^2 - 4z - 1 = 0$ $z=2\pm\sqrt{5}$, as $z>0 \implies e^{\cos x} > 0$ = $z=2+\sqrt{5} \Rightarrow e^{\cos x}=2+\sqrt{5}$ So, $\cos x = \log(2 + \sqrt{5})$ 79. Here, $3^{2x^2 - 7x + 7} = 9 = 3^2$ On comparing, $2x^2 - 7x + 7 = 7$ $2x^2 - 7x + 5 = 0$ $D = b^2 - 4ac = 49 - 4(2)(5) = 9$ Here. So, D>0 so it has two real roots. 80. $2^{x+4} - 2^{x+2} = 3 \implies 2^x \cdot 2^4 - 2^x \cdot 2^2 = 3$ $16 \cdot 2^{*} - 4 \cdot 2^{*} = 3 \implies 12 \cdot 2^{*} = 3$ $2^{x} = \frac{3}{12} = \frac{1}{4} \Longrightarrow 2^{x} = 2^{-2} \Longrightarrow x = -2$ $x = \sqrt{2} + 2 \Rightarrow x - 2 = \sqrt{2}$ 81. Here, Squaring both sides $(x-2)^2 = 2 \Longrightarrow x^2 - 4x + 4 = 2$ $x^2 - 4x + 2 = 0$ $x^2 - bx - k - 1$ 82. k+1 ax - c $(x^{2}-bx)(k+1)=(k-1)(ax-c)$ = $x^{2}k + x^{2} - bxk - bx = kax - kc - ax + c$ = $(k+1)x^{2} - x(bk+b+ka-a)+kc-c=0$ => Since, roots are reciprocal to each other. So, product = 1 $\frac{kc-c}{(k+1)} = 1 \Longrightarrow kc-c = k+1$ i.e. $r_{ck}(c-1)=c+1 \Rightarrow k=\frac{c+1}{c-1}$ = $\alpha + \beta = b/a, \alpha\beta = b/a$ 83. Here, $+\sqrt{\frac{\beta}{\alpha}} = \frac{\alpha+\beta}{\sqrt{\alpha\beta}} = \frac{b/a}{\sqrt{b/a}} = \sqrt{\frac{b}{a}}$ So, 84. Given, $2x^2 - 7x + 3 = 0$ $2x^2 - 6x - x + 3 = 0$... 2x(x-3)-1(x-3)=0= (2x-1)(x-3)=0

 $4\left(\frac{1}{2}\right)^{4} + a\left(\frac{1}{2}\right) - 3 = 0 \Rightarrow 1 + \frac{a}{2} - 3 = 0 \Rightarrow \frac{a}{2} = 2$ when x = 3 $4(3)^2 + a(3) - 3 = 0$ $36+3a-3=0 \Rightarrow a=-11$ \Rightarrow ... a=-11or 4 85. Here, $\alpha + \beta = 6$ and $\alpha\beta = 6$ $(\alpha + \beta)^2 = 6^2 \Rightarrow \alpha^2 + \beta^2 + 2\alpha\beta = 36$... $\alpha^2 + \beta^2 = 36 - 2(6) = 24$ = $(\alpha^3 + \beta^3) + (\alpha^2 + \beta^2) + (\alpha + \beta)$ $= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) + (\alpha^2 + \beta^2) + (\alpha + \beta)$ = 6(24 - 6) + (24) + (6)= 6(18) + 30 = 108 + 30 = 13886. Let Rahul obtains x marks in his fifth examination. Then $80 < \frac{x+94+73+72+84}{2} < 90$

$$80 \le \frac{323 + x}{5} < 90$$

$$400 \le 323 + x < 450$$

$$400 - 323 \le x < 450 - 323 \Longrightarrow 77 \le x < 127$$

Hence, Rahul must get 77 more marks on the fifth examination to receive grade 'B'.

Consider the equation x + y = 0, x = 0 and y = 0.

Clearly, (x = 1, y = -1) and (x = 2, y = -2) satisfies x + y = 0, plot the point A (1, -1) and B (2, -2) and join AB to obtain the group x + y = 0Also, x = 0 is y-axis and y = 0 is x-axis. So, $x + y \le 0$ is the part below the line AB and line AW. While $x \ge 0$ and $y \ge 0$ is the point XOY.

So, x = 0, y = 0 is common point of the two parts. Here, system has exactly one solution (0, 0).

88. Here, as x > 0 and y > 0 so both are positive and satisfies $x + 2y \le 3$ when x = 3, y = 1 we get x + 2y = 5. Clearly, these does not satisfy $x + 2y \le 3$ when x = 1, y = 1, then $x + 2y \le 3$. So, x = 1, y = 1 is one of the solutions.

89. As (0, 0) satisfies $x + 3y \le 3$.

And (0, 0) satisfies $x + y \le 2$. Clearly, shaded region is the position common to the line x + 3y = 3 and below it and that on the line x + y = 2 and below it.

So, shaded region is the solution set $x+y \le 2, x+3y \le 3, x \ge 0, y \ge 0.$

90. Since, the roots of equation

 $(a^{2}+b^{2})x^{2}-2(ac+bd)x+(c^{2}+d^{2})=0$ are equal.

 $\therefore \qquad / B_{c}^{2} = 4 AC \qquad (\because D = 0)$ $\Rightarrow \qquad 4(ac+bd)^{2} = 4(a^{2}+b^{2})(c^{2}+d^{2})$ $\Rightarrow \qquad //a^{2}c^{2}+b^{2}d^{2}+2 abcd = a^{2}c^{2}+a^{2}d^{2}+b^{2}c^{2}+b^{2}d^{2}$ $\Rightarrow \qquad (ad-bc)^{2} = 0 \Rightarrow ad = bc$

14

91. Here, for equation $x^2 + bx + c = 0$

 $\alpha + \beta = -b, \alpha\beta = c$ $x^2 + px + q = 0$ and for $k\alpha + k\beta = -p, k^2 \alpha\beta = q$

Now,

92. $\left(\frac{14}{5}\right)$

$$= [k(\alpha + \beta)]^2 \alpha \beta$$
$$qb^2 = p^2 c$$

$$\left(\frac{5}{14}\right)^{3-2x} = \left(\frac{5}{14}\right)^{x-3}$$

On comparing

$$3-2x=x-3 \Rightarrow 6=3x \Rightarrow x=2$$

- 0

 $ab^2 = k^2 \alpha \beta (\alpha + \beta)^2 = k^2 (\alpha + \beta)^2 \alpha \beta$

ALC: NOT THE REPORT OF

93. Here, $px^2 + qx + r = 0$

Let roots be α and 2α .

$$\alpha + 2\alpha = \frac{-q}{p} \qquad \dots (i)$$

$$3\alpha = \frac{-q}{p} \qquad \dots (i)$$

$$2\alpha \cdot \alpha = \frac{r}{p} \implies 2\alpha^2 = \frac{r}{p}$$

$$\frac{r}{p} = 2\alpha^2 = 2\left(\frac{-q}{3p}\right)^2 \qquad \left[\text{from Eq. (i)}\left(\because \alpha = \frac{-q}{3p}\right)\right]$$

$$\frac{r}{p} = \frac{2q^2}{9p^2} \implies 2q^2 = 9pr$$

$$Since, -4 \text{ is a root of } x^2 + px - 4 = 0$$

As roots of
$$x^2 + px + q = 0$$
 being equal.
 $D = B^2 - 4AC = 0$

... =

94

So,

95. a and c have the same sign opposite to that of b.

 $p = 3, q = -\frac{1}{2}$

96. As point O(0,0) does not satisfy $x + y \ge 1$

So, the part of plane on and above the line x+y=1 is the solution set of $x + y \ge 1$

 $p^2 - 4q = 0$ or $3^2 - 4q = 0 \Longrightarrow q =$

Also, (0, 0) satisfies $2x + y \le 2$, so the portion of the plane on and below the line 2x + y = 2, is the solution of $2x + y \le 2$. :. The region represented by $x+y \ge 1, 2x+y \le 2$ is the portion common to both, which is given by the graph in (b).

97. As the third pH is x.

 \Rightarrow

Then,
$$7.2 < \frac{7.48 + 7.85 + x}{3} < 7.8$$
 (given condition)
 $\Rightarrow \qquad 7.2 < \frac{15.33 + x}{3} < 7.8$

= 21.6-15.33<x<23.4-15.33 ⇒6.27<x<8.07 = Hence, pH range is 6.27 < x < 8.07

2x > 300 + 1.5x2x - 1.5x > 300 + 1.5x - 1.5x=> -0.5x>300 => $>300 \Rightarrow x > 300$ = : More than 600 cassettes must be sold for the company to realise profit. 99. .. The condition for both the roots of the equation $ax^2 + bx + c = 0$ are positive, if $-\frac{b}{a} > 0$ and $\frac{c}{a} > 0$

Revenue > Cost

Given equation is $x^2 - 2(k-1)x + (2k+1) = 0$ whose roots are positive.

$$-\frac{b}{a} = \frac{2(k-1)}{1} > 0 \Longrightarrow k > 1$$
$$\frac{c}{a} = \frac{2k+1}{1} > 0 \Longrightarrow k > -\frac{1}{2}$$
$$k > 1$$

... Hence, the least value k in given answer is 4.

Here,
$$\alpha + \beta = 3, \alpha\beta = 3/2$$

98. For profit

and

100. Here,
$$\alpha + \beta = 3, \alpha\beta = 3/2$$

$$\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + 3\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 2\alpha\beta = \frac{\alpha^2 + \beta^2}{\alpha\beta} + \frac{3(\alpha + \beta)}{\alpha\beta} + 2\alpha\beta$$

$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} + \frac{3(\alpha + \beta)}{\alpha\beta} + 2\alpha\beta$$

$$= \frac{3^2 - 2 \cdot 3/2}{3/2} + \frac{3 \cdot 3}{3/2} + 2\left(\frac{3}{2}\right)$$

$$= \frac{6}{3/2} + \frac{9}{3/2} + 3 = 4 + 6 + 3 = 13$$

101. (x+2)(x-5)(x-6)(x+1) = 144

Here,
$$2+(-6)=-5+1=-4$$

 $[(x+2)(x-6)][(x-5)(x+1)]=144$
 $(x^2-4x-12)(x^2-4x-5)=144$
Put $x^2-4x=y$
 $\Rightarrow (y-12)(y-5)=144$
 $\Rightarrow y^2-17y-84=0$, factorizing
 $\Rightarrow (y-21)(y+4)=0$
 $\Rightarrow y=210r-4$
For $y=21$
 $x^2-4x=21$
 $x^2-4x=21$
 $x^2-4x=21$
 $x^2-4x=-4$
 $x^2-4x=-4$
 $x^2-4x+4=0$
 $(x-7)(x+3)=0$
 $x=7$ or $x=-3$
So solution set is $\{7,-3,2\}$.

102. The equation is

$$\frac{\sqrt{x^2 - 16} - (x - 4)}{\sqrt{(x - 4)(x + 4)} - \sqrt{(x - 4)(x - 4)}} = \sqrt{x^2 - 5x + 4}}$$

$$\frac{\sqrt{(x - 4)(x + 4)} - \sqrt{(x - 4)(x - 4)}}{\sqrt{(x - 4)}[\sqrt{x + 4} - \sqrt{x - 4} - \sqrt{x - 1}]} = 0$$
So, either
$$\sqrt{x - 4} = 0 \implies x = 4$$

$$\sqrt{x+4} - \sqrt{x-4} - \sqrt{x-1} = 0$$
$$\sqrt{x+4} - \sqrt{x-4} = \sqrt{x-4}$$

Squaring both sides

$$(x+4)+(x-4)-2\sqrt{x^2-16}=x-1$$

 $x+1=2\sqrt{x^2-16}$

1

Again squaring,

or

 $x^{2} + 2x + 1 = 4(x^{2} - 16)$ $\Rightarrow \qquad 3x^{2} - 2x - 65 = 0$ Here, $x = \frac{-(-2) \pm \sqrt{784}}{2 \times 3} = \frac{2 \pm 28}{6}$ $x = \frac{30}{6} \text{ or } x = \frac{-26}{6}$ $x = 5, \frac{-13}{2}$

But $x = \frac{-13}{2}$ does not satisfies the equation, so solution set is $\{4, 5\}$.

103. Given that,

	2x-3y<7(i)
and	x+6y<11(ii)
On ad	ding Eqs. (i) and (ii), we get
	2x - 3y + x + 6y < 7 + 11
⇒	3x+3y<18
⇒	x+y<6
04. Let nu	mber of children be x.
	child gives a gift to every other child. child gives $x - 1$ gifts to others.
So,	x(x-1) = 132
⇒	$x^2 - x - 132 = 0$
⇒	$x^2 - 12x + 11x - 132 = 0$
⇒	x(x-12) + 11(x-12) = 0
⇒	(x+11)(x-12)=0
⇒	x = -11 or $x = 12$
	$x \neq -11$ so, $x = 12$
Hence	the number of children is 12.
105. Let rh	e average speed of aircraft be x km/h. Time taken to

05. Let the average speed of aircraft be x km/h. Time taken to cover a distance of 1600 km/h

$$=\frac{1600}{x}h$$
 ...(i)

Speed of aircraft when reduced by 400 = (x - 400) km/h

So, time taken now =
$$\frac{1600}{x-400}$$
 h ...(ii)

As by reducing the speed, the time is increased by 40 min

$$=\frac{40}{40}=\frac{2}{3}h$$

According to question,

1, -

$$\frac{1600}{x - 400} - \frac{1600}{x} = \frac{2}{3} \implies 1600 \left[\frac{1}{x - 400} - \frac{1}{x} \right] = \frac{2}{3}$$

$$\implies 2x(x - 400) = 1600 \times 400 \times 3$$

$$\implies x^2 - 400x - 960000 = 0$$

				× .
	⇒	$x = \frac{400 \pm \sqrt{4000000}}{10000000000000000000000000000$		
*		2		
		$=\frac{400\pm2000}{2}$		
	⇒	$x = \frac{2400}{2}, \frac{-1600}{2}$		1
	But	x ≠ - 800		
	⇒	x = 1200 km/h		
	∴ Actua	al time of flight $=\frac{1600}{x}=\frac{1600}{1200}=\frac{4}{3}h$		
06.	Let the	number of days of tour $= x$		
1	Daily ex	penditure = $\vec{x} \frac{360}{x}$		Шr
1	When n of days	number of days of tour are increased, then $= x + 4$	new	number
ž.	Daily ex	penditure now = $\left\{ \left(\frac{360}{x} - 3 \right) \right\}^{1}$		•
	So,	$(x+4)\left(\frac{360}{x}-3\right)=360$	ŝ.	
	⇒	$360 + \frac{1440}{x} - 12 - 3x = 360$		
	⇒	$1440 - 12x - 3x^2 = 0$		
	⇒	$x^2 + 4x - 480 = 0$		
	⇒	(x-20)(x+24)=0		
	So,	x = 2 or x = -24		
	But	x≠-24		
	So,	x = 20 r of days of his tour programme was 20.		
07		$a+b=2m^2$. (3)
07.	Given,			·(i)
	and	b+c=6m a+c=2	. *	(II) (III)
		ing Eqs. (i), (ii) and (iii), we get		(m)
	50	$2(a+b+c)=2m^2+6m+2$		
	-	$a+b+c=m^2+3m+1$		(:.)
1	-			(iv)
	Subtraci	ting Eq. (ii) from Eq. (iv) $a = m^2 - 3m + 1$		
	Subtract	ting Eq. (iii) from Eq. (iv) b = m ² + 3m - 1		
	Subtract	ting Eq. (i) from Eq. (iv)		
	Jubria	$c = -m^2 + 3m + 1$		
	As	$a \le b$ and $b \le c$		
	⇒	$m^2 - 3m + 1 \le m^2 + 3m - 1$		
	and	$m^2 + 3m - 1 \le -m^2 + 3m + 1$		
	⇒	6m≥2and 2m ² ≤2		
	⇒	$m \ge \frac{1}{2}$ and $-1 \le m \le 1$		
		3 .		

 $\frac{1}{3} \le m \le 1$

165