
GOVERNMENT OF TAMILNADU

COMPUTER SCIENCE
VOLUME-II

A publication under Free Textbook Programme of Government of Tamil Nadu

Department of School Education

HIGHER SECONDARY FIRST YEAR

Untouchability is Inhuman and a Crime

Index.indd 1 14-08-2018 17:10:10

II

Government of Tamil Nadu
First Edition - 2018

Tamil NaduTextbook and Educational
Services Corporation
www.textbooksonline.tn.nic.in

State Council of Educational Research
and Training
© SCERT 2018

Printing & Publishing

Content Creation

The wise
possess all

NOT FOR SALE

Index.indd 2 14-08-2018 17:10:10

III

Human civilization achieved the highest peak with the
development of computer known as “Computer era”.

Literate are those who have the
knowledge in using the computer
whereas others are considered
illiterate inspite of the other degrees
obtained.

T h e growth of the nation at present lies in the
hands of the youth, hence the content of this book is

prepared in such a way so as to attain utmost knowledge
considering the future needs of the youth.

 This book does not require
prior knowledge in computer
Technology

 Each unit comprises of simple
activities and demonstrations
which can be done by the teacher
and also students.

 Technical terminologies are listed
in glossary for easy understanding

 The “ Do you know?” boxes enrich the knowledge of reader with
additional information

 Workshops are introduced to solve the exercises using software
applications

 QR codes are used to link supporting additional
 materials in digital form

How to get connected to QR Code?
o Download the QR code scanner from the google play store/

apple app store into your smartphone
o Open the QR code scanner application
o Once the scanner button in the application is clicked, camera opens

and then bring it closer to the QR code in the textbook.
o Once the camera detects the QR code, a URL appears in the screen.

Click the URL and go to the content page.

PREFACE

HOW
TO USE

THE BOOK

Index.indd 3 14-08-2018 17:10:10

IV

CAREER GUIDANCE AFTER 12TH

COURSES COLLEGES/
UNIVERSITIES PROFESSION

B.E / B.Tech
All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Software Engineer, Hardware
Engineer, Software
Development, Healthcare
Section, IT & ITEs

Science and Humanities
B.Sc (Computer Science)
BCA
B.Sc (Maths, Physics, Chemistry,
Bio-Chemistry, Geography,
journalism, Library Sciences,
Political Science, Travel and
Tourism)

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Government Job and Private
Company BPO, Geologist,
Journalist

LAW
LLB
B.A+LLB
B.Com
BBM+LLB
BBA+LLB

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Lawyer, Legal Officer, Govt
Job

CA The Institute of Chartered Accountant
of India (ICAI) CA Private and Govt.

Diploma Government Polytechnic and Self-
financing colleges

Junior Engineer (Government
and Private)

Commerce Courses
B.com-Regular,
B.com-Taxation & Tax Procedure,
B.com-Travel &Tourism,
B.com-Bank Management,
B.com-Professional,
BBA/BBM-Regular,
BFM- Bachelors in Financial
Markets,
BMS-Bachelors in Management
Studies,
BAF- Bachelors in Accounting &
Finance,
Certified Stock Broker &
Investment Analysis,
Certified Financial Analyst,
Certified Financial Planner,
Certified Investment Banker

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Private Organization ,
Government ,Banking sectors
and prospects for self –
employment.

Index.indd 4 14-08-2018 17:10:10

V

COURSES COLLEGES/
UNIVERSITIES PROFESSION

Management Courses
Business Management
Bank Management
Event Management
Hospital Management
Human Resource Management
Logistics Management

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad.

Private Organization ,
Government ,Banking sectors
and prospects for self –
employment.

Science and Humanities
B.Sc.Botany
B.Sc.Zoology
B.Sc.Dietician & Nutritionist
B.Sc.Home Science
B.Sc.Food Technology
B.Sc.Dairy Technology
B.Sc. Hotel Management
B.Sc. Fashion Design
B.Sc. Mass Communication
B.Sc. Multimedia
B.Sc. -3D Animation

All University and their affiliated
Colleges and Self financing Colleges in
India and Abroad

Government Job and Private
Company BPO, Geologist,
Journalist

Index.indd 5 14-08-2018 17:10:10

VI

E - book Assessment DIGI links

Table of ContentsTable of Contents

Chapter No. Title Page

UNIT III – INTRODUCTION TO C++

9 Introduction to C++ 1

10 Flow of Control 60

11 Functions 101

12 Arrays and Structures 137

UNIT IV - OBJECT ORIENTED PROGRAMMING WITH C++

13 Introducton to Object Oriented Programming Techniques 194

14 Classes and objects 200

15 Polymorphism 256

16 Inheritance 280

UNIT V - COMPUTER ETHICS AND CYBER SECURITY

17 Computer Ethics And Cyber Security 327

18 Tamil Computing 342

Index.indd 6 14-08-2018 17:10:10

PB 1

Learning Objectives

After the completion of this chapter, the student will be able to

• Understand the basic building blocks of C++ programming language

• Able to construct simple C++ programs

• Execute and debug C++programs

9.1 Introduction

 C++ is one of the most popular programming language developed by Bjarne Stroustrup
at AT & T Bell Lab during 1979. C++ supports both procedural and Object Oriented
Programming paradigms. Thus, C++ is called as a hybrid language. C++ is a superset
(extension) of its predecessor C language. Bjarne Stroustrup named his new language as “C
with Classes”. The name C++ was coined by Rick Mascitti where ++ is the C language increment
operator.

 Bjarne is a Danish Computer Scientist was born on 30th
December 1950. He has a Master degree in Mathematics and
Computer Science in 1975 from Aarhus University, Denmark
and Ph.D in Computer Science in 1979 from the University of
Cambridge, England.

Bjarne Stroustrup
Inventor of C++ Programming Language

History of C++

 C++ was developed by Bjarne Stroustrup at AT & T Bell Laboratory during 1979. C++
is originally derived from C language and influenced by many languages like Simula, BCPL,
Ada, ML, CLU and ALGOL 68. Till 1983, it was referred “New C” and “C with Classes”. In
1983, the name was changed as C++ by Rick Mascitti.

CHAPTER 9Introduction to C++

Introduction to C++

Unit III

Chapter 9.indd 1 14-08-2018 17:00:19

2 3

 C++ is standardized by the
International Organization for
Standardization (ISO). The latest standard
version published in December 2017 as
ISO/IEC 14882:2017 which is informally
known as C++17. The first standardized
version was published in 1998 as ISO/IEC
14882:1998 which was then enhanced by
the C++03 (ISO/IEC 14882:2003), C++11
(ISO/IEC 14882:2011) and C++14 (ISO/
IEC 14882:2014). The Next standard version
will be C++20 in 2020.

 C# (C-Sharp), D, Java and newer
versions of C languages has been influenced
by C++.

Benefits of learning C++

• C++ is a highly portable language and is
often the language of choice for multi-
device, multi-platform app development.

• C++ is an object-oriented programming
language and includes classes,
inheritance, polymorphism, data
abstraction and encapsulation.

• C++ has a rich function library.

• C++ allows exception handling,
inheritance and function overloading
which are not possible in C.

• C++ is a powerful, efficient and fast
language. It finds a wide range of
applications – from GUI applications
to 3D graphics for games to real-time
mathematical simulations.

9.2 Character set

Character set is a set of characters which are
allowed to write a C++ program. A character
represents any alphabet, number or any
other symbol (special characters) mostly
available in the keyboard. C++ accepts the
following characters.

Most of the Character set,
Tokens and expressions are
very common to C based
programming languages like C,

C++, Java, PHP etc.,

Alphabets A …. Z, a ….. z
Numeric 0 …. 9
Special
Characters

+ - * / ~ ! @ # $ % ^& [] (
) { } = >< _ \ | ? . , : ‘ “ ;

White
space

Blank space, Horizontal
tab (→), Carriage return
(), Newline, Form feed

Other
characters

C++ can process any of
the 256 ASCII characters
as data.

9.3 Lexical Units (Tokens):

 C++ program statements are
constructed by many different small
elements such as commands, variables,
constants and many more symbols called as
operators and punctuators. These individual
elements are collectively called as Lexical
units or Lexical elements or Tokens. C++
has the following tokens:

• Keywords • Identifiers
• Literals • Operators
• Punctuators

Chapter 9.indd 2 14-08-2018 17:00:19

2 3

TOKEN:

The smallest individual unit in a program is known as a Token or a Lexical unit

9.3.1 Keywords

 Keywords are the reserved words which convey specific meaning to the C++ compiler.
They are the essential elements to construct C++ programs. Most of the keywords are common
to C, C++ and Java.

C++ is a case sensitive programming language so, all the keywords must be in lowercase.

Table 9.1 C++ Keywords

asm auto break case catch
char class const continue default
delete do double else enum
extern float for friend goto
if inline int long new
operator private protected public register
return short signed sizeof static
struct switch template this throw
try typedef union unsigned virtual
void volatile while

• With revisions and additions, the recent list of keywords also includes:

 using, namespace, bal, static_cast, const_cast, dynamic_cast, true, false

• Identifiers containing a double underscore are reserved for use by C++ implementations
and standard libraries and should be avoided by users.

9.3.2 Identifiers

 Identifiers are the user-defined names given to different parts of the C++ program
viz. variables, functions, arrays, classes etc., These are the fundamental building blocks of a
program. Every language has specific rules for naming the identifiers.

Rules for naming an identifier:

• The first character of an identifier must be an alphabet or an underscore (_).

Chapter 9.indd 3 14-08-2018 17:00:19

4 5

• Only alphabets, digits and underscore
are permitted. Other special characters
are not allowed as part of an identifier.

• C++ is case sensitive as it treats upper
and lower-case characters differently.

• Reserved words or keywords cannot be
used as an identifier name.

As per ANSI standards, C++ places no limit
on its length and therefore all the characters
are significant.

Identifiers
Valid /
Invalid

Reason for
invalid

Num Valid
NUM Valid
_add Valid
total_sales Valid
tamilMark Valid

num-add Invalid
Contains
special
character (-)

this Invalid

This is one of
the keyword.
K e y w o r d
cannot be used
as identifier
n am e s .

2myfile Invalid

Name must
start begins
with an
alphabet or an
underscore

• You may use an underscore in variable
names to separate different parts of the
name (eg: total_sales is a valid identifier
where as the variable called total sales is
an invalid identifier).

• You may use capital style notation, such
as tamilMark ie. capitalizing the first
letter of the second word.

9.3.3 Literals (Constants)

 Literals are data items whose values
do not change during the execution of a
program. Therefore Literals are called as
Constants. C++ has several kinds of literals:

Numeric Constants

Integer constants

Boolean Constants

Literals (Constants)

Real Constants

Character Constants

String Literals

Figure 9.1 Types of Constants

Numeric Constants:

As the name indicates, the numeric
constants are numeric values, which are
used as constants. Numeric constants are
further classified as:

1. Integer Constants (or) Fixed point
constants.

2. Real constants (or) Floating point
constants.

Chapter 9.indd 4 14-08-2018 17:00:19

4 5

(1) Integer Constants (or) Fixed point
constants

 Integers are whole numbers without
any fractions. An integer constant must
have at least one digit without a decimal
point. It may be signed or unsigned.
Signed integers are considered as negative,
commas and blank spaces are not allowed
as part of it. In C++, there are three types
of integer constants: (i) Decimal (ii) Octal
(iii) Hexadecimal

(i) Decimal

 Any sequence of one or more digits
(0 …. 9)

Valid Invalid
725 7,500 (Comma is not allowed)
-27 66 5(Blank space is not allowed)
4.56 9$ (Special Character not allowed)

 If you assign 4.56 as an integer
decimal constant, the compiler will accept
only the integer portion of 4.56 ie. 4. It will
simply ignore .56.

Notes

 If a Decimal constant declared with
fractions, then the compiler will take only
the integer part of the value and it will
ignore its fractional part. This is called as
“Implicit Conversion”. It will be discussed
later.

(ii) Octal

 Any sequence of one or more
octal values (0 …. 7) that begins with 0 is
considered as an Octal constant.

Valid Invalid
012 05,600(Commas is not allowed)

-027
04.56 (Decimal point is not
allowed)**

+0231
0158 (8 is not a permissible digit
in octal system)

Notes

** When you use a fractional number
that begins with 0, C++ has consider the
number as an integer not an Octal.

(iii) Hexadecimal

 Any sequence of one or more
Hexadecimal values (0 …. 9, A …. F) that
starts with 0x or 0Xis considered as an
Hexadecimal constant.

Valid Invalid
0x123 0x1,A5 (Commas is not allowed)

0X568
0x.14E (Decimal point is not
allowed like this)

 The suffix L or l and U or u added with
any constant forces that to be represented as
a long or unsigned constant respectively.

(2) Real Constants (or) Floating point
constants

 A real or floating point constant
is a numeric constant having a fractional
component. These constants may be written
in fractional form or in exponent form.

 Fractional form of a real constant
is a signed or unsigned sequence of digits
including a decimal point between the
digits. It must have at least one digit before
and after a decimal point. It may have prefix

Chapter 9.indd 5 14-08-2018 17:00:19

6 7

with + or - sign. A real constant without any
sign will be considered as positive.

 Exponent form of real constants
consists of two parts: (1) Mantissa and (2)
Exponent. The mantissa must be either
an integer or a real constant. The mantissa
followed by a letter E or e and the exponent.
The exponent should also be an integer.

 For example, 58000000.00 may be
written as 0.58 × 108 or 0.58E8.

Mantissa
(Before E)

Exponent
(After E)

0.58 8

Example:

 5.864 E-1 5.864 × 101 58.64

 5864 E-2 5864 × 10-2 58.64

 0.5864 E-2 0.5864 × 102 58.64

Boolean Literals

 Boolean literals are used to represent
one of the Boolean values(True or false).
Internally true has value 1 and false has
value 0.

Character constant

 A character constant is any valid
single character enclosed within single
quotes. A character constant in C++ must
contain one character and must be enclosed
within a single quote.

Valid character constants : ‘A’, ‘2’, ‘$’

Invalid character constants : “A”

 The value of a single character
constant has an equivalent ASCII value. For
example, the value of ‘A’ is 65.

Escape sequences (or) Non-graphic
characters

 C++ allows certain non-printable
characters represented as character
constants. Non-printable characters are also
called as non-graphical characters. Non-
printable characters are those characters that
cannot be typed directly from a keyboard
during the execution of a program in C++,
for example: backspace, tabs etc. These non-
printable characters can be represented by
using escape sequences. An escape sequence
is represented by a backslash followed by
one or two characters.

Table 9.2 Escape Sequences

Escape
sequence

Non-graphical character

\a Audible or alert bell
\b Backspace
\f Form feed
\n Newline or linefeed
\r Carriage return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\’ Single quote
\” Double quote
\? Question Mark

\On Octal number
\xHn Hexadecimal number

\0 Null

 Even though an escape sequence
contains two characters, they should be
enclosed within single quotes because, C++
consider escape sequences as character
constants and allocates one byte in ASCII
representation.

Chapter 9.indd 6 14-08-2018 17:00:19

6 7

ASCII (American Standard
Code for Information
Interchange) was first developed
and published in 1963 by the

X3 committee, a part of the American
Standards Association (ASA).

String Literals

 Sequence of characters enclosed
within double quotes are called as String
literals. By default, string literals are
automatically added with a special character
‘\0’ (Null) at the end. Therefore, the string
“welcome” will actually be represented as
“welcome\0” in memory and the size of this
string is not 7 but 8 characters i.e., inclusive
of the last character \0.

Valid string Literals : “A”, “Welcome” “1234”

Invalid String Literals : ‘Welcome’, ‘1234’

1. What is meant by literals? How many
types of integer literals available in
C++?

2. What kind of constants are
following?
i) 26 ii) 015 iii) 0xF iv) 014.9

3. What is character constant in C++?

4. How are non graphic characters
represented in C++?

5. Write the following real constants
into exponent form: i) 32.179
ii) 8.124 iii) 0.00007

6. Write the following real constants
into fractional form: i) 0.23E4
ii) 0.517E-3 iii) 0.5E-5

7. What is the significance of null (\0)
character in a string?

?Evaluate Yourself

9.3.4 Operators

The symbols which are used to do some
mathematical or logical operations are
called as “Operators”. The data items or
values that the operators act upon are called
as “Operands”.

5 + 6

b

Operator

Operands

-a

In C++, The operators are classified on the
basis of the number of operands.

(i) Unary Operators - Require only one
operand

(ii) Binary Operators - Require two
operands

(iii) Ternary Operators - Require three
operands

C++ Operators are classified as:

(1) Arithmetic Operators

(2) Relational Operators

(3) Logical Operators

(4) Bitwise Operators

(5) Assignment Operators

(6) Conditional Operator

(7) Other Operators

Chapter 9.indd 7 14-08-2018 17:00:19

8 9

(1) Arithmetic Operators

 Arithmetic operators perform
simple arithmetic operations like addition,
subtraction, multiplication, division etc.,

Operator Operation Example
+ Addition 10 + 5 = 15
- Subtraction 10 – 5 = 5
* Multiplication 10 * 5 = 50

/ Division
10 / 5 = 2
(Quotient of
the division)

%

Modulus
(To find the
reminder of a
division)

10 % 3 =
1(Remainder
of the
division)

• The above mentioned arithmetic
operators are binary operators which
requires minimum of two operands.

Increment and Decrement Operators

++ (Plus, Plus) Increment operator

-- (Minus, Minus) Decrement operator

 An increment or decrement operator
acts upon a single operand and returns a
new value. Thus, these operators are unary
operators. The increment operator adds 1
to its operand and the decrement operator
subtracts 1 from its operand. For example,

• x++ is the same as x = x+1;
 It adds 1 to the present value of x

• x-- is the same as to x = x–1;
 It subtracts 1 from the present value of x

 The ++ or -- operators can be placed
either as prefix (before) or as postfix (after)
to a variable. With the prefix version, C++
performs the increment / decrement before
using the operand.

For example: N1=10, N2=20;

 S = ++N1 + ++N2;

 The following Figure explains the
working process of the above statement.

N1 = 10, N2 = 20;
S = ++N1 + ++N2

N1 = 10 + 1
N2 = 20 + 1

N1 = 11 N2 = 21

S= 32

Figure 9.2 Prefix Increment Working
process

 In the above example, the value
of num is first incremented by 1, then
the incremented value is assigned to the
respective operand.

 With the postfix version, C++ uses
the value of the operand in evaluating
the expression before incrementing /
decrementing its present value.

For example: N1=10, N2=20;

 S = N1++ + ++N2;

The following Figure explains the working
process of the above statement.

Chapter 9.indd 8 14-08-2018 17:00:20

8 9

N1 = 10, N2 = 20;
S = N1++ + ++N2

N1 = 10 N2 = 20 + 1

N2 = 21

S= 31

Figure 9.3 Postfix Increment Working process

 In the above example, the value assigned to operand N1 is taken into consideration,
first and then the value will be incremented by 1.

Operator Operation
Example

(Assume n=2; what will be value of a)
Prefix Postfix

++ Increment
a=++n; a=n++;
Value of a = 3 Value of a = 2

-- Decrement
a=--n; a=n--;
Value of a=1 Value of a=2

(2) Relational Operators

 Relational operators are used to determine the relationship between its operands. When
the relational operators are applied on two operands, the result will be a Boolean value i.e 1 or
0 to represents True or False respectively. C++ provides six relational operators. They are,

Operator Operation Example
> Greater than a > b
< Less than a < b

>= Greater than or equal to a >= b
<= Less than or equal to a <= b
== Equal to a == b
!= Not equal a != b

• In the above examples, the operand a is compared with b and depending on the relation,
the result will be either 1 or 0. i.e., 1 for true, 0 for false.

• All six relational operators are binary operators.

Chapter 9.indd 9 14-08-2018 17:00:20

10 11

(3)Logical Operators

 A logical operator is used to evaluate logical and relational expressions. The logical
operators act upon the operands that are themselves called as logical expressions. C++ provides
three logical operators.

Table 9.3 Logical Operators

Operator Operation Description

&& AND
The logical AND combines two different relational
expressions in to one. It returns 1 (True), if both
expression are true, otherwise it returns 0 (false).

|| OR

The logical OR combines two different relational
expressions in to one. It returns 1 (True), if either
one of the expression is true. It returns 0 (false), if
both the expressions are false.

! NOT

NOT works on a single expression / operand. It
simply negates or inverts the truth value. i.e., if an
operand / expression is 1 (true) then this operator
returns 0 (false) and vice versa

• AND, OR both are binary operators where as NOT is an unary operator.

Example: a = 5, b = 6, c = 7;

Expression Result
(a<b) && (b<c) 1 (True)
(a>b) && (b<c) 0 (False)
(a<b) || (b>c) 1 (True)
!(a>b) 1 (True)

(4)Bitwise Operators

 Bitwise operators work on each bit of data and perform bit-by-bit operation. In C++,
there are three kinds of bitwise operators, which are:

 (i) Logical bitwise operators

 (ii) Bitwise shift operators

 (iii) One’s compliment operators

Chapter 9.indd 10 14-08-2018 17:00:20

10 11

(i) Logical bitwise operators:

 & Bitwise AND (Binary AND)

 | Bitwise OR (Binary OR)

 ^ Bitwise Exclusive OR (Binary XOR)

• Bitwise AND (&) will return 1 (True)if both the operands are having the value 1 (True);
Otherwise, it will return 0 (False)

• Bitwise OR (|) will return 1 (True) if any one of the operands is having a value 1 (True); It
returns 0 (False) if both the operands are having the value 0 (False)

• Bitwise XOR (^) will return 1 (True) if only one of the operand is having a value 1 (True).
If both are True or both are False, it will return 0 (False).

Truth table for bitwise operators (AND, OR, XOR)

A B A & B A | B A ^ B
1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

Example:

If a = 65, b=15

Equivalent binary values of 65 = 0100 0001; 15 = 0000 1111

Operator Operation Result

& a & b

a 0 1 0 0 0 0 0 1
b 0 0 0 0 1 1 1 1
a & b 0 0 0 0 0 0 0 1

(a&b) = 0000 00012= 110

| a | b

a 0 1 0 0 0 0 0 1
b 0 0 0 0 1 1 1 1
a | b 0 1 0 0 1 1 1 1

(a|b) = 010011112= 7910

^ a ^ b

a 0 1 0 0 0 0 0 1
b 0 0 0 0 1 1 1 1
a ^ b 0 1 0 0 1 1 1 0

(a^b) = 0100 11102= 7810

Chapter 9.indd 11 14-08-2018 17:00:20

12 13

(ii) The Bitwise shift operators:

 There are two bitwise shift operators in C++, Shift left (<<) and Shift right (>>).

 Shift left (<<)– The value of the left operand is moved to left by the number of bits
specified by the right operand. Right operand should be an unsigned integer.

Shift right (>>)– The value of the left operand is moved to right by the number of bits
specified by the right operand. Right operand should be an unsigned integer.

Example:

If a =15; Equivalent binary value of a is 0000 1111

Operator Operation Result

<< a << 3

a 0 0 0 0 1 1 1 1

a << 3 0 1 1 1 1 0 0 0

(a<< 3) = 011110002= 12010

>> a >> 2

a 0 0 0 0 1 1 1 1

a >> 2 0 0 0 0 1 1 0 0
(a>> 2) = 0000 00112= 310

(iii) The Bitwise one’s compliment operator:

 The bitwise One’s compliment operator ~(Tilde),inverts all the bits in a binary pattern,
that is, all 1’s become 0 and all 0’s become 1. This is an unary operator.

Example:

If a =15; Equivalent binary values of a is 0000 1111

Operator Operation Result

~ (~a)

a 0 0 0 0 1 1 1 1

(~a) 1 1 1 1 0 0 0 0
(~a) = 1111 00002= -1610

Chapter 9.indd 12 14-08-2018 17:00:20

12 13

(5)Assignment Operator:

 Assignment operator is used to assign a value to a variable which is on the left hand
side of an assignment statement. = (equal to) is commonly used as the assignment operator in
all computer programming languages. This operator copies the value at the right side of the
operator to the left side variable. It is also a binary operator.

A = 32

 C++ uses different types of assignment operators. They are called as Shorthand
assignment operators.

Operator Name of Operator Example

+= Addition Assignment
a = 10;
c = a += 5; (ie, a = a + 5)
c = 15

-= Subtraction Assignment
a = 10;
c = a -= 5; (ie. a = a – 5)
c = 5

*= Multiplication Assignment
a = 10;
c = a *= 5; (ie. a = a * 5)
c = 50

/= Division Assignment
a = 10;
c = a /= 5; (ie. a = a / 5)
c = 2

%= Modulus Assignment
a = 10;
c = a %= 5; (ie. a = a % 5)
c = 0

Discuss the differences between = and == operators

(6) Conditional Operator:

 In C++, there is only one conditional operator is used. ?: is a conditional Operator. This
is a Ternary Operator. This operator is used as analternate to if … else control statement. We
will learn more about this operator in later chapters along with if …. else structure.

Chapter 9.indd 13 14-08-2018 17:00:20

14 15

(7)Other Operators:

The Comma operator
Comma (,) is an operator in C++ used to string
together several expressions. The group of expression
separated by comma is evaluated from left to right.

Sizeof
This is called as compile time operator. It returns
the size of a variable in bytes.

Pointer
* Pointer to a variable
& Address of

Component selection
. Direct component selector
-> Indirect component selector

Class member operators
:: Scope access / resolution
.* Dereference
->* Dereference pointer to class member

Precedence of Operators:

 Operators are executed in the order of precedence. The operands and the operators
are grouped in a specific logical way for evaluation. This logical grouping is called as an
Association.

The order of precedence:

() [] Operators within parenthesis are performed first Higher
++, -- Postfix increment / decrement
++, -- Prefix increment / decrement
*, /, % Multiplication, Division, Modulus

+, - Addition, Subtraction

<, <=, >, >=
Less than, Less than or equal to, Greater than,
Greater than or equal to

==, != Equal to, Not equal to
&& Logical AND
|| Logical OR
?: Conditional Operator
= Simple Assignment

+=, -=, *=, /= Shorthand operators
, Comma operator Lower

Chapter 9.indd 14 14-08-2018 17:00:20

14 15

9.3.5 Punctuators

 Punctuators are symbols, which are used as delimiters, while constructing a C++
program. They are also called as “Separators”. The following punctuators are used in C++;
most of these symbols are very similar to C and Java.

Separator Description Example

Curly braces
{ }

Opening and closing curly braces indicate the
start and the end of a block of code. A block
of code containing more than one executable
statement. These statements together are called as
“compound statement”

int main ()
{
 int x=10, y=20, sum;
 sum = x + y;
 cout << sum;
}

Parenthesis
()

Opening and closing parenthesis indicate
function calls and function parameters.

clrscr();
int main ()

Square
brackets []

It indicates single and multidimensional arrays.
int num[5];
char name[50];

Comma , It is used as a separator in an expression int x=10, y=20, sum;

Semicolon ;
Every executable statement in C++ should
terminate with a semicolon

int main ()
{
 int x=10, y=20, sum;
 sum = x + y;
 cout << sum;
}

Colon : It is used to label a statement. private:

Comments
//
/* */

Any statement that begins with // are considered
as comments. Comments are simply ignored by
compilers. i.e., compiler does not execute any
statement that begins with a //
// Single line comment
/* ……….. */ Multiline comment

/* This is written
By myself
to learn CPP */
int main ()
{
 int x=10, y=20, sum;
// to sum x and y
 sum = x + y;
 cout << sum;
}

In C++, one or two operators may be used in different places with different meaning.
For example: Asterisk (*) is used for multiplication as well as for pointer to a
variable.

Chapter 9.indd 15 14-08-2018 17:00:20

16 17

1. What is use of operators?

2. What are binary operators? Give examples arithmetic binary operators.

3. What does the modulus operator % do?

4. What will be the result of 8.5 % 2?

5. Assume that R starts with value 35. What will be the value of S from the following
expression? S=(R--)+(++R)

6. What will be the value of j = - - k + 2k. if k is 20 initially ?

7. What will be the value of p = p * ++j where j is 22 and p = 3 initially?

8. Give that i = 8, j = 10, k = 8, What will be result of the following expressions?
(i) i < k (ii) i < j (iii) i > = k (iv) i = = j (v) j ! = k

9. What will be the order of evaluation for the following expressions?
(i) i + 3 >= j - 9 (ii) a +10 < p - 3 + 2 q

10. Write an expression involving a logical operator to test, if marks are 75 and grade is 'A'.

?Evaluate Yourself

9.4 I/O Operators

9.4.1 Input operator:

 C++ provides the operator >> to get input. It extracts the value through the keyboard
and assigns it to the variable on its right; hence, it is called as “Stream extraction” or “get
from” operator.

 It is a binary operator i.e., it requires two operands. The first operand is the pre-defined
identifier cin (pronounced as C-In) that identifies keyboard as the input device. The second
operand must be a variable.

cin >> Variable

Figure 9.4 Working process of cin

Chapter 9.indd 16 14-08-2018 17:00:20

16 17

 To receive or extract more than one value at a time, >> operator should be used for each
variable. This is called cascading of operator.

Example:

cin >> num;
Pre-defined object cin extracts a value typed on keyboard and stores
it in variable num.

cin >>x >> y;

This is used to extract two values. cin reads thefirst value and
immediately assigns that to variable x; next, it reads the second
value which is typed after a space and assigns that to y. Space is used
as a separator for each input.

9.4.2 Output Operator:

 C++ provides << operator to perform output operation. The operator << is called the
“Stream insertion” or “put to” operator. It is used to send the strings or values of the variables
on its right to the object on its left. << is a binary operator.

 The first operand is the pre-defined identifier cout (pronounced as C-Out) that identifies
monitor as the standard output object. The second operand may be a constant, variable or an
expression.

cout << Constant / Variable
/ Expression

Figure 9.5 Working process of cout

 To send more than one value at a time, << operator should be used for each constant/
variable/expression. This is called cascading of operator.

Chapter 9.indd 17 14-08-2018 17:00:20

18 19

Example:

cout << “Welcome”;
Pre-defined object cout sends the given string
“Welcome” to screen.

cout << “The sum = “ << sum;

First, cout sends the string “The Sum = “ to the
screen and then sends the value of the variable sum;
Usually, cout sends everything specified within
double quotes or single quotes i.e., string or character
constants, except non-graphical characters.

cout <<“\n The Area: “ <<3.14*r*r;

First, cout sends everything specified within double
quotes except \n to the screen, and then it evaluates
the expression 3.14*r*r and sends the result to the
screen.
\n – is a non graphical character constant to feed a
new line.

cout << a + b ;
cout sends the sum of a and b to the output console
(monitor)

9.4.3. Cascading of I/O operators

The multiple use of input and output operators such as >> and << in a single statement is
known as cascading of I/O operators.

Cascading cout:

 int Num=20;

 cout << “A=” << Num;

The Figure 9.6 is used to understand the working of Cascading cout statement

A = 20

} }cout << "A=" << Num;

Figure 9.6 Cascading cout

Chapter 9.indd 18 14-08-2018 17:00:20

18 19

Cascading cin - Example:

 cout >> “Enter two number: ”;

 cin >> a >> b;

The Figure 9.7 is used to understanding the working of Cascading cin statement

Enter two number: 5 6

cin >> a >> b;

a

5

b

6

Figure 9.7 Cascading cin

9.5 Sample program – A first look at C++ program

 Let us start our first C++ program that prints a string “Welcome to Programming in
C++” on the screen.

The above program produces, the following output:

Welcome to Programming in C++

 This is very simple C++ program which includes the basic elements that every C++
program has. Let us have a look at these elements:

Chapter 9.indd 19 14-08-2018 17:00:20

20 21

1 // C++ program to print a string
This is a comment statement. Any statement that begins with // are considered as
comments. Compiler does not execute any comment as part of the program and it simply
ignores. If we need to write multiple lines of comments, we can use /* ……. */.
2 # include <iostream>
Usually all C++ programs begin with include statements starting with a # (hash /
pound). The symbol # is a directive for the preprocessor. That means, these statements
are processed before the compilation process begins.

#include <iostream> statement tells the compiler’s preprocessor to include the
header file “iostream” in the program.

The header file iostream should includ in every C++ program to implement input /
output functionalities.

In simple words, iostream header file contains the definition of its member objects
cin and cout. If you fail to include iostream in your program, an error message will
occur on cin and cout; and we will not be able to get any input or send any output.
3 using namespace std;
The line using namespace std; tells the compiler to use standard namespace. Namespace
collects identifiers used for class, object and variables. Namespaces provide a method of
preventing name conflicts in large projects. It is a new concept introduced by the ANSI
C++ standards committee.
4 int main ()
C++ program is a collection of functions. Every C++ program must have a main function.
The main() function is the starting point where all C++ programs begin their execution.
Therefore, the executable statements should be inside the main() function.

The statements between the curly braces (Line number 5 to 8) are executable statements.
This is actually called as a block of code. In line 6, cout simply sends the string constant
“Welcome to Programming in C++” to the screen. As we discussed already, every
executable statement must terminate with a semicolon. In line 7, return is a keyword
which is used to return the value what you specified to a function. In this case, it will
return 0 to main() function.

Chapter 9.indd 20 14-08-2018 17:00:20

20 21

9.6 Execution of C++ program:

 For creating and executing a C++ program, one must follow four important steps.

(1) Creating Source code

 Creating includes typing and editing the valid C++ code as per the rules followed by the
C++ Compiler.

(2) Saving source code with extension .cpp

 After typing, the source code should be saved with the extension .cpp

(3) Compilation

 This is an important step in constructing a program. In compilation, compiler links the
library files with the source code and verifies each and every line of code. If any mistake
or error is found, it will inform you to make corrections. If there are no errors, it translates
the source code into machine readable object file with an extension .obj

(4) execution

 This is the final step of construction of a C++ Program. In this stage, the object file becomes
an executable file with extension .exe. Once the program becomes an executable file, the
program has an independent existence. This means, you can run your application without
the help of any compiler or IDE.

#include<iostream>
using namespace std;
int main ()
{
cout<<"Welcome";
return 0;
}

Compiler

Figure 9.8 Execution

9.7 C++ Development Environment

 There are lot of IDE programs available for C++. IDE makes it easy to create, compile
and execute a C++ program. Most of the IDEs are open source applications (ie.) that are
available in free of cost.

Chapter 9.indd 21 14-08-2018 17:00:20

22 23

9.7.1 Familiar C++ Compilers with IDE

Table 9.4 Open Source Compilers

Compiler Availability
Dev C++ Open source
Geany Open source
Code::blocks Open source
Code Lite Open source
Net Beans Open source
Digital Mars Open source
Sky IDE Open source
Eclipse Open source

9.7.2 Working with Dev C++

 Among the dozens of IDEs, we take “Dev C++” compiler to create C++ programs.
Programming techniques and illustrated programs of this book are based on “Dev C++”
compiler.

 Dev C++ is an open source, cross platform (alpha version available for Linux), full
featured Integrated Development Environment (IDE) distributed with the GNU General
Public License for programming in C and C++. It is written in Delphi. It can be downloaded
from http://www.bloodshed.net/dev/devcpp.html

1. After installation Dev C++ icon is available on the desktop. Double click to open IDE.
Dev C++ IDE appears as given below.

Figure 9.9 Dev C++ opening Window

Chapter 9.indd 22 14-08-2018 17:00:20

22 23

2. To create a source file, Select File → New → Source file or Press Ctrl + N.

3. On the screen that appears, type your C++ program, and save the file by clicking File →
Save or Pressing Ctrl + S. It will add .cpp by default at the end of your source code file. No
need to type .cpp along with your file name.

Figure 9.10 Dev C++ IDE with a program

4. After save, Click Execute → Compile and Run or press F11 key.

 If your program contains any error, it displays the errors under compile log. If your
program is without any error, the display will appear as follows.

Figure 9.11 Dev C++ Compile Log

5. After successful compilation, output will appear in output console, as follows

Figure 9.12 Dev C++ Output Window

Chapter 9.indd 23 14-08-2018 17:00:20

24 25

9.8 Types of Errors
Some common types of errors are given below:

Type of Error Description

Syntax Error

• Syntax is a set of grammatical rules to construct a program. Every
programming language has unique rules for constructing the
sourcecode.

• Syntax errors occur when grammatical rules of C++ are violated.
• Example: if you type as follows, C++ will throw an error.
 cout << “Welcome to Programming in C++”
• As per grammatical rules of C++, every executable statement should

terminate with a semicolon. But, this statement does not end with a
semicolon.

Semantic Error

• A Program has not produced expected result even though the
program is grammatically correct.It may be happened by wrong use
of variable / operator / order of execution etc. This means, program is
grammatically correct, but it contains some logical error. So, Semantic
error is also called as “Logic Error”.

Run-time error

• A run time error occurs during the execution of a program. It is
occurs because of some illegal operation that takes place.

• For example, if a program tries to open a file which does not exist, it
results in a run-time error

• C++ was developed by Bjarne Stroustrup
at AT & T Bell Labs during the year 1979.

• Character set is the set of characters
which are allowed to write C++
programs.

• Individual elements are collectively
called as Lexical units or Lexical elements
or Tokens.

• Keywords are the reserved words that
convey specific meaning to the C++
compiler.

• Identifiers are user-defined names given
to different parts of the C++ program
viz. variables, functions, arrays, classes
etc.,

• Literals are data items whose values do
not change during the execution of a
program. Therefore, Literals are called as
Constants.

• There are different kinds of literals used
in C++ (Integer, Float, Character, String)

• The symbols which are used to do some
mathematical, logical operations are
called as “Operators”.

• Punctuators are symbols, which are
used as delimiters in constructing
C++ programs. They are also called as
“Separators”.

• Extraction operator(>>) and Insertion
operator (<<) are used to get input and
send output in C++.

Points to Remember:

Chapter 9.indd 24 14-08-2018 17:00:21

24 25

• Type the following C++ Programs in Dev C++ IDE and execute. if compiler shows any
errors, try to rectify it and execute again and again till you get the expected result.

1. C++ Program to find the total marks of three subjects
#include <iostream>
using namespace std;
int main()
{
 int m1, m2, m3, sum;
 cout << "\n Enter Mark 1: ";
 cin >> m1;
 cout << "\n Enter Mark 2: ";
 cin >> m2;
 cout << "\n Enter Mark 3: ";
 cin >> m3;
 sum = m1 + m2 + m3;
 cout << "\n The sum = " << sum;
}

• Make changes in the above code to get the average of all the given marks.

2. C++ program to find the area of a circle
#include <iostream>
using namespace std;
int main()
{
 int radius;
 float area;
 cout << "\n Enter Radius: ";
 cin >> radius;
 area = 3.14 * radius * radius;
 cout << "\n The area of circle = " << area;
}

3. point out the errors in the following program:
Using namespace std;
int main()
{
cout << “Enter a value ”;

Hands on practice:

Chapter 9.indd 25 14-08-2018 17:00:21

26 27

cin << num1 >> num2
num+num2=sum;
cout >> “\n The Sum= ” >> sum;

4. point out the type of error in the following program:
#include <iostream>
using namespace std;
int main()
{
 int h=10; w=12;
 cout << "Area of rectangle " << h+w;
}

Evaluation

PART – I

Choose the corret answer.

1. Who developed C++?

 (a) Charles Babbage (b) Bjarne Stroustrup

 (c) Bill Gates (d) Sundar Pichai

2. What was the original name given to C++?

 (a) CPP (b) Advanced C

 (c) C with Classes (d) Class with C

3. Who coined C++?

 (a) Rick Mascitti (b) Rick Bjarne

 (c) Bill Gates (d) Dennis Ritchie

4. The smallest individual unit in a program is:

 (a) Program (b) Algorithm

 (c) Flowchart (d) Tokens

Chapter 9.indd 26 14-08-2018 17:00:21

26 27

5. Which of the following operator is extraction operator of C++?

 (a) >> (b) << (c) <> (d) ^^

6. Which of the following statements is not true?

 (a) Keywords are the reserved words convey specific meaning to the C++ compiler.

 (b) Reserved words or keywords can be used as an identifier name.

 (c) An integer constant must have at least one digit without a decimal point.

 (d) Exponent form of real constants consists of two parts

7. Which of the following is a valid string literal?

 (a) ‘A’ (b) ‘Welcome’ (c) 1232 (d) “1232”

8. A program written in high level language is called as

 (a) Object code (b) Source code

 (c) Executable code (d) All the above

9. Assume a=5, b=6; what will be result of a&b?

 (a) 4 (b) 5 (c) 1 (d) 0

10. Which of the following is called as compile time operators?

 (a) sizeof (b) pointer (c) virtual (d) this

Part – II

Answer to all the questions

1. What is meant by a token? Name the token available in C++.

2. What are keywords? Can keywords be used as identifiers?

3. The following constants are of which type?

 (i) 39 (ii) 032 (iii) 0XCAFE (iv) 04.14

4. Write the following real constants into the exponent form:

 (i) 23.197 (ii) 7.214 (iii) 0.00005 (iv) 0.319

5. Assume n=10; what will be result of n>>2;?

6. Match the following

Chapter 9.indd 27 14-08-2018 17:00:21

28 29

A B

(a) Modulus (1) Tokens

(b) Separators (2) Remainder of a division

(c) Stream extraction (3) Punctuators

(d) Lexical Units (4) get from

Part – III

Answer to all the questions

1. Describe the differences between keywords and identifiers?

2. Is C++ case sensitive? What is meant by the term “case sensitive”?

3. Differentiate “=” and “==”.

4. Assume a=10, b=15; What will be the value of a^b?

5. What is the difference between “Run time error” and “Syntax error”?

6. What are the differences between “Logical error” and “Syntax error”?

7. What is the use of a header file?

8. Why is main function special?

9. Write two advantages of using include compiler directive.

10. Write the following in real constants.

 (i) 15.223 (ii) 211.05 (iii) 0.00025

Part – IV

Answer to all the questions

1. Write about Binary operators used in C++.

2. What are the types of Errors?

3. Assume a=15, b=20; What will be the result of the following operations?

 (a) a&b (b) a|b (c) a^b (d) a>>3 (d) (~b)

References:

(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy, Mc.Graw
Hills.

(2) The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.

Chapter 9.indd 28 14-08-2018 17:00:21

28 29

(3) Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora, Dhanpat
Rai & Co.

Data Types, Variables and Expressions

9.10 Introduction

 Every programming language has two fundamental elements, viz., data types and
variables. They are very essential elements to write even the most elementary programs. C++
provides a predefined set of data types for handling the data items. Such data types are known
as fundamental or built-in data types. Apart from the built-in data types, a programmer can
also create his own data types called as User-defined data types. In this chapter, we are going
to learn about built-in data types.

9.11 Concept of Data types:

Let us look at the following example,

 Name = Ram

 Age = 15

 Average_Mark = 85.6

 In the above example, Name, Age, Average_mark are the fields which hold the values
such as Ram, 15, and 85.6 respectively.

 In a programming language, fields are referred as variables and the values are referred
to as data. Each data item in the above example is looking different. That is, “Ram” is a sequence
of alphabets and the other two data items are numbers. The first value is a whole number and
the second one is a fractional number. In real-world scenarios, there are lots of different kinds
of data we handle in our day-to-day life. The nature or type of the data item varies, for example
distance (from your home to school), ticket fare, cost of a pen, marks, temperature, etc.,

 In C++ programming, before handling any data, it should be clearly specified to the
language compiler, regarding what kind of data it is, with some predefined set of data types.

9.12 C++ Data types

 In C++, the data types are classified as three main categories

 (1) Fundamental data types

 (2) User-defined data types and

 (3) Derived data types.

Chapter 9.indd 29 14-08-2018 17:00:21

30 31

Data Types

User Defines
Data types

Derived
Data types

Floating
Point

Integral
types

Structure,
Union, Class,
Enumeration

Void

int char float double

Array, Function,
Pointer, Reference

Fundamantal Built -
in data types

Figure 9.13 Data types in C++
 In this chapter, we are going to learn about only the Fundamental data types.

 In order to understand the working of data types, we need to know about variables. The
variables are the named memory locations to hold values of specific data types. In C++, the
variables should be declared explicitly with their data types before they are actually used.

Syntax for declaring a variable:

 <data type> <variable name>;

Example:

 int num1;

 To declare more than one variable which are of the same data type using a single
statement, it can be declared by separating the variables using a comma.

Example:

 int num1, num2, sum;

 For example, to store your computer science marks; first you should declare a variable
to hold your marks with a suitable data type. Choosing an appropriate data type needs more
knowledge and experience. Usually, marks are represented as whole numbers. Thus, your
variable for storing the computer science marks should be an integer data type.

Example:

 int comp_science_marks;

Now, one variable named comp_science_marks is ready to store your marks.

We will learn more about variables later in this chapter.

Chapter 9.indd 30 14-08-2018 17:00:21

30 31

9.12.1 Introduction to fundamental Data types:

 Fundamental (atomic) data types are predefined data types available with C++. There
are five fundamental data types in C++: char, int, float, double and void. Actually, these are
the keywords for defining the data types.

(1) int data type:

 Integers are whole numbers without any fraction. Integers can be positive or negative.
Integer data type accepts and returns only integer numbers. If a variable is declared as an int,
C++ compiler allows storing only integer values into it. If you try to store a fractional value in
an int type variable it will accept only the integer portion of the fractional value..

// Program to receive two integer numbers and display their sum
#include <iostream>
using namespace std;
int main()
{
 int num1, num2, sum;
 // variables num1, num2, and sum are declared as integers
 cout << "\n Enter Number 1: ";
 cin >> num1;
 cout << "\n Enter Number 2: ";
 cin >> num2;
 sum = num1 + num2;
 cout << "\n The sum of " << num1 << " and " << num2 << " is " << sum;
}

Illustration 9.1: C++ Program to get 2 integer numbers and display their sum:

 In the above program, there are three variables declared viz. num1, num2 and sum.
All these three variables are declared as integer types. So, three different integer values can be
stored in these variables.

 The variables num1 and num2 are used to store the values that are obtained from
the user during the execution of the program, whereas the variable sum is used to store the
processed (resultant) value.

 During the execution of the above program, line numbers 7 and 9 prompt the user to
Enter number 1 and number 2.

Chapter 9.indd 31 14-08-2018 17:00:21

32 33

 Input stream cin in line 8 and 10 will receive the values given by the user and store the
same in variable num1 and num2.

 Line 11; both the values of num1 and num2 will be added and the result will be assigned
to the variable sum.

(2) char data type:

 Character data type accepts and returns all valid ASCII characters. Character data type
is often said to be an integer type, since all the characters are represented in memory by their
associated ASCII Codes. If a variable is declared as char, C++ allows storing either a character
or an integer value.

#include <iostream>
using namespace std;
int main()
{
 char ch;
 cout << "\n Enter a character: ";
 cin >> ch;
 ch = ch + 1;
cout << "\n The Next character: " << ch;
}

The output produced by the program will be

Enter a character: A

The Next character: B

Illustration 9.2: C++ Program to accept any character and display its next character

 In the above program, ch is declared as a char type variable to hold a character. When
the user enters a character, it will be stored in the ch variable as an integer value (ie. Equivalent
ASCII code).

 ch = ch + 1;

 In this statement, the value of ch is incremented by 1 and the new value is stored back
in the same variable ch. (Remember that, arithmetic operations are carried out only on the
numbers not with alphabets).

Chapter 9.indd 32 14-08-2018 17:00:21

32 33

 Another program illustrates how int and char data types are working together.

#include <iostream>
using namespace std;
int main ()
{
 int n;
 char ch;
 cout << "\n Enter an ASCII code (0 to 255): ";
 cin >> n;
 ch = n;
 cout << "\n Equivalent Character: " << ch;
}

The output

Enter an ASCII code (0 to 255): 100

Equivalent Character: d

Illustration 9.3: C++ program to get an ASCII value and display the corresponding
character

 In the above program, variable n is declared as an int type and another variable ch as a
char type. During execution, the program prompts the user to enter an ASCII value. If the user
enters an ASCII value as an integer, it will be stored in the variable n. In the statement ch = n;
the value of n is assigned into ch. Remember that, ch is a char type variable.

 For example, if a user enters 100 as input; initially, 100 is stored in the variable n. In the
next statement, the value of n i.e., 100 is assigned to ch. Since, ch is a char type; it shows the
corresponding ASCII character as output. (Equivalent ASCII Character for 100 is d).

(3) float data type:

 If a variable is declared as float, all values will be stored as floating point values.

There are two advantages of using float data types.

 (1) They can represent values between the integers.

 (2) They can represent a much greater range of values.

 At the same time, floating point operations takes more time to execute compared to
the integer type ie., floating point operations are slower than integer operations. This is a
disadvantage of floating point operation.

Chapter 9.indd 33 14-08-2018 17:00:21

34 35

#include <iostream>
using namespace std;
int main()
{
 float r, area;
 cout << "\n Enter Radius: ";
 cin >> r;
 area = 3.14 * r * r;
 cout << "\n The Area of the circle is " << area;
}

Output:

Enter Radius: 6.5

The Area of the circle is 132.665

Illustration 9.4: C++Program to find the area of circle

 In the above example, two variables r and area are declared as float type in a single
statement. Variable r is used to hold radius which is a data provided by the user and area for
holding the area of the circle which is obtained through the formula. For example, if the user
inputs the radius value as 6.5, then the statement area = 3.14 * r * r; multiplies the value of r
twice with 3.14 (value of pi) and the resultant value 132.665 will be kept in the variable area.

 In this case, r and area both are same type of variables. So, these two variables are
declared in a single statement. Declaring the same variables in a single statement reduces the
processing time rather than multiple declarations.

(4) double data type:

 This is for double precision floating point numbers. (precision means significant
numbers after decimal point). The double is also used for handling floating point numbers.
But, this type occupies double the space than float type. This means, more fractions can be
accommodated in double than in float type. The double is larger and slower than type float.
double is used in a similar way as that of float data type.

(5) void data type:

 The literal meaning for void is ‘empty space’. Here, in C++, the void data type specifies
an empty set of values. It is used as a return type for functions that do not return any value.

Chapter 9.indd 34 14-08-2018 17:00:21

34 35

1. What do you mean by fundemantal data types?

2. The data type char is used to represent characters. then why is it often termed as an
integer type?

3. What is the advartage of floating point numbers over integers?

4. The data type double is another floating point type. Then why is it treated as a distinct
data type?

5. What is the use of void data type?

?Evaluate Yourself

9.12.2 Memory representation of Fundamental Data types:

 One of the most important reason for declaring a variable as a particular data type is to
allocate appropriate space in memory. As per the stored program concept, every data should
be accommodated in the main memory before they are processed. So, C++ compiler allocates
specific memory space for each and every data handled according to the compiler’s standards.

 The following Table 9.5 shows how much of memory space is allocated for each
fundamental data type. Remember that, every data is stored inside the computer memory in
the form of binary digits (See Unit I Chapter 2).

Table 9. 5 Memory allocation for Fundamental data types

Data type
Space in memory

Range of value
in terms of bytes in terms of bits

char 1 byte 8 bits -127 to 128
int 2 bytes 16 bits -32,768 to 32,767
float 4 bytes 32 bits 3.4×10-38 to 3.4×1038 -1
double 8 bytes 64 bits 1.7×10-308 to 1.7 × 10308-1

9.12.3 Data type modifiers:

 Modifiers are used to modify the storing capacity of a fundamental data type except
void type. Usually, every fundamental data type has a fixed range of values to store data items
in memory. For example, int data type can store only two bytes of data. In reality, some integer
data may have more length and may need more space in memory. In this situation, we should
modify the memory space to accommodate large integer values. Modifiers can be used to
modify (expand or reduce) the memory allocation of any fundamental data type. They are
also called as Qualifiers.

Chapter 9.indd 35 14-08-2018 17:00:21

36 37

There are four modifiers used in C++. They are:

 (1) signed (2) unsigned (3) long (4) short

 These four modifiers can be used with any fundamental data type. The following Table
9.6 shows the memory allocation for each data type with and without modifiers.

Integer type

Table 9.6 Memory allocation for Data types

Data type
Space in memory

Range of valuein terms
of bytes

in terms
of bits

short
short is a short name for
short int

2 bytes 16 bits -32,768 to 32,767

unsigned
short

an integer number without
minus sign.

2 bytes 16 bits 0 to 65535

signed short
An integer number with
minus sign

4 bytes 32 bits -32,768 to 32,767

Both short and signed short are similar

int
An integer may or may not
be signed

2 bytes 16 bits -32,768 to 32,767

unsigned int
An integer without any
sign (minus symbol)

2 bytes 16 bits 0 to 65535

signed int An integer with sign 2 bytes 16 bits -32,768 to 32,767

Both short and int are similar

long
long is short name for long
int

4 bytes 32 bits
-2147483648 to
2147483647

unsigned long
A double spaced integer
without any sign

4 bytes 32 bits 0 to 4,294,967,295

signed long
A double spaced integer
with sign

4 bytes 32 bits
-2147483648 to
2147483647

 The above table clearly shows that an integer type accepts only 2 bytes of data whereas
a long int accepts data that is double this size i.e., 4 bytes of data. So, we can store more digits
in a long int. (long is modifier and int is a fundamental data type)

Chapter 9.indd 36 14-08-2018 17:00:21

36 37

char type

Table 9.7 Memory allocation for char Data types

Data type
Space in memory

Range of valuein terms
of bytes

in terms
of bits

char Signed ASCII character 1 byte 8 bits -128 to 127

unsigned char ASCII character without sign 1 byte 8 bits 0 to 255

signed char ASCII character with sign 1 byte 8 bits -128 to 127

Floating point type

Table 9.8 Memory allocation for floating point Data types

Data type
Space in memory

Range of valuein terms
of bytes

in terms
of bits

float signed fractional value 4 bytes 32 bits 3.4×10-38 to 3.4×1038-1

double
signed more precision
fractional value

8 bytes 64 bits
1.7 × 10-308 to
1.7 × 10308 -1

long double
signed more precision
fractional value

10 bytes 80 bits
3.4 × 10-4932 to
1.1 × 104932 -1

 Memory allocation is subjected to vary based on the type of compiler that is being used.
Here, the given values are as per the Turbo C++ compiler. Dev C++ provides some more space
to int and long double types. Following Tables 9.9 shows the difference between Turbo C++
and Dev C++ allocation of memory.

Table 9.9 Memory allocation by Turbo C++ and Dev C++

Data type
Memory size in bytes

Turbo C++ Dev C++
short 2 2

unsigned short 2 2

signed short 2 2
int 2 4
unsigned int 2 4
signed int 2 4
long 4 4

Chapter 9.indd 37 14-08-2018 17:00:21

38 39

unsigned long 4 4
signed long 4 4
char 1 1
unsigned char 1 1
signed char 1 1
float 4 4
double 8 8
long double 10 12

 Since, Dev C++ provides 4 bytes to int and long, any one of these types can be used to
handle bigger integer values while writing programs in Dev C++.

Note: sizeof() is an operator which gives the size of a data type.

#include <iostream>
using namespace std;
int main()
{
 short a;
 unsigned short b;
 signed short c;
 int d;
 unsigned int e;
 signed int f;
 long g;
 unsigned long h;
 signed long i;
 char j;
 unsigned char k;
 signed char l;
 float m;
 double n;
 long double p;
 cout << "\n Size of short = " << sizeof(a);
 cout << "\n Size of unsigned short = " << sizeof(b);
 cout << "\n Size of signed short = " << sizeof (c);
 cout << "\n Size of int = " << sizeof(d);

Illustration 9.5: C++ Program to find the size of data types

Chapter 9.indd 38 15/08/18 5:37 PM

38 39

 cout << "\n Size of unsigned int = " << sizeof(e);

 cout << "\n Size of signed int = " << sizeof(f);

 cout << "\n Size of long = " << sizeof(g);

 cout << "\n Size of unsigned long = " << sizeof(h);

 cout << "\n Size of signed long = " << sizeof(i);

 cout << "\n Size of char = " << sizeof(j);

 cout << "\n Size of unsigned char = " << sizeof(k);

 cout << "\n Size of signed char = " << sizeof(l);

 cout << "\n Size of float = " << sizeof(m);

 cout << "\n Size of double = " << sizeof(n);

 cout << "\n Size of long double = " << sizeof(p);

}

Output : (compiled and executed in Dev C++)

Size of short = 2

Size of unsigned short = 2

Size of signed short = 2

Size of int = 4

Size of unsigned int = 4

Size of signed int = 4

Size of long = 4

Size of unsigned long = 4

Size of signed long = 4

Size of char = 1

Size of unsigned char = 1

Size of signed char = 1

Size of float = 4

Size of double = 8

Size of long double = 12

Number Suffixes in C++

 There are different suffixes for integer and floating point numbers. Suffix can be used to
assign the same value as a different type. For example, if you want to store 45 in an int, long,

Chapter 9.indd 39 14-08-2018 17:00:21

40 41

unsigned int and unsigned long int, you can use suffix letter L or U (either case) with 45 i.e.
45L or 45U. This type of declaration instructs the compiler to store the given values as long
and unsigned. ‘F’ can be used for floating point values, example: 3.14F

9.13 Variables

 Variables are user-defined names assigned to specific memory locations in which the
values are stored. Variables are also identifiers; and hence, the rules for naming the identifiers
should be followed while naming a variable. These are called as symbolic variables because
these are named locations.

There are two values associated with a symbolic variable; they are R-value and L-value.

• R-value is data stored in a memory location

• L-value is the memory address in which the R-value is stored.

num2

num1

Variable
name

R - value (Value within
memory)

L - value (Memory Address)

100

65

0x125e
0x126e

0x127e

0x128e
0x129e
0x130e
0x131e
0x132e
0x133e
0x134e

Figure 9.14 Memory allocation of a variable

Remember that, the memory addresses are in the form of Hexadecimal values

9.13.1 Declaration of Variables:

 Every variable should be declared before they are actually used in a program. Declaration
is a process to instruct the compiler to allocate memory as per the type that is specified along
with the variable name. For example, if you declare a variable as int type, in Dev C++, the
compiler allocates 4 bytes of memory. Thus, every variable should be declared along with the
type of value to be stored.

Declaration of more than one variable:

More than one variable of the same type can be declared as a single statement using a comma
separating the individual variables.

Chapter 9.indd 40 14-08-2018 17:00:21

40 41

Syntax:

<data type> <var1>, <var2>, <var3> …… <var_n>;

Example:

int num1, num2, sum;

 In the above statement, there are three variables declared as int type. Which means, in
num1, num2 and sum, you can store only integer values.

 For the above declaration, the C++ compiler allocates 4 bytes of memory (i.e. 4 memory
boxes) for each variable.

}}
}

0x125e
0x126e
0x127e
0x128e
0x129e
0x130e
0x131e
0x132e
0x133e
0x134e

L
- v

al
ue

 (M
em

or
y

A
dd

re
ss

int num1, num2, sum;

num2

Variable names

num1

Figure 9.15 Memory allocation of int type variables

If you declare a variable without any initial value, the memory space allocated to that variable
will be occupied with some unknown value. These unknown values are called as “Junk” or
“Garbage” values.

#include <iostream>

using namespace std;

int main()

{

 int num1, num2, sum;

 cout << num1 << endl;

 cout << num2 << endl;

 cout << num1 + num2;

}

Chapter 9.indd 41 14-08-2018 17:00:21

42 43

 In the above program, some unknown values will be occupied in memory that is
allocated for the variables num1 and num2; and the statement cout << num1 + num2; will
display the sum of those unknown junk values.

9.13.2 Initialization of variables:

Assigning an initial value to a variable during its declaration is called as “Initialization”.

Examples:

int num = 100;

float pi = 3.14;

double price = 231.45;

Here, the variables num, pi, and price have been initialized during the declaration. These initial
values can be later changed during the program execution.

#include <iostream>
using namespace std;
int main()
{
 float pi = 3.14, radius, height, CSA;
 cout << "\n Curved Surface Area of a cylinder";
 cout << "\n Enter Radius (in cm): ";
 cin >> radius;
 cout << "\n Enter Height (in cm): ";
 cin >> height;
 CSA = (2*pi*radius)*height;
 system("cls");
 cout << "\n Radius: " << radius <<"cm";
 cout << "\n Height: " << height << "cm";
 cout << "\n Curved Surface Area of a Cylinder is " << CSA <<" sq. cm.";
}

Output:

 Curved Surface Area of a cylinder
 Enter Radius (in cm): 7
 Enter Height (in cm): 20
 Radius: 7cm
Height: 20cm
Curved Surface Area of a Cylinder is 879.2 sq. cm.

Illustration 9.6 C++ Program to find the Curved Surface Area of a cylinder (CSA) (CSA
= 2 pi r * h)

Chapter 9.indd 42 14-08-2018 17:00:21

42 43

Variables that are of the same type can be initialized in a single statement.

Example:

int x1 = -1, x2 = 1, x3, n;

9.13.3 Dynamic Initialization:

 A variable can be initialized during the execution of a program. It is known as “Dynamic
initialization”. For example,

int num1, num2, sum;

sum = num1 + num2;

The above two statements can be combined into a single one as follows:

int sum = num1+num2;

This initializes sum using the known values of num1 and num2 during the execution.

#include <iostream>
using namespace std;
int main()
{
 int num1, num2;
 cout << "\n Enter number 1: ";
 cin >> num1;
 cout << "\n Enter number 2: ";
 cin >> num2;
 int sum = num1 + num2; // Dynamic initialization
 cout << "\n Average: " << sum /2;
}
Output:
Enter number 1: 78
Enter number 2: 65
Average: 71

Illustration 9.7 C++ Program to illustrate dynamic initializetion

Chapter 9.indd 43 14-08-2018 17:00:21

44 45

 In the above program, after getting the values of num1 and num2, sum is declared and
initialized with the addition of those two variables. After that, it is divided by 2.

#include <iostream>
using namespace std;
int main()
{
 int radius;
 float pi = 3.14;
 cout << "\n Enter Radius (in cm): ";
 cin >> radius;
 float perimeter = (pi+2)*radius; // dynamic initialization
 float area = (pi*radius*radius)/2; // dynamic initialization
 cout << "\n Perimeter of the semicircle is " << perimeter << " cm";
 cout << "\n Area of the semicircle is " << area << " sq.cm";
}
Output:
Enter Radius (in cm): 14
Perimeter of the semicircle is 71.96 cm
Area of the semicircle is 307.72 sq.cm

Illustration 9.8: C++ program to find the perimeter and area of a semi circle

9.13.4 The Access modifier const:

 const is the keyword used to declare a constant. You already learnt about constant in
the previous chapter. const keyword modifies / restricts the accessibility of a variable. So, it is
known as Access modifier.

For example,

int num = 100;

 The above declares a variable num with an initial value 100. However, the value of num
can be changed during the execution. If you modify the above definition as const int num
= 100; the variable num becomes a constant and its value will remain as 100 throughout the
program, and it can never be changed during the execution.

Chapter 9.indd 44 14-08-2018 17:00:21

44 45

#include <iostream>

using namespace std;

int main()

{

 const int num=100;

 cout << "\n Value of num is = " << num;

 num = num + 1; // Trying to increment the constant

 cout << "\n Value of num after increment " << num;

}

 For the above code, an error message will be displayed as “Cannot modify the const
object” in Turbo compiler and “assignment of read only memory num” in Dev C++.

1. What is modifiers? What is the use of modifiers?

2. What is wrong with the following C++ statement:

 long float x;

3. What is variable ? Why a varible called symblolic varible?

4. What do you mean by dynamic initialization of a variable? Give an exmple.

5. What is wrong with the following statement?

 const int x;

?Evaluate Yourself

9.13.5 References:

 A reference provides an alias for a previously defined variable. Declaration of a reference
consists of base type and an & (ampersand) symbol; reference variable name is assigned the
value of a previously declared variable.

Syntax:

<type> <& reference_variable> = <original_variable>

Chapter 9.indd 45 14-08-2018 17:00:21

46 47

#include <iostream>
using namespace std;
int main()
{
 int num;
 int &temp = num; //declaration of a reference variable temp
 num = 100;
cout << "\n The value of num = " << num;
cout << "\n The value of temp = " << temp;
}

The output of the above program will be

The value of num = 100
The value of temp = 100

Illustration 9.9: C++ program to declare reference variable

9.14 Formatting Output:

 Formatting output is very important in the development of output screens for
easy reading and understanding. Manipulators are used to format the output of any C++
program. Manipulators are functions specifically designed to use with the insertion (<<) and
extraction(>>) operators.

 C++ offers several input and output manipulators for formatting. Commonly used
manipulators are: endl, setw, setfill, setprecision and setf. In order to use these manipulators,
you should include the appropriate header file. endl manipulator is a member of iostream
header file. setw, setfill, setprecision and setf manipulators are members of iomanip header
file.

endl (End the Line)

 endl is used as a line feeder in C++. It can be used as an alternate to ‘\n’. In other words,
endl inserts a new line and then makes the cursor to point to the beginning of the next line.
There is a difference between endl and ‘\n’, even though they are performing similar tasks.

• endl – Inserts a new line and flushes the buffer (Flush means – clean)

• ‘\n’ - Inserts only a new line.

Example:

 cout << "\n The value of num = " << num;

Chapter 9.indd 46 14-08-2018 17:00:21

46 47

 cout << "The value of num = " << num <<end;

Both these statements display the same output.

setw ()

 setw manipulator sets the width of the field assigned for the output. The field width
determines the minimum number of characters to be written in output.

Syntax:

setw(number of characters)

Example:

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 float basic, da, hra, gpf, tax, gross, np;
 char name[30];
 cout << "\n Enter Basic Pay: ";
 cin >> basic;
 cout << "\n Enter D.A : ";
 cin >> da;
 cout << "\n Enter H.R.A: ";
 cin >> hra;
 gross = basic+da+hra; // sum of basic, da nad hra
 gpf = (basic+da) * 0.10; // 10% 0f basic and da
 tax = gross * 0.10; //10% of gross pay
 np = gross - (gpf+tax); //netpay = earnings - deductions
 cout << setw(25) << "Basic Pay : " << setw(10)<< basic<< endl;
 cout << setw(25) << "Dearness Allowance : "<< setw(10)<<da<< endl;
 cout<<setw(25)<<"House Rent Allowance : "<<setw(10)<< hra<<endl;
 cout << setw(25) << "Gross Pay : " << setw(10) << gross << endl;
 cout << setw(25) << "G.P.F : " << setw(10) << gpf << endl;
 cout << setw(25) << "Income Tax : " << setw(10)<< tax << endl;
 cout << setw(25) << "Net Pay : " << setw(10) << np << endl;
}

Illustration 9.10: Program to Calculate Net Salary

Chapter 9.indd 47 14-08-2018 17:00:21

48 49

The output will be,
Enter Basic Pay: 12000
Enter D.A : 1250
Enter H.R.A : 1450

Basic Pay : 12000
Dearness Allowance : 1250

House Rent Allowance : 1450
Gross Pay : 14700

G.P.F : 1325
Income Tax : 1470

Net Pay : 11905
(HOT: Try to make multiple output statements as a single cout statement)

 In the above program, every output statement has two setw() manipulators; first setw
(25) creates a filed with 25 spaces and second setw(10) creates another field with 10 spaces.
When you represent a value to these fields, it will show the value within the field from right to
left.

Field 2 with 10 space width New line modifier

Data to accommodate
in Field 2

Data to accommodate
in Field 1

Field 1 with 25 space width

} }
Cout<<setw(25)<<"Basic Pay:"<<setw(10)<<basic<<endl;

In field1 and field 2, the string “Basic Pay: ” and the value of basic pay are shown as given in
Figure 9.16 below.

-------------------------------- Basic pay:

Field 1 with 25 space width Field 2 with 10 space width

---------------12000

Figure 9.16 setw() function

setfill ()

 This manipulator is usually used after setw. If the presented value does not entirely fill
the given width, then the specified character in the setfill argument is used for filling the empty
fields.

Chapter 9.indd 48 14-08-2018 17:00:21

48 49

Syntax:

 setfill (character);

Example:

 cout << "\n H.R.A : " << setw(10) << setfill (0) << hra;

 In the above code, setw creates a field to show the presented value, setfill is used to fill
un-occupied spaces with 0 (zero).

 For example, if you assign 1200 to hra, setw accommodates 1200 in a field of width
10 from right to left and setfill fills 0 in the remaining 6 spaces that are in the beginning. The
output will be, 0000001200.

setprecision ()

This is used to display numbers with fractions in specific number of digits.

Syntax:

 setprecision (number of digits);

Example:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 float hra = 1200.123;

 cout << setprecision (5) << hra;

}

 In the above code, the given value 1200.123 will be displayed in 5 digits including
fractions. So, the output will be 1200.1

Chapter 9.indd 49 14-08-2018 17:00:21

50 51

 setprecision () prints the values from left to right. For the above code, first, it will take
4 digits and then prints one digit from fractional portion.

 setprecision can also be used to set the number of decimal places to be displayed. In
order to do this task, you will have to set an ios flag within setf() manipulator. This may be
used in two forms: (i) fixed and (ii) scientific

 These two forms are used when the keywords fixed or scientific are appropriately used
before the setprecision manipulator.

Example:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 cout.setf(ios::fixed);

 cout << setprecision(2)<<0.1;

}

 In the above program, ios flag is set to fixed type; it prints the floating point number in
fixed notation. So, the output will be, 0.10

cout.setf(ios::scientific);

cout << setprecision(2) << 0.1;

 In the above statements, ios flag is set to scientific type; it will print the floating point
number in scientific notation. So, the output will be, 1.00e-001

9.15 Expression:

 An expression is a combination of operators, constants and variables arranged as per
the rules of C++. It may also include function calls which return values. (Functions will be
learnt in upcoming chapters).

Chapter 9.indd 50 14-08-2018 17:00:21

50 51

 An expression may consist of one or more operands, and zero or more operators to
produce a value. In C++, there are seven types of expressions, and they are:

 (i) Constant Expression

 (ii) Integer Expression

 (iii) Floating Expression

 (iv) Relational Expression

 (v) Logical Expression

 (vi) Bitwise Expression

 (vii) Pointer Expression

SN Expression Description Example

1 Constant Expression
Constant expression consist only
constant values

int num=100;

2 Integer Expression

The combination of integer and
character values and/or variables
with simple arithmetic operators
to produce integer results.

sum=num1+num2;
avg=sum/5;

3 Float Expression

The combination of floating point
values and/or variables with simple
arithmetic operators to produce
floating point results.

Area=3.14*r*r;

4 Relational Expression

The combination of values and/or
variables with relational operators
to produce bool(true means 1 or
false means 0) values as results.

x>y;
a+b==c+d;

5 Logical Expression
The combination of values and/or
variables with Logical operators to
produce bool values as results.

(a>b)&& (c==10);

6 Bitwise Expression
The combination of values and/or
variables with Bitwise operators.

x>>3;
a<<2;

7 Pointer Expression
A Pointer is a variable that holds
a memory address. Pointer
declaration statements.

int *ptr;

Table 9.10 : Types of Expressions

Chapter 9.indd 51 14-08-2018 17:00:21

52 53

9.16 Type Conversion

 The process of converting one fundamental type into another is called as
“Type Conversion”. C++ provides two types of conversions.

(1) Implicit type conversion

(2) Explicit type conversion.

(1) Implicit type conversion:

 An Implicit type conversion is a conversion performed by the compiler automatically.
So, implicit conversion is also called as “Automatic conversion”.

 This type of conversion is applied usually whenever different data types are intermixed
in an expression. If the type of the operands differ, the compiler converts one of them to match
with the other, using the rule that the “smaller” type is converted to the “wider” type, which is
called as “Type Promotion”.

For example:

#include <iostream>

using namespace std;

int main()

{

 int a=6;

 float b=3.14;

 cout << a+b;

}

Chapter 9.indd 52 14-08-2018 17:00:21

52 53

 In the above program, operand a is an int type and b is a float type. During the execution
of the program, int is converted into a float, because a float is wider than int. Hence, the output
of the above program will be: 9.14

The following Table 9.11 shows you the conversion pattern.

LHO

RHO
char short int long float double

long
double

char int int int long float double
long

double

short int int int long float double
long

double

int int int int long float double
long

double

long long long long long float double
long

double

float float float float float float double
long

double

double double double double double double double
long

double

long
double

long
double

long
double

long
double

long
double

long
double

long
double

long
double

(RHO – Right Hand Operand; LHO – Left Hand Operand)

Table 9.11: Implicit conversion of mixed operands

Chapter 9.indd 53 14-08-2018 17:00:21

54 55

(2) Explicit type conversion

 C++ allows explicit conversion of variables or expressions from one data type to
another specific data type by the programmer. It is called as “type casting”.

Syntax:

 (type-name) expression;

Where type-name is a valid C++ data type to which the conversion is to be performed.

Example:

#include <iostream>

using namespace std;

int main()

{

 float varf=78.685;

 cout << (int) varf;

}

 In the above program, variable varf is declared as a float with an initial value 78.685.
The value of varf is explicitly converted to an int type in cout statement. Thus, the final output
will be 78.

 During explicit conversion, if you assign a value to a type with a greater range, it does
not cause any problem. But, assigning a value of a larger type to a smaller type may result in
loosing or loss of precision values.

SN Explicit Conversion Problem

1 double to float
Loss of precision. If the original value is out of
range for the target type, the result becomes
undefined

2 float to int
Loss of fractional part. If original value may be
out of range for target type, the result becomes
undefined

3 long to short Loss of data

Chapter 9.indd 54 14-08-2018 17:00:21

54 55

Table 9.12 – Explicit Conversion Problems

#include <iostream>
using namespace std;
int main()
{
 double varf=178.25255685;
 cout << (float) varf << endl;
 cout << (int) varf << endl;
}

Output:

178.253
178

Example:

1. What is meant by type conversion?

2. How implicit conversion different from explicit conversion?

3. What is difference between endl and \n?

4. What is the use of references?

5. What is the use of setprecision () ?

?Evaluate Yourself

Hands on practice:

1. Write C++ programs to interchange the values of two variables.

 a. Using with third variable

 b. Without using third variable

2. Write C++ programs to do the following:

 a. To find the perimeter and area of a quadrant.

 b. To find the area of triangle.

 c. To convert the temperature from Celsius to Fahrenheit.

Chapter 9.indd 55 14-08-2018 17:00:21

56 57

3. Write a C++ to find the total and percentage of marks you secured from 10th Standard
Public Exam. Display all the marks one-by-one along with total and percentage. Apply
formatting functions.

• Every programming language has two
fundamental elements, viz., data types
and variables.

• In C++, the data types are classified
as three main categories (1) Built-in
data types (2) User-defined data types
(3) Derived data types.

• The variables are the named space to hold
values of certain data type.

• There are five fundamental data types in
C++: char, int, float, double and void.

• C++ compiler allocates specific memory
space for each and every data handled
according to the compiler’s standards.

• Variables are user-defined names
assigned to a memory location in which
the values are stored.

• Declaration is a process to instruct the
compiler to allocate memory as per the
type specified along with the variable
name.

• Manipulators are used to format output
of any C++ program. Manipulators are
functions specifically designed to use with
the insertion (<<) and extraction(>>)
operators.

• An expression is a combination of
operators, constants and variables
arranged as per the rules of C++.

• The process of converting one
fundamental type into another is called
as “Type Conversion”. C++ provides
two types of conversions (1) Implicit
type conversion and (2) Explicit type
conversion.

Points to Remember:

Evaluation

Part – I

Choose the correct answer.

1. How many categories of data types available in C++?

 (a) 5 (b) 4 (c) 3 (d) 2

2. Which of the following data types is not a fundamental type?

 (a) signed (b) int (c) float (d) char

3. What will be the result of following statement?

Chapter 9.indd 56 14-08-2018 17:00:21

56 57

 char ch= ‘B’;

 cout << (int) ch;

 (a) B (b) b (c) 65 (d) 66

4. Which of the character is used as suffix to indicate a floating point value?

 (a) F (b) C (c) L (d) D

5. How many bytes of memory allocates for the following variable declaration if you are
using Dev C++? short int x;

 (a) 2 (b) 4 (c) 6 (d) 8

6. What is the output of the following snippet?

 char ch = ‘A’;

 ch = ch + 1;

 (a) B (b) A1 (c) F (d) 1A

7. Which of the following is not a data type modifier?

 (a) signed (b) int (c) long (d) short

8. Which of the following operator returns the size of the data type?

 (a) sizeof() (b) int () (c) long () (d) double ()

9. Which operator to be used to access reference of a variable?

 (a) $ (b) # (c) & (d) !

10. This can be used as alternate to endl command:

 (a) \t (b) \b (c) \0 (c) \n

Part – II

Answers to all the questions (2 Marks):

1. Write a short note const keyword with an example.

2. What is the use of setw() format manipulator?

3. Why is char often treated as integer data type?

Chapter 9.indd 57 14-08-2018 17:00:21

58 59

4. What is a reference variable? What is its use?

5. Consider the following C++ statement. Are they equivalent?

 char ch = 67;

 char ch = ‘C’;

6. What is the difference between 56L and 56?

7. Determine which of the following are valid constant? And specify their type.

 (i) 0.5 (ii) ‘Name’ (iii) ‘\t’ (iv) 27,822

8. Suppose x and y are two double type variable that you want add as integer and assign to
an integer variable. Construct a C++ statement for the doing so.

9. What will be the result of following if num=6 initially.

 (a) cout << num;

 (b) cout << (num==5);

10. Which of the following two statements are valid? Why? Also write their result.

 int a;

 (i) a = 3,014; (ii) a=(3,014);

Part – III

Answers to all the questions (3 Marks):

1. What are arithmetic operators in C++? Differentiate unary and binary arithmetic operators.
Give example for each of them.

2. Evaluate x+= x + ++x; Let x=5;

3. How relational operators and logical operators related to one another?

Chapter 9.indd 58 14-08-2018 17:00:21

58 59

4. Evaluate the following C++ expressions where x, y, z are integers and m, n are floating
point numbers. The value of x = 5, y = 4 and m=2.5;

 (i) n = x + y / x;

 (ii) z = m * x + y;

 (iii) z = (x++) * m + x;

Reference:

(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth Edition), Herbert Schildt. Mc.Graw Hills.

(3) Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora,
Dhanpat Rai & Co.

Chapter 9.indd 59 14-08-2018 17:00:21

60 61

Learning Objectives

After learning this chapter, the students
will be able to

• Understand the
different kinds of
s t a t e m e n t s .

• Construct different flow
of control statements in
C++.

10.1 Introduction

 In the previous chapters you learnt the
basic concepts of C++ programming such as
variables, constants, operators, data types etc.
Generally a program executes its statements
sequentially from beginning to end. However,
such a strict sequential ordering is restrictive
and less useful. There are lot of situations
where it is useful to decide the code block
executed on the basis of a certain condition.
In such situations, the flow of control jumps
from one part of the code to another segment
of code. Program statements that cause
such jumps are called as “Control flow”.
This chapter deals with the basics of control
structures such as “Selection”, “Iteration” and
“Jump” statement.

10.2 Statements

 A computer program is a set of
statements or instructions to perform a

CHAPTER 10
Flow of Control

specific task. These statements are intended
to perform specific action. The action may
be of variable declarations, expression
evaluations, assignment operations, decision
making, looping and so on.

There are two kinds of statements used in
C++.

(i) Null statement

(ii) Compound statement

10.2.1 Null statement

 The "null or empty statement" is a
statement containing only a semicolon. It
takes the flowing form:

 ; // it is a null statement

 Null statements are commonly used
as placeholders in iteration statements or as
statements on which to place labels at the
end of compound statements or functions.

10.2.2 Compound (Block) statement

 C++ allows a group of statements
enclosed by pair of braces {}. This group
of statements is called as a compound
statement or a block.

The general format of compound statement
is:

Unit III Introduction to C++

Chapter 10.indd 60 14-08-2018 15:45:38

60 61

{

 statement1;

 statement2;

 statement3;

}

For example

{

 int x, y;

 x = 10;

 y = x + 10;

}

 The compound statement or block is
a treated as a single unit and may be appear
anywhere in the program.

10.3 Control Statements

 Control statements are statements
that alter the sequence of flow of instructions.

 In a program, statements may
be executed sequentially, selectively or
iteratively. Every programming languages
provides statements to support sequence,
selection (branching) and iteration.

 If the Statements are executed
sequentially, the flow is called as sequential
flow. In some situations, if the statements
alter the flow of execution like branching,
iteration, jumping and function calls, this
flow is called as control flow.

Sequence statement

Statement 1

Statement 2

Statement 3

 The sequential statement are the
statements, that are executed one after
another only once from top to bottom.
These statements do not alter the flow of
execution. These statements are called as
sequential flow statements. They are always
end with a semicolon (;).

Selection statement

STATEMENT 2

Entry

True

STATEMENT1

STATEMENT 1 STATEMENT 2

False
Condition

Exit

Chapter 10.indd 61 14-08-2018 15:45:38

62 63

 The selection statement means the statement (s) are executed depends upon a condition.
If a condition is true, a true block (a set of statements) is executed otherwise a false block is
executed. This statement is also called decision statement or selection statement because it
helps in making decision about which set of statements are to be executed.

Iteration statement

False

The Exit Condition

The Loop Body

STATEMENT 1

STATEMENT 2

Condition
?

 The iteration statement is a set of statement are repetitively executed depends upon a
conditions. If a condition evaluates to true, the set of statements (true block) is executed again
and again. As soon as the condition becomes false, the repetition stops. This is also known as
looping statement or iteration statement.

 The set of statements that are executed again and again is called the body of the loop.
The condition on which the execution or exit from the loop is called exit-condition or test-
condition.

 Generally, all the programming languages supports this type of statements to write
programs depends upon the problems. C++ also supports this type of statements. These
statements will be discussed in coming sections.

 In selection statements and iteration statements are executed depends upon the
conditional expression. The conditional expression evaluates either true or false.

Note

Note:
 In C++, any nonzero is treated as true including negative numbers
and zero is treated as false.

True

Chapter 10.indd 62 15/08/18 5:42 PM

62 63

10.4 Selection statements

 In a program a decision causes a one time jump to a different part of a program.
Decisions in C++ are made in several ways, most importantly with if .. else … statement which
chooses between two alternatives. Another decision statement , switch creates branches for
multiple alternatives sections of code, depending on the value of a single variable.

10.4.1 if statement

 The if statement evaluates a condition, if the condition is true then a true-block (a
statement or set of statements) is executed, otherwise the true-block is skipped.The general
syntax of the if statement is:

if (expression)
 true-block;
statement-x;

 In the above syntax, if is a keyword that should contain expression or condition which is
enclosed within parentheses. If the expression is true (nonzero) then the true-block is executed
and followed by statement-x are also executed, otherwise, the control passes to statement-x.
The true-block may consists of a single statement, a compound statement or empty statement.
The control flow of if statement and the corresponding flow chart is shown below.

Test
expression

True-block

Statement- X

#include<iostream>
using namespace std;
int main()
{
 int qty, dis=0;
 float rate, tot;
 cout<<"\nEnter the quantity ";
 cin>>qty;

Illustration 10.1 C++ program to calculate total expenses using if statement

Chapter 10.indd 63 14-08-2018 15:45:38

64 65

 cout<<"\nEnter the rate ";
 cin>>rate;
 if (qty> 500)
 dis=10;
 tot = (qty * rate) - (qty * rate * dis / 100);
 cout<<"The total expenses is "<< tot;
 return 0;
}
Output
First Run
Enter the quantity 550
Enter the rate 10
The total expenses is 4950
Second Run
Enter the quantity 450
Enter the rate 10
The total expenses is 4500

 In the first execution of the program, the test condition evaluates to true, since qty>
500. Therefore, the variable dis which is initialized to 0 at the time of declaration, now gets a
new value 10. The total expenses is calculated using a new dis value.

 In the second execution of the program, the test condition evaluates to false, since qty>
500. Thus, the variable dis which is initialized to 0 at the time of declaration, remains 0. Hence,
the expression after the minus sign evaluates to 0. So, the total expenses is calculated without
discount.

#include <iostream>
using namespace std;
int main()
{
 int age;
 cout<< "\n Enter your age: ";
 cin>> age;
 if(age>=18)
 cout<< "\n You are eligible for voting";
 cout<< "This statement is always executed.";
 return 0;
}

Illustration 10.2 C++ program to check whether a person is eligible to vote using if
statement

The pair of braces is not required
because if condition followed by
only one statement

Chapter 10.indd 64 15/08/18 5:42 PM

64 65

Output

 Enter your age: 23
 You are eligible for voting….
 This statement is always executed.

#include<iostream>
using namespace std;
int main()
{
int bonus,yr_of_ser;
cout<<"\nEnter your year of service ";
cin>>yr_of_ser;
 if (yr_of_ser> 3)
 {
 bonus=2000;
 cout<<"\n Your bonus is " <<bonus;
 }
cout<<"\nCongratulations...";
return 0;
}
Output

Enter your year of service 5
Your bonus is 2000
Congratulations...

Illustration 10.3 C++ program to calculate bonus using if statement

The pair of braces must be required because the
if condition followed by more then statement

10.4.2 if-else statement

 In the above examples of if, you have seen so for allow you to execute a set of statement
is a condition evaluates to true. What if there is another course of action to be followed if the
condition evaluates to false. There is another form of if that allows for this kind of either or
condition by providing an else clause. The syntax of the if-else statement is given below:

if (expression)
{
 True-block;
}
else
{
 False-block;
}
Statement-x

Chapter 10.indd 65 14-08-2018 15:45:39

66 67

 In if-else statement, first the expression or condition is evaluated either true of false. If
the result is true, then the statements inside true-block is executed and false-block is skipped.
If the result is false, then the statement inside the false-block is executed i.e., the true-block is
skipped.

Test expression

True

False

True Block
False-Block

Statement-X

#include <iostream>
using namespace std;
int main()
{
 int num, rem;
 cout<< "\n Enter a number: ";
 cin>>num;
 rem = num % 2;
 if (rem==0)
 cout<< "\n The given number" <<num<< " is Even";
 else
 cout<< "\n The given number "<<num<< " is Odd";
 return 0;
}
Output

Enter number: 10
The given number 10 is Even

Illustration 10.4 C++ program to find whether the given number is even number or
odd number using if-else statement

 In the above program, the remainder of the given number is stored in rem. If the value
of rem is zero, the given number is inferred as an even number otherwise, it is inferred as on
odd number.

Chapter 10.indd 66 14-08-2018 15:45:39

66 67

10.4.3 Nested if
 An if statement contains another if statement is called nested if. The nested can have
one of the following three forms.

1. If nested inside if part

2. If nested inside else part

3. If nested inside both if part and else part

The syntax of the nested if:

if (expression-1)
{
 if (expression)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}
else
 body of else part;

If nested inside if part If nested inside else part
if (expression-1)
{
 body of true part;
}
else
{
 if (expression)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}

if (expression)
{
 if (expression)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}
else
{
 if (expression)
 {
 True_Part_Statements;
 }
 else
 {
 False_Part_Statements;
 }
}

If nested inside both if part
and else part

Chapter 10.indd 67 15/08/18 5:42 PM

68 69

 In the first syntax of the nested if mentioned above the expression-1 is evaluated and
the expression result is false then control passes to statement-m. Otherwise, expression-2 is
evaluated,if the condition is true, then Nested-True-block is executed, next statement-n is also
executed. Otherwise Nested-False-Block, statement-n and statement-m are executed.

 The working procedure of the above said if..else structures are given as flowchart below:

Statement 3 Statement 2

Statement x

Statement 1

False

False
Condition 2

Condition 1
True

True

Next Statement

Flowchart 10.1 if nested inside if Part

Statement Statement

Statement

Statement

False

Condition

Condition
True

Next Statement

Flowchart 10.2 If nested inside else part

Chapter 10.indd 68 14-08-2018 15:45:39

68 69

Statement Statement Statement Statement

False

FalseFalse
Condition Condition

Condition
True

True True

Flowchart 10.3 If nested inside both if part and else part

#include <iostream>
using namespace std;
int main()
{
 int sales, commission;
 char grade;
 cout << "\n Enter Sales amount: ";
 cin >> sales;
 cout << "\n Enter Grade: ";
 cin >> grade;
 if (sales > 5000)
 {
 commission = sales * 0.10;
 cout << "\n Commission: " << commission;
 }
 else
 {
 commission = sales * 0.05;
 cout << "\n Commission: " << commission;
 }
 cout << "\n Good Job ";
 return 0;
}
Output:
Enter Sales amount: 6000
Enter Grade: A
Commission: 600
Good Job

Illustration 10.5 – C++ program to calculate commission according to grade using
nested if statement

Chapter 10.indd 69 14-08-2018 15:45:39

70 71

10.4.4 if -else-if ladder

 The if-else ladder is a multi-path decision making statement. In this type of statement
'if ' is followed by one or more else if statements and finally end with an else statement.

The syntax of if-else ladder:

if (expression 1)
{
 Statemet-1
}
else
 if(expression 2)
 {
 Statemet-2
 }
 else
 if (expression 3)
 {
 Statemet-3
 }
 else
 {
 Statement-4
 }

 When the respective expression becomes true, the statement associated with block is
executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final
else statement will be executed.

Condition- n

Condition-1

Statement -2 Statement-n Statment-sStatement-1

True True
True

False

False

False

Next Statement

Condition-2

Flowchart 10.4 if-else ladder flow chart

Chapter 10.indd 70 14-08-2018 15:45:39

70 71

#include <iostream>
using namespace std;
int main ()
{
int marks;
cout<<" Enter the Marks :";
cin>>marks;
if(marks >= 60)
 cout<< "Your grade is 1st class !!" <<endl;
 else if(marks >= 50 && marks < 60)
 cout<< "your grade is 2nd class !!" <<endl;
 else if(marks >= 40 && marks < 50)
 cout<< "your grade is 3rd class !!" <<endl;
else
 cout<< "You are fail !!" <<endl;
return 0;
}
Output
Enter the Marks :60
Your grade is 1st class !!

Illustration 10.6 C++ program to find your grade using if-else ladder.

 When the marks are greater than or equal to 60, the message "Your grade is 1st class
!!" is displayed and the rest of the ladder is bypassed. When the marks are between 50 and 59,
the message "Your grade is 2nd class !!" is displayed, and the other ladder is bypassed. When
the mark between 40 to 49, the message "Your grade is 3nd class !!" is displayed, otherwise,
the message "You are fail !!" is displayed.

10.4.5 The ?: Alternative to if- else

 The conditional operator (or Ternary operator) is an alternative for ‘if else statement’.
The conditional operator that consists of two symbols (?:). It takes three arguments. The control
flow of conditional operator is shown below

The syntax of the conditional operator is:

 expression 1? expression 2 : expression 3

FALSE

Expression1 (with
Condition) ? Expression 2 Expression 3

TRUE

:

Chapter 10.indd 71 14-08-2018 15:45:39

72 73

 In the above syntax, the expression 1 is a condition which is evaluated, if the condition
is true (Non-zero), then the control is transferred to expression 2, otherwise, the control passes
to expression 3.

#include <iostream>
using namespace std;
int main()
{
 int a, b, largest;
 cout << "\n Enter any two numbers: ";
 cin >> a >> b;
 largest = (a>b)? a : b;
 cout << "\n Largest number : " << largest;
 return 0;
}
Output:
 Enter any two numbers: 12 98
 Largest number : 98

Illustration 10.7 – C++ program to find greatest of two numbers using conditional
operator

10.4.6 Switch statement

 The switch statement is a multi-way branch statement. It provides an easy way to
dispatch execution to different parts of code based on the value of the expression. The switch
statement replaces multiple if-else sequence.

The syntax of the switch statement is;

switch(expression)
{
 case constant 1:
 statement(s);
 break;
 case constant 2:
 statement(s);
 break;
 .
 .
 .
 .
 default:
 statement(s);
}

Chapter 10.indd 72 14-08-2018 15:45:39

72 73

 In the above syntax, the expression is evaluated and if its value matches against the
constant value specified in one of the case statements, that respective set of statementsare
executed. Otherwise, the statements under the default option are executed. The workflow of
switch statement and flow chart are shown below.

Expression

default

Case 3

Case 2

Case 1

code in case 1Block

code in case 1Block

code in case 2Block

code in case 3Block

code in default Block

Flowchart10.5: workflow of switch and flow chart

Rules:

1. The expression provided in the switch should result in a constant value otherwise it would
not be valid.

2. Duplicate case values are not allowed.

3. The default statement is optional.

4. The break statement is used inside the switch to terminate a statement sequence. When
a break statement is reached, the switch terminates, and the flow of control jumps to the
next line following the switch statement.

5. The break statement is optional. If omitted, execution will continue on into the next case.
The flow of control will fall through to subsequent cases until a break is reached.

6. Nesting of switch statements is also allowed.

Chapter 10.indd 73 14-08-2018 15:45:39

74 75

#include <iostream>
using namespace std;
int main()
{
 int num;
 cout << "\n Enter week day number: ";
 cin >> num;
 switch (num)
 {
 case 1 : cout << "\n Sunday"; break;
 case 2 : cout << "\n Monday"; break;
 case 3 : cout << "\n Tuesday"; break;
 case 4 : cout << "\n Wednessday"; break;
 case 5 : cout << "\n Thursday"; break;
 case 6 : cout << "\n Friday"; break;
 case 7 : cout << "\n Saturday"; break;
 default: cout << "\n Wrong input....";
 }
}
Output:
Enter week day number: 6
Friday

Illustration 10.8 – C++ program to demonstrate switch statement

#include <iostream>
using namespace std;
int main()
{
 char grade;
 cout << "\n Enter Grade: ";
 cin >> grade;
switch(grade)
 {
 case 'A' : cout << "\n Excellent...";
 break;
 case 'B' :
 case 'C' : cout << "\n Welldone ...";
 break;
 case 'D' : cout << "\n You passed ...";
 break;
 case 'E' : cout << "\n Better try again ...";
 break;
 default : cout << "\n Invalid Grade ...";
 }

Illustration 10.9 – C++ program to demonstrate switch statement

Chapter 10.indd 74 14-08-2018 15:45:39

74 75

cout << "\n Your grade is " << grade;
 return 0;
}
Output:
Enter Grade: C
Welldone ...
Your grade is C

10.4.7 Switch vs if-else

 “if-else” and “switch” both are selection statements. The selection statements, transfer
the flow of the program to the particular block of statements based upon whether the condition
is “true” or “false”. However, there are some differences in their operations. These are given
below:

Key Differences Between if-else and switch

1. Expression inside if statement decide whether to execute the statements inside if block
or under else block. On the other hand, expression inside switch statement decide which
case to execute.

2. An if-else statement uses multiple statements for multiple choices. On other hand, switch
statement uses single expression for multiple choices.

3. If-esle statement checks for equality as well as for logical expression. On the other hand,
switch checks only for equality.

4. The if statement evaluates integer, character, pointer or floating-point type or Boolean
type. On the other hand, switch statement evaluates only character or a integer data type.

5. Sequence of execution is like either statement under if block will execute or statements
under else block statement will execute. On the other hand the expression in switch
statement decide which case to execute and if do not apply a break statement after each
case it will execute till the end of switch statement.

6. If expression inside if turn out to be false, statement inside else block will be executed.
If expression inside switch statement turn out to be false then default statements are
executed.

7. It is difficult to edit if-else statements as it is tedious to trace where the correction is
required. On the other hand, it is easy to edit switch statements as they are easy to trace.

The if statement is more flexible than switch statement.

Chapter 10.indd 75 14-08-2018 15:45:39

76 77

Some important things to know about switch

There are some important things to know about switch statement. They are

1. A switch statement can only work for quality of comparisons.

2. No two case labels in the same switch can have identical values.

3. If character constants are used in the switch statement, they are automatically converted
to their equivalent ASCII codes.

4. The switch statement is more efficient choice than if in a situation that supports the nature
of the switch operation.

Tips: The switch statement is more efficient than if-else statement.

10.4.8 Nested switch

 When a switch is a part of the statement sequence of another switch, then it is called as
nested switch statement. The inner switch and the outer switch constant may or may not be the
same.

The syntax of the nested switch statement is;

switch (expression)
{
 case constant 1:
 statement(s);
 break;
 switch(expression)
 {
 case constant 1:
 statement(s);
 break;
 case constant 2:
 statement(s);
 break;
 .
 .
 .
 default :
 statement(s);
 }
case constant 2:
statement(s);
break;
 .
 .
 .
default :
statement(s);
}

Chapter 10.indd 76 14-08-2018 15:45:39

76 77

 The below program illustrates nested switch statement example. The outer switch checks
for zero or non-zero and the inner switch checks for odd or even.

#include <iostream>
using namespace std;
int main()
{
int a = 8;
cout<<"The Number is : " <<a <<endl;
switch (a)
 {
 case 0 :
 cout<<"The number is zero" <<endl;
 break;
 default:
 cout<<"The number is a non-zero integer" <<endl;
 int b = a % 2;
 switch (b)
{
 case 0:
 cout<<"The number is even" <<endl;
 break;
 case 1:
 cout<<"The number is odd" <<endl;
 break;
 }
}
 return 0;
}
Output
The Number is : 8
The number is a non-zero integer
The number is even

Illustration 10.10 C++ program to check for zero or non-zero and odd or even using
nested switch statement

10.5 Iteration statements

 An iteration (or looping) is a sequence of one or more statements that are repeatedly
executed until a condition is satisfied. These statements are also called as control flow
statements. It is used to reduce the length of code, to reduce time, to execute program and
takes less memory space. C++ supports three types of iteration statements;

Chapter 10.indd 77 14-08-2018 15:45:39

78 79

• for statement

• while statement

• do-while statement

 All looping statements repeat a set statements as long as a specified condition is remains
true. The specified condition is referred as a loop control. For all three loop statements, a true
condition is any nonzero value and a zero value shows a false condition.

10.5.1 Parts of a loop

 Every loop has four elements that are used for different purposes. These elements are

• Initialization expression

• Test expression

• Update expression

• The body of the loop

Initialization expression(s): The control variable(s) must be initialized before the control
enters into loop. The initialization of the control variable takes place under the initialization
expressions. The initialization expression is executed only once in the beginning of the loop.

Test Expression: The test expression is an expression or condition whose value decides whether
the loop-body will be execute or not. If the expression evaluates to true (i.e., 1), the body of the
loop executed, otherwise the loop is terminated.

In an entry-controlled loop, the test-expression is evaluated before the entering into a loop
whereas in an exit-controlled loop, the test-expression is evaluated before exit from the loop.

Update expression: It is used to change the value of the loop variable. This statement is
executed at the end of the loop after the body of the loop is executed.

The body of the loop: A statement or set of statements forms a body of the loop that are
executed repetitively. In an entry-controlled loop, first the test-expression is evaluated and
if it is nonzero, the body of the loop is executed otherwise the loop is terminated. In an exit-
controlled loop, the body of the loop is executed first then the test-expression is evaluated. If
the test-expression is true the body of the loop is repeated otherwise loop is terminated

10.5.2 for loop

 The for loop is the easiest looping statement which allows code to be executed repeatedly.
It contains three different statements (initialization, condition or test-expression and update
expression(s)) separated by semicolons.

Chapter 10.indd 78 14-08-2018 15:45:39

78 79

The general syntax is:

for (initialization(s); test-expression; update expression(s))
{
 Statement 1;
 Statement 2;
 ………….
}
Statement-x;

 The initialization part is used to initialize variables or declare variable which are executed
only once, then the control passes to test-expression. After evaluation of test-expression, if
the result is false, the control transferred to statement-x. If the result is true, the body of the
for loop is executed, next the control is transferred to update expression. After evaluation of
update expression part, the control is transferred to the test-expression part. Next the steps 3
to 5 is repeated. The workflow of for loop and flow chart are shown below.

Test
expression

Body of for
Loop

Initilization
Statement

Statement-X

Update
Statement

Exit for Loop

False

True

Flowchart 10.6: Workflow of for loop and flow chart

#include <iostream>
using namespace std;
int main ()
{

Illustration 10.11 C++ program to display numbers from 0 to 9 using for loop

Chapter 10.indd 79 14-08-2018 15:45:39

80 81

int i;
for(i = 0; i< 10; i ++)
 cout<< "value of i : " <<i<<endl;
return 0;
}
Output
value of i : 0
value of i : 1
value of i : 2
value of i : 3
value of i : 4
value of i : 5
value of i : 6
value of i : 7
value of i : 8
value of i : 9

The following lines describes the working of the above given for loop:

Initialization Expression

 Test Expression Update Expression

for (i=0; i < 10; i++)

 Body of the loop

cout<<"value of i:"<<i<<endl;

Here, the body of the loop contains
a single statement,so need not use
curly braces

 In the above program, first the variable i is initialized, next i is compared with 10, if i is
less than ten, the value of i is incremented. In this way, the numbers 0 to 9 are displayed. Once
i becomes 10, it is no longer < 10. So, the control comes out of the for loop.

Chapter 10.indd 80 14-08-2018 15:45:39

80 81

#include <iostream>
using namespace std;
int main ()
{
int i,sum=0;
for(i=1; i<=10;i++)
 {
 sum=sum+i;
 }
cout<<"The sum of 1 to 10 is "<<sum;
return 0;
}
Output
The sum of 1 to 10 is 55

Illustration 10.12 C++ program to sum the numbers from 1 to 10 using for loop

Variations of for loop

 The for is one of the most important looping statement in C++ because it allows a
several variations. These variations increase the flexibility and applicability of for loop. These
variations will be discussed below:

Multiple initialization and multiple update expressions

 Multiple statements can be used in the initialization and update expressions of for loop.
These multiple initialization and multiple update expressions are separated by commas. For
example,

#include<iostream>
using namespace std;
int main()
{
 int i, j;
 for(i=0, j=10 ; i<j ; i++,j--)
 {
 cout<<"\nThe value of i is"<<i<<" The value of j is "j;

} }

Multiple initialization expressions
(separated by commas)

Multiple update expressions
(separated by commas)

Chapter 10.indd 81 14-08-2018 15:45:39

82 83

}
return 0;
}
Output
The value of i is 0 The value of j is 10
The value of i is 1 The value of j is 9
The value of i is 2 The value of j is 8
The value of i is 3 The value of j is 7
The value of i is 4 The value of j is 6

 In the above example, the initialization part contains two variables i and j and update
expression contains i++ and j++. These two variables are separated by commas which is
executed in sequential order i.e., during initialization firstly i=0 followed by j=10. Similarly, in
update expression, firstly i++ is evaluated followed by j++ is evaluated.

Prefer prefix operator over postfix

 Generally, the update expression contains increment/decrement operator (++ or --).
In this part, always prefer prefix increment/decrement operator over postfix when to be used
alone. The reason behind this is that when used alone, prefix operators are executed faster than
postfix.

Optional expressions

 Generally, the for loop contains three parts, i.e., initialization expressions, test expressions and
update expressions. These three expressions are optional in a for loop.

Case 1

#include <iostream>
using namespace std;
int main ()
{
int i, sum=0, n;
cout<<"\n Enter The value of n";
cin>>n;
i =1;
for (; i<=10;i++)
 {
 sum += i;
 }

Illustration 10.13 (a) C++ program to sum the numbers from 1 to 10

Chapter 10.indd 82 14-08-2018 15:45:39

82 83

cout<<"\n The sum of 1 to " <<n<<"is "<<sum;
return 0;
}
Output
Enter the value of n 5
The sum of 1 to 5 is 15

 In the above example, the variable i is declared and sum is initialized at the time of variable
declaration. The variable i is assigned to 0 before the for loop but still the semicolon is necessary before
test expression. In a for loop, if the initialization expression is absent then the control is transferred to
test expression/conditional part.

Case 2

#include <iostream>
using namespace std;
int main ()
{
int i, sum=0, n;
cout<<"\n Enter The value of n";
cin>>n;
i =1;
for (; i<=10;)
 {
 sum += i;
 ++i;
 }
cout<<"\n The sum of 1 to " <<n<<"is "<<sum;
return 0;
}
Output
Enter the value of n 5
The sum of 1 to 5 is 15

Illustration 10.13 (b) C++ program to sum the numbers from 1 to 10

Chapter 10.indd 83 14-08-2018 15:45:39

84 85

 In the above code, the update expression is not done, but a semicolon is necessary before the
update expression.

Initialization expression and
update expressions are skipped

for (; i<=n;)

 In the above code, neither the initialization nor the update expression is done in the for loop.
If both or any one of expressions are absent then the control is transferred to conditional part.

Case 3

 An infinite loop will be formed if a test-expression is absent in a for loop. For example,

for(i=0 ; ; ++i)

cout<<"\n Welcome"; This statement is
continually running

test - expression is skipped

Similarly, the following for loop also forms an infinite loop.

for(; ;)

cout<<"\n Welcome"; This statement is
continually running

All three expressions are skipped

Empty loop

 Empty loop means a loop has no statement in its body is called an empty loop. Following
for loop is an empty loop:

for(i+0 ; i<=5; +=i) ; The body of for loop
contains a null statement

 In the above code, the for loop contains a null statement, it is an empty loop.

Chapter 10.indd 84 14-08-2018 15:45:39

84 85

Similarly, the following for loop also forms an empty loop.

for(i=0 ; i<=5; ++i) ;
The body of for loop
contains a null statement

The body of for loop is not
executed because semicolon(;)
is ended at the end of for loop.cout<<"\nWe are Indians";

{

}

int i;

 In the above code, the body of a for loop enclosed by braces is not executed at all
because a semicolon is ended after the for loop.

Declaration of variable in a for loop

 In C++, the variables can also be declared within a for loop. For instance,

 int main ()

 int sum = 0;

 for(int i=0; i<=5; ++i)

 Variable (i)is declared within the for loop.

 The variable i can be accessed
only within the body of loop.

 cout<<"\nThe variable i cannot access here";

 cout<<"\n The variable sum can access here";

 sum = sum + i;
 {

 {

 }

 }

 A variable declared inside the block of main() can be accessed anywhere inside main()
i.e., the scope of variable in main()

10.5.3 While loop

 A while loop is a control flow statement that allows the loop statements to be executed
as long as the condition is true. The while loop is an entry-controlled loop because the test-
expression is evaluated before the entering into a loop.

The while loop syntax is:

while (Test expression)
{
 Body of the loop;
}
Statement-x;

Chapter 10.indd 85 14-08-2018 15:45:39

86 87

The control flow and flow chart of the while loop is shown below.

Test
expression

Body of while
Loop

Statement -X;

True

false

Flowchart 10.7: while loop control flow and while loop flowchart
 In while loop, the test expression is evaluated and if the test expression result is true,
then the body of the loop is executed and again the control is transferred to the while loop.
When the test expression result is false the control is transferred to statement-x.

#include <iostream>
using namespace std;
int main ()
{
int i=1,sum=0;
while(i<=10)
{
 sum=sum+i;
 i++;
}
cout<<"The sum of 1 to 10 is "<<sum;
return 0;
}
Output
The sum of 1 to 10 is 55

Illustration 10.14 C++ program to sum numbers from 1 to 10 using while loop

 In the above program, the integer variable i is initialized to 1 and the variable sum to
0. The while loop checks the condition, i < 10, if the condition is true, the value of i, which is
added to sum and i is incremented by 1. Again, the condition i < 10 is checked. Since 2 < 10, 2
is added to the earlier value of sum. This continues until i becomes 11. At this point in time,
11 < 10 evaluates to false and the while loop terminates. After the loop termination, the value
of sum is displayed.

Chapter 10.indd 86 14-08-2018 15:45:39

86 87

#include <iostream>
using namespace std;
int main ()
{
int i=1,num,avg,sum=0;
while(i<=5)
{
 cout<<"Enter the number : ";
 cin>>num;
 sum=sum+num;
 i++;
}
avg=sum/5;
cout<<"The sum is "<<sum<<endl;
cout<<"The average is "<<avg;
return 0;
}
Output
Enter the number : 1
Enter the number : 2
Enter the number : 3
Enter the number : 4
Enter the number : 5
The sum is 15
The average is 3

Illustration 10.15 C++ program to sum numbers from 1 to 10 using while loop

 In the above program, integer variables num and avg are declared and variable i is
initialized to 1 and sum to 0. The while loop checks the condition, since i <= 5 the condition is
true, a number is read from the user and this is added to sum and i is incremented by 1. Now,
the condition is i <= 5 is again checked. Since 2 <=5, the second number is obtained from
the user and it is added to sum. This continues, until i becomes 6, at which point the while
loop terminates. After the loop termination, the avg is computed and both sum and avg are
displayed.

While loop variation

 A while loop may contain several variations. It can be an empty loop or an infinite
loop. An empty while loop does not have any statement inside the body of the loop except null
statement i.e., just a semicolon.

Chapter 10.indd 87 14-08-2018 15:45:39

88 89

For example

This is an empty loop because the while
loop does not contain any statement

while(++i < 10000)
int i=0;

return 0;

}
}

{
int main()

 In the above code, the loop is a time delay loop. A time delay loop is useful for pausing
the program for some time.

 A while loop may be infinite loop when no update statement inside the body of the
loop. For example,

This statement is infinitely
displaying because no update
statement inside body of the loop

This is not part of the while loop statementt
because of missing curly braces

cout <<"The value of i is "<<i;

i++;

while(i < =10)
int i = 0;

int main()
{

}

return 0;

Similarly, there is another variation of while is also shown below:

int main()

{

 int i=1;

 while(++i < 10)

 cout<< “The value of i is “<<i;

 return 0;

}

Chapter 10.indd 88 14-08-2018 15:45:39

88 89

In the above statement while (++i < 10), first increment the value of i, then the value of i is
compared with 10.

int main()

{

 int i=1;

 while(i++ < 10)

 cout<< “The value of i is “<<i;

 return 0;

}

 In the above statement while (i++ < 10), first the value of i is compared with 10 and
then the incrementation of i takes place. When the control reaches cout<< “The value of i is
“<<i statement, i has already been incremented.

10.5.4 do-while loop

 The do-while loop is an exit-controlled loop. In do-while loop, the condition is evaluated
at the bottom of the loop after executing the body of the loop. This means that the body of the
loop is executed at least once, even when the condition evaluates false during the first iteration.

The do-while loop syntax is:

do
{
 Body of the loop;

} while(condition);

Chapter 10.indd 89 14-08-2018 15:45:39

90 91

The flow control and flow chart do-while loop is shown below

Body of Loop

Test
expression

Statement - X

False

true

Flowchart 10.8 : do-while loop control flow and do-while loop flowchart

#include <iostream>

using namespace std;

int main ()

{

int n = 10;

do

{

 cout<<n<<", ";

 n--;

}while (n>0) ;

}

Output

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Illustration 10.16 C++ program to display number from 10 to 1 using do-while loop

 In the above program, the integer variable n is initialized to 10. Next the value of n is
displayed as 10 and n is decremented by 1. Now, the condition is evaluated, since 9 > 0, again
9 is displayed and n is decremented to 8. This continues, until n becomes equal to 0, at which
point, the condition n > 0 will evaluate to false and the do-while loop terminates.

Chapter 10.indd 90 14-08-2018 15:45:39

90 91

10.5.5 Nesting of loops

A loop which contains another loop is called as a nested loop.

The syntax is given below:

for (initialization(s); test-expression; update expression(s))
{
 for (initialization(s); test-expression; update expression(s)
 {
 statement(s);
 }
statement(s);
}

while(condition)
{
 while(condition)
 {
 statement(s);
 }
statement(s);
}

do
{
statement(s);
 do
 {
 statement(s);
 }while(condition);
} while(condition);

#include<iostream>
using namespace std;
int main(void)
{
 cout<< "A multiplication table:" <<endl <<" 1\t2\t3\t4\t5\t6\t7\t8\t9" <<endl<< "" <<endl;
 for(int c = 1; c < 10; c++)
 {
 cout<< c << "| ";
 for(int i = 1; i< 10; i++)
 {
 cout<<i * c << '\t';
 }
 cout<<endl;
 }
return 0;
}

Illustration 10.17 C++ program to display matrix multiplication table using nested for loop

Chapter 10.indd 91 14-08-2018 15:45:39

92 93

Output
A multiplication table:
1 2 3 4 5 6 7 8 9
1| 1 2 3 4 5 6 7 8 9
2| 2 4 6 8 10 12 14 16 18
3| 3 6 9 12 15 18 21 24 27
4| 4 8 12 16 20 24 28 32 36
5| 5 10 15 20 25 30 35 40 45
6| 6 12 18 24 30 36 42 48 54
7| 7 14 21 28 35 42 49 56 63
8| 8 16 24 32 40 48 56 64 72
9| 9 18 27 36 45 54 63 72 81

10.6 Jump statements

 Jump statements are used to interrupt the normal flow of program. Types of Jump
Statements are

• goto statement

• break statement

• continue statement

10.6.1 goto statement

 The goto statement is a control statement which is used to transfer the control from one
place to another place without any condition in a program.

The syntax of the goto statement is;

Syntax1

goto label;

label:

Syntax2

label:

goto label;

Chapter 10.indd 92 14-08-2018 15:45:39

92 93

goto label;
.
.
label :
.
.

label
.
.
goto label :
.
.

backward
jump

For ward
jump

 In the syntax above, label is an identifier. When goto label; is encountered, the control of
program jumps to label: and executes the code below it.

include <iostream>
using namespace std;
int main()
{
float num, average, sum = 0.0;
int i, n;
cout<< "Maximum number of inputs: ";
cin>> n;
for(i = 1; i<= n; ++i)
{
cout<< "Enter n" <<i<< ": ";
cin>>num;
if(num< 0.0)
{
// Control of the program move to jump:
 goto jump;
}
sum += num;
}
jump:
average = sum / (i - 1);
cout<< "\nAverage = " << average;
return 0;
}
Output
Maximum number of inputs: 5
Enter n1: 10
Enter n2: 20
Enter n3: -2
Average = 15

Illustration 10.18 C++ program to calculate average of given numbers using goto
statement

Chapter 10.indd 93 14-08-2018 15:45:39

94 95

 In the above program the average of numbers entered by the user is calculated. If the
user enters a negative number, it is ignored the average of numbers entered. Until that point is
calculated.

10.6.2 break statement

 A break statement is a jump statement which terminates the execution of loop and the
control is transferred to resume normal execution after the body of the loop. The following
Figure. shows the working of break statement with looping statements;

for(init; expr 1; expr 2) while(expe)

statement; statement;
} while (condition);
statement;

do

. . . .
if (condition)
 break;
. . . .

. . . .
if (condition)
 break;
. . . .

. . . .
if (condition)
 break;
. . . .

true truetrue
}

}

{

break statement in for, while and do-while loop

#include <iostream>
Using namespace std;
int main ()
{
int count = 0;
do
{
cout<< "Count : " << count <<endl;
count++;
if(count > 5)
 {
 break;
 }
}while(count < 20);
return 0;
}

Illustration 10.19 C++ program to count N numbers using break statement

Chapter 10.indd 94 14-08-2018 15:45:39

94 95

Output
Count : 0
Count : 1
Count : 2
Count : 3
Count : 4
Count : 5

 In the above example, while condition specified the loop will iterate 20 times but, as
soon as the count reaches 5, the loop is terminated, because of the break statement.

10.6.3 continue statement

 The continue statement works quite similar to the break statement. Instead of terminating
the loop (break statement), continue statement forces the loop to continue or execute the
next iteration. When the continue statement is executed in the loop, the code inside the loop
following the continue statement will be skipped and next iteration of the loop will begin.

The following Figure describes the working flow of the continue statement

((

()

))
if (expr)if (expr) if (expr)

countinue; countinue; countinue;

while

whilefor
{ {{

} } }.

do

The workflow of the continue statement

#include <iostream>
using namespace std;
 int main()
{
for (int i = 1; i<= 10; i++) {
if (i == 6)
continue;

Illustraion 10.20 C++ program to display numbers from 1 to 10 except 6 using continue
statement

Chapter 10.indd 95 14-08-2018 15:45:39

96 97

else
cout<<i<< " ";
}
return 0;
}
Output
1 2 3 4 5 7 8 9 10

 In the above example, the loop will iterate 10 times but, if i reaches 6, then the control
is transferred to for loop, because of the continue statement.

Difference between Break and Continue

Break Continue

Break is used to terminate the
execution of the loop.

Continue is not used to terminate the execution of
loop.

It breaks the iteration. It skips the iteration.
When this statement is executed,
control will come out from the
loop and executes the statement
immediate after loop.

When this statement is executed, it will not come out
of the loop but moves/jumps to the next iteration of
loop.

Break is used with loops as well as
switch case.

Continue is only used in loops, it is not used in
switch case.

Hands on practice:

Write C++ program to slove the following problems :

1. Tempeature - conversion program that gives the user the option of converting Fahrenheit
to Celsius or Celsius to Fahrenheit and depending upon user's choice.

2. The program requires the user to enter two numbers and an operator. It then carries out
the specified arithmetical operation: addition, subtraction, multiplication or division of
the two numbers. Finally, it displays the result.

3. Program to input a character and to print whether a given character is an alphabet, digit
or any other character.

Chapter 10.indd 96 14-08-2018 15:45:39

96 97

4. Program to print whether a given character is an uppercase or a lowercase character or a
digit or any other character. use ASCII codes for it. The ASCII codes are as given below:

 Characters ASCII Range
 '0' - '9' 48 - 57
 'A' - 'Z' 65 - 90
 'a' - 'z' 97 - 122
 other characters 0- 255 excluding the above mentioned codes.

5. Program to calculate the factorial of an integer.
6. Program that print 1 2 4 8 16 32 64 128.
7. Program to generate divisors of an interger.
8. Program to print fibonacci series i.e., 0 1 1 2 3 5 8......
9. Programs to produces the following design using nested loops

(a) (b) (c)
A
A B
A B C
A B C D
A B C D E
A B C D E F

5 4 3 2 1
5 4 3 2
5 4 3
5 4
5

#
 # # # # #
 # # #
 #

10. Program to check whether square root of a number is prime or not.

• A computer program is a set of statements
or instructions to perform a specific task.

• There are two kinds of statements
used in C++, viz Null and Compound
Statement.

• Control Statement are statements
that alter the sequence of flow of
instaructions.

• There are three kinds of control
statement used in C++. (1) Sequence
Statement (2) Selection Statement
(3) Iteration Statement

• If and Switch are Selection Statements.

• The Conditional Operator is an
alternative for 'if else Statement'.

• The Switch Statment is a multi-way
branch statement.

• Iteration Statement (looping) is use to
execute a set of statements repeatedly
until a condition is satisfied.

• There are three kinds Iteration
Statements supported. (1) for (2) While
(3) do-While.

• In C++ three Jump Statment are used
(1) goto (2) break (3) continue

Points to Remember:

Chapter 10.indd 97 14-08-2018 15:45:40

98 99

Evaluation

Part – I

Choose the correct answer

1. What is the alternate name of null statement?

 (A) No statement (B) Empty statement

 (C) Void statement (D) Zero statement

2. In C++, the group of statements should enclosed within:

 (A) { } (B) [] (C) () (D) < >

3. The set of statements that are executed again and again in iteration is called as:

 (A) condition (B) loop (C) statement (D) body of loop

4. The multi way branching statement:

 (A) if (B) if … else (C) switch (D) for

5. How many types of iteration statements?

 (A) 2 (B) 3 (C) 4 (D) 5

6. How many times the following loop will execute? for (int i=0; i<10; i++)

 (A) 0 (B) 10 (C) 9 (D) 11

7. Which of the following is the exit control loop?

 (A) for (B) while (C) do…while (D) if…else

8. Identify the odd one from the keywords of jump statements:

 (A) break (B) switch (C) goto (D) continue

9. Which of the following is the exit control loop?

 (A) do-while (B) for (C) while (D) if-else

10. A loop that contains another loop inside its body:

 (A) Nested loop (B) Inner loop

 (C) Inline loop (D) Nesting of loop

Chapter 10.indd 98 14-08-2018 15:45:40

98 99

Part – II

Answers to all the questions (2 Marks):

1. What is a null statement and compound statement?

2. What is selection statement? write it's types?

3. Correct the following code sigment:

 if (x=1)

 p= 100;

 else

 p = 10;

4. What will be the output of the following code:

 int year;

 cin >> year;

 if (year % 100 == 0)

 if (year % 400 == 0)

 cout << "Leap";

 else

 cout << "Not Leap year";

 If the input given is (i) 2000 (ii) 2003 (iii) 2010?

5. What is the output of the following code?

 for (int i=2; i<=10 ; i+=2)

 cout << i;

6. Write a for loop that displays the number from 21 to 30.

7. Write a while loop that displays numbers 2, 4, 6, 8.......20.

8. Compare an if and a ? : operator.

Part – III

Answers to all the questions (3 Marks):

1. Convert the following if-else to a single conditional statement:

 if (x >= 10)

 a = m + 5;

 else

 a = m;

Chapter 10.indd 99 14-08-2018 15:45:40

100 PB

2. Rewrite the following code so that it is functional:

 v = 5;

 do;

 {

 total += v;

 cout << total;

 while v <= 10

3. Write a C++ program to print multiplication table of a given number.

4. Write the syntax and purpose of switch statement.

5. Write a short program to print following series:

 (a) 1 4 7 10...... 40

Part – IV

Answers to all the questions (5 Marks):

1. Explain control statement with suitable example.

2. What entry control loop? Explain any one of the entry control loop with suitable example.

3. Write a program to find the LCM and GDC of two numbers.

4. Write programs to find the sum of the following series:

 (a)
 x2 + x3 - x4 + x5 - x6

2!x- 3! 4! 5! 6!

 (b) x
2 + x3 +....+ xn

2x+ 3 n

5. Write a program to find sum of the series

 S = 1 + x + x2 +..... + xn

Reference:

(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth Edition), Herbert Schildt. Mc.Graw Hills.

(3) Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora,
Dhanpat Rai & Co.

Chapter 10.indd 100 14-08-2018 15:45:40

PB 101

Learning Objectives

After learning this chapter, the students will be able to

• Understand the Definition of Functions and uses of Functions

• Understand the Types of Functions – pre-defined and
user-defined functions

• Apply mathematical functions for solving problems.

• Use String and Character functions for the manipulation of String and Character data

• Implement modular programming by creating functions

• Understand the role of arguments and compare different methods of the arguments

• Recognizes the scope of variables and functions in a program.

11.1 INTRODUCTION

 A large program can typically be split into small sub-programs (blocks) called as
functions where each sub-program can perform some specific functionality. Functions reduce
the size and complexity of a program, makes it easier to understand, test, and check for errors.
The functions which are available by default known as “Built-in” functions and user can create
their own functions known as “User-defined” functions.

• Built-in functions – Functions which are available in C++ language standard library.

• User-defined functions – Functions created by users.

11.2 Need for Functions

 To reduce size and complexity of the program we use Functions. The programmers can
make use of sub programs either writing their own functions or calling them from standard
library.

1. Divide and Conquer

• Complicated programs can be divided into manageable sub programs called functions.

• A programmer can focus on developing, debugging and testing individual functions.

• Many programmers can work on different functions simultaneously.

CHAPTER 11
Functions

Unit III Introduction to C++

Chapter 11.indd 101 14-08-2018 15:47:04

102 103

2. Reusability:

• Few lines of code may be repeatedly used in different contexts. Duplication of the same
code can be eliminated by using functions which improves the maintenance and reduce
program size.

• Some functions can be called multiple times with different inputs.

11.3 Types of Functions

Functions can be classified into two types,

1. Pre-defined or Built-in or Library Functions

2. User-defined Function.

 C++ provides a rich collection of functions ready to be used for various tasks. The tasks
to be performed by each of these are already written, debugged and compiled, their definitions
alone are grouped and stored in files called header files. Such ready-to-use sub programs are
called pre-defined functions or built-in functions.

 C++ also provides the facility to create new functions for specific task as per user
requirement. The name of the task and data required (arguments) are decided by the user and
hence they are known as User-defined functions.

11.4 C++ Header Files and Built-in Functions

 Header files provide function prototype and definitions for library functions. Data
types and constants used with the library functions are also defined in them. A header file
can be identified by their file extension .h. A single header file may contain multiple built-in
functions.

 For example: stdio.h is a header file contains pre-defined “standard input/output”
functions.

11.4.1 Standard input/output (stdio.h)

 This header file defines the standard I/O predefined functions getchar(), putchar(),
gets(), puts() and etc.

11.4.1.1 getchar() and putchar() functions

 The predefined function getchar() is used to get a single character from keyboard and
putchar() function is used to display it.

Chapter 11.indd 102 14-08-2018 15:47:04

102 103

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
 cout<<"\n Type a Character : ";
 char ch = getchar();
 cout << "\n The entered Character is: ";
 putchar(ch);
 return 0;
}
Output:
Type a Character : T
The entered Character is: T

Program 11.1 C++ code to accept a character and displays it

11.4.1.2. gets() and puts() functions

 Function gets() reads a string from standard input and stores it into the string pointed
by the variable. Function puts() prints the string read by gets() function in a newline.

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
 char str[50];
 cout<<"Enter a string : ";
 gets(str);
 cout<<"You entered: "
 puts(str);
 return(0);
}
Output :
Enter a string : Computer Science
You entered: Computer Science

Program 11.2 C++ code to accepts and display a string

Chapter 11.indd 103 14-08-2018 15:47:04

104 105

11.4.2 Character functions (ctype.h)

 This header file defines various operations on characters. Following are the various
character functions available in C++. The header file ctype.h is to be included to use these
functions in a program.

11.4.2.1.isalnum()

 This function is used to check whether a character is alphanumeric or not. This
function returns non-zero value if c is a digit or a letter, else it returns 0.

Syntax:

 int isalnum (char c)

Example :

 int r = isalnum(‘5’);

 cout << isalnum('A') <<’\t’<<r;

 But the statements given below assign 0 to the variable n, since the given character is
neither an alphabet nor a digit.

 char c = '$';

 int n = isalnum(c);

 cout<<c;

Output:

 0

#include<iostream>
#include<stdio.h>
#include<ctype.h>
using namespace std;
int main()
{
 char ch;
 int r;
 cout<<"\n Type a Character :";
 ch = getchar();
 r = isalnum(ch);
 cout<<"\nThe Return Value of isalnum(ch) is :"<<r;
}

Program 11.3

Chapter 11.indd 104 14-08-2018 15:47:04

104 105

Output-1:
 Type a Character :A
 The Return Value of isalnum(ch) is :1
Output-2:
 Type a Character :?
 The Return Value of isalnum(ch) is :0

11.4.2.2. isalpha()

 The isalpha() function is used to check whether the given character is an alphabet or
not.

Syntax:

 int isalpha(char c);

 This function will return 1 if the given character is an alphabet, and 0 otherwise 0. The
following statement assigns 0 to the variable n, since the given character is not an alphabet.

 int n = isalpha(‘3’);

But, the statement given below displays 1, since the given character is an alphabet.

 cout << isalpha('a');

#include<iostream>
#include<stdio.h>
#include<ctype.h>
using namespace std;
int main()
{
 char ch;
 cout << "\n Enter a charater: ";
 ch = getchar();
 cout<<"\n The Return Value of isalpha(ch) is :" << isalpha(ch) ;
}

Program 11.4

Chapter 11.indd 105 14-08-2018 15:47:04

106 107

Output-1:
 Enter a charater: A
 The Return Value of isalpha(ch) is :1
Output-2:
 Enter a charater: 7
 The Return Value of isalpha(ch) is :0

11.4.2.3 isdigit()

 This function is used to check whether a given character is a digit or not. This function
will return 1 if the given character is a digit, and 0 otherwise.

Syntax:

 int isdigit(char c);

 When the following program is executed, the value of the variable n will be 1,since the
given character is not a digit.

using namespace std;
#include<iostream>
#include<ctype.h>
int main()
{
 char ch;
 cout << "\n Enter a Character: ";
 cin >> ch;
 cout<<"\n The Return Value of isdigit(ch) is :" << isdigit(ch) ;
}
Output-1
 Enter a Character: 3
 The Return Value of isdigit(ch) is :1
Output-2
 Enter a Character: A
 The Return Value of isdigit(ch) is :0

Program 11.5

*Return 0; (Not Compulsory in latest compilers)

Chapter 11.indd 106 14-08-2018 15:47:04

106 107

11.4.2.4. islower()

 This function is used to check whether a character is in lower case (small letter) or not.
This functions will return a non-zero value, if the given character is a lower case alphabet, and
0 otherwise.

Syntax:

int islower(char c);

 After executing the following statements, the value of the variable n will be 1 since the
given character is in lower case.

char ch = 'n';

int n = islower(ch);

 But the statement given below will assign 0 to the variable n, since the given character
is an uppercase alphabet.

int n = islower('P');

11.4.2.5. isupper()

 This function is used to check the given character is uppercase. This function will return
1 if true otherwise 0. For the following examples value 1 will be assigned to n and 0 for m.

int n=isupper(‘A’);

int m=isupper(‘a’);

11.4.2.6. toupper()

 This function is used to convert the given character into its uppercase. This function
will return the upper case equivalent of the given character. If the given character itself is in
upper case, the output will be the same.

Syntax:

char toupper(char c);

 The following statement will assign the character constant 'K' to the variable c.

char c = toupper('k’);

 But, the output of the statement given below will be 'B' itself.

cout <<toupper('B');

Chapter 11.indd 107 14-08-2018 15:47:04

108 109

11.4.2.7. tolower()

 This function is used to convert the given character into its lowercase. This function
will return the lower case equivalent of the given character. If the given character itself is in
lower case, the output will be the same.

Syntax:

char tolower(char c);

 The following statement will assign the character constant 'k' to the variable c.

char c = tolower('K’);

 But, the output of the statement given below will be 'b' itself.

cout <<tolower('b');

11.4.3 String manipulation (string.h)

The library string.h (also referred as cstring) has several common functions for dealing with
strings stored in arrays of characters. The string.h header file to be included before using any
string function.

11.4.3.1 strcpy()

 The strcpy() function takes two arguments: target and source. It copies the character
string pointed by the source to the memory location pointed by the target. The null terminating
character (\0) is also copied.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char source[] = "Computer Science";
 char target[20]="target";
 cout<<"\n String in Source Before Copied :"<<source;
 cout<<"\n String in Target Before Copied :"<<target;
 strcpy(target,source);
 cout<<"\n String in Target After strcpy function Executed :"<<target;
 return 0;
}

Program 11.6

Chapter 11.indd 108 14-08-2018 15:47:04

108 109

Output:
 String in Source Before Copied :Computer Science
 String in Target Before Copied :target
 String in Target After strcpy function Executed :Computer Science

11.4.3.2 strlen()

 The strlen() takes a null terminated byte string source as its argument and returns its
length. The length does not include the null(\0) character.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char source[] = "Computer Science";
 cout<<"\nGiven String is "<<source<<" its Length is "<<strlen(source);
 return 0;
}
Output:
 Given String is Computer Science its Length is 16

Program 11.7

11.4.3.3 strcmp()

 The strcmp() function takes two arguments: string1 and string2. It compares the
contents of string1 and string2 lexicographically.

The strcmp() function returns a:

• Positive value if the first differing character in string1 is greater than the corresponding
character in string2. (ASCII values are compared)

• Negative value if the first differing character in string1 is less than the corresponding
character in string2.

• 0 if string1 and string2 are equal.

Chapter 11.indd 109 14-08-2018 15:47:04

110 111

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char string1[] = "Computer";
 char string2[] = "Science";
 int result;
 result = strcmp(string1,string2);
 if(result==0)
 {
 cout<<"String1 : "<<string1<<" and String2 : "<<string2 <<"Are Equal";
 }
 if (result<0)
 {
 cout<<"String1 :"<<string1<<" and String2 : "<<string2 <<" Are Not Equal";
 }
}
Output
 String1 : Computer and String2 : Science Are Not Equal

Program 11.8

11.4.3.4 strcat()

 The strcat() function takes two arguments: target and source. This function appends
copy of the character string pointed by the source to the end of string pointed by the target.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char target[50] = "Learning C++ is fun";
 char source[50] = " , easy and Very useful";
 strcat(target, source);
 cout << target ;
 return 0;
}
Output
 Learning C++ is fun , easy and Very useful

Program 11.9

Chapter 11.indd 110 14-08-2018 15:47:05

110 111

11.4.3.5 strupr()

 The strupr() function is used to convert the given string into Uppercase letters.

using namespace std;
#include<iostream>
#include<ctype.h>
#include<string.h>
int main()
{
 char str1[50];
 cout<<"\nType any string in Lower case :";
 gets(str1);
 cout<<"\n Converted the Source string “<<str1<<into Upper Case is "<<strupr(str1);
 return 0;
}
Output:
 Type any string in Lower case : computer science
Converted the Source string computer science into Upper Case is COMPUTER SCIENCE

Program 11.10

11.4.3.6 strlwr()

 The strlwr() function is used to convert the given string into Lowercase letters.

using namespace std;
#include<iostream>
#include<ctype.h>
#include<string.h>
int main()
{
 char str1[50];
 cout<<"\nType any string in Upper case :";
 gets(str1);
 cout<<"\n Converted the Source string “<<str1<<into Lower Case is "<<strlwr(str1);
}
Output:
 Type any string in Upper case : COMPUTER SCIENCE

Converted the Source string COMPUTER SCIENCE into lower Case is computer science

Program 11.11

Chapter 11.indd 111 14-08-2018 15:47:05

112 113

11.4.4 Mathematical functions (math.h)

 Most of the mathematical functions are defined in math.h header file which includes
basic mathematical functions.

11.4.4.1 cos() function

 The cos() function takes a single argument in radians. The cos() function returns the
value in the range of [-1, 1]. The returned value is either in double, float, or long double.

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 double x = 0.5, result;
 result = cos(x);
 cout << "COS("<<x<<")= "<<result;
}
Output:
 COS(0.5)= 0.877583

Program 11.12

11.4.4.2 sqrt() function

 The sqrt() function returns the square root of the given value of the argument. The
sqrt() function takes a single non-negative argument. If a negative value is passed as an
argument to sqrt() function, a domain error occurs.

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 double x = 625, result;
 result = sqrt(x);
 cout << "sqrt("<<x<<") = "<<result;
 return 0;
}
Output:
 sqrt(625) = 25

Program 11.13

Chapter 11.indd 112 14-08-2018 15:47:05

112 113

11.4.4.3 sin() function

 The sin() function takes a single argument in radians. The sin() function returns the
value in the range of [-1, 1]. The returned value is either in double, float, or long double.

11.4.4.4 pow() function

 The pow() function returns base raised to the power of exponent. If any argument
passed to pow() is long double, the return type is promoted to long double. If not, the return
type is double. The pow() function takes two arguments:

• base - the base value

• exponent - exponent of the base

#include <iostream>
#include <math.h>
using namespace std;
int main ()
{
 double base, exponent, result;
 base = 5;
 exponent = 4;
 result = pow(base, exponent);
 cout << "pow("<<base << "^" << exponent << ") = " << result;
 double x = 25;;
 result = sin(x);
 cout << "\nsin("<<x<<")= "<<result;
 return 0;
}
Output:
 pow(5^4) = 625
 sin(25)= -0.132352

Program 11.14

11.4.5 Generating Random Numbers

 The srand() function in C++ seeds the pseudo random number generator used by the
rand() function. The seed for rand() function is 1 by default. It means that if no srand()
is called before rand(), the rand() function behaves as if it was seeded with srand(1). The
srand() function takes an unsigned integer as its parameter which is used as seed by the rand()
function. It is defined in<cstdlib>or <stdlib.h>header file.

Chapter 11.indd 113 14-08-2018 15:47:05

114 115

#include<iostream>
#include<cstdlib.h>
using namespace std;
int main()
{
 int random = rand(); /* No srand() calls before rand(), so seed = 1*/
 cout << "\nSeed = 1, Random number = " << random;
 srand(10);
 /* Seed = 10 */
 random = rand();
 cout << "\n\nSeed = 10, Random number = " << random;
 return 0;
}
OUTPUT :
 Seed = 1, Random number = 41
 Seed = 10, Random number = 71

Program 11.15

11.5 User-defined Functions

11.5.1 Introduction

 We can also define new functions to perform a specific task. These are called as user-
defined functions. User-defined functions are created by the user. A function can optionally
define input parameters that enable callers to pass arguments into the function. A function
can also optionally return a value as output. Functions are useful for encapsulating common
operations in a single reusable block, ideally with a name that clearly describes what the
function does.

11.5.2 Function Definition

 In C++, a function must be defined before it is used anywhere in the program. The
general syntax of a function definition is:

 Return_Data_Type Function_name(parameter list)

 {

 Body of the function

 }

Chapter 11.indd 114 14-08-2018 15:47:05

114 115

Note:

1. The Return_Data_Type is any valid data type of C++.

2. The Function_name is a user-defined identifier.

3. The parameter list, which is optional, is a list of parameters, i.e. a list of variables preceded
by data types and separated by commas.

4. The body of the function comprises C++ statements that are required to perform the
intended task of this function.

11.5.3 Function Prototype

 C++ program can contain any number of functions. But, it must always have only one
main() function to begin the program execution. We can write the definitions of functions
in any order as we wish. We can define the main() function first and all other functions after
that or we can define all the needed functions prior to main(). Like a variable declaration, a
function must be declared before it is used in the program. The declaration statement may be
given outside the main() function.

long fact (int, double)

Function name

List of argumentsReturn type

long
fact

(int, double)

Figure 11.1
The prototype above provides the following information to the compiler:

• The return value of the function is of type long.

• fact is the name of the function.

• the function is called with two arguments:

 The first argument is of int data type.

 The second argument is of double data type.

Chapter 11.indd 115 14-08-2018 15:47:05

116 117

 int display(int , int) // function prototype//

 The above function prototype provides details about the return data type, name of the
function and a list of formal parameters or arguments.

11.5.4 Use of void command

void type has two important purposes:

• To indicate the function does not return a value

• To declare a generic pointer.

Notes

void data type indicates the compiler that the function does not return a value, or in a
larger context void indicates that it holds nothing.

For Example:

 void fun(void)

 The above function prototype tells compiler that the function fun() neither receives
values from calling program nor return a value to the calling program.

11.5.5 Accessing a function

 The user-defined function should be called explicitly using its name and the required
arguments to be passed. The compiler refers to the function prototype to check whether the
function has been called correctly. If the argument type does not match exactly with the data
type defined in the prototype, the compiler will perform type conversion, if possible. If type
conversion is impossible, the compiler generates an error message.

Example :

1 display()
calling the function without a return value and
without any argument

2 display (x, y)
calling the function without a return value and
with arguments

3 x = display()
calling the function with a return value and without
any argument

4 x = display (x, y)
calling the function with a return value and with
arguments

Chapter 11.indd 116 14-08-2018 15:47:05

116 117

11.5.5.1 Formal Parameters and Actual Parameters or Arguments

 Arguments or parameters are the means to pass values from the calling function to
the called function. The variables used in the function definition as parameters are known as
formal parameters. The constants, variables or expressions used in the function call are known
as actual parameters.

Using namespace std;
int sum (int x, int y)
{
 return (x + y);
}
int main ()
{
 int a,b ;
 cout<<"\n Enter Number 1:";
 cin>>a;
 cout<<"\n Enter Number 2:";
 cin >>b;
 cout<<"\n The sum = "<<sum (a, b);
}

#include <iostream>

[
[

[[

Formal Parameter

M
ai

n
Pr

og
ra

m
Fu

nc
tio

n

Actual Parameter

Figure 11.2 Formal and Actual Parameters
11.5.5.2 Default arguments

 In C++, one can assign default values to the formal parameters of a function prototype.
The Default arguments allows to omit some arguments when calling the function.

When calling a function,

• For any missing arguments, complier uses the values in default arguments for the called
function.

• The default value is given in the form of variable initialization.

 Example : void defaultvalue(int n1=10, n2=100);

• The default arguments facilitate the function call statement with partial or no arguments.

Example : defaultvalue(x,y);

 defaultvalue(200,150);

 defaultvalue(150);

 defaultvalue(x,150);

Chapter 11.indd 117 14-08-2018 15:47:05

118 119

• The default values can be included in the function prototype from right to left, i.e., we
cannot have a default value for an argument in between the argument list.

Example : void defaultvalue(int n1=10, n2);//invalid prototype
 void defaultvalue(int n1, n2 = 10);//valid prototype

11.5.5.3 Constant Arguments

 The constant variable can be declared using const keyword. The const keyword makes
variable value stable. The constant variable should be initialized while declaring. The const
modifier enables to assign an initial value to a variable that cannot be changed later inside the
body of the function.

Syntax :

<returntype><functionname> (const <datatype variable=value>)

Example:

• int minimum(const int a=10);

• float area(const float pi=3.14, int r=5);

#include <iostream>
using namespace std;
double area(const double r,const double pi=3.14)
{
 return(pi*r*r);
}
int main ()
{
 double rad,res;
 cout<<"\nEnter Radius :";
 cin>>rad;
 res=area(rad);
 cout << "\nThe Area of Circle ="<<res;
 return 0;
}
Output:
Enter Radius :5
The Area of Circle =78.5

Program 11.16

 If the variable value “r” is changed as r=25; inside the body of the function “area” then
compiler will throw an error as “assignment of read-only parameter 'r'”

Chapter 11.indd 118 14-08-2018 15:47:05

118 119

double area(const double r,const double pi=3.14)

{

 r=25;

 return(pi*r*r);

}

11.6 Methods of calling functions

 In C++, the arguments can be passed to a function in two ways. Based on the method of
passing the arguments, the function calling methods can be classified as Call by Value method
and Call by Reference or Address method.

11.6.1 Call by value Method

 This method copies the value of an actual parameter into the formal parameter of the
function. In this case, changes made to formal parameter within the function will have no
effect on the actual parameter.

#include<iostream>
using namespace std;
void display(int x)
{
 int a=x*x;
 cout<<"\n\nThe Value inside display function (a * a):"<<a;
}
int main()
{
 int a;
 cout<<”\nExample : Function call by value:”;
 cout<<"\n\nEnter the Value for A :";
 cin>>a;
 display(a);
 cout<<"\n\nThe Value inside main function "<<a;
 return(0);
}
Output :
Example : Function call by value
Enter the Value for A : 5
The Value inside display function (a * a) : 25
The Value inside main function 5

Program 11.17

Chapter 11.indd 119 14-08-2018 15:47:05

120 121

11.6.2 Call by reference or address Method

 This method copies the address of the actual argument into the formal parameter.
Since the address of the argument is passed ,any change made in the formal parameter will be
reflected back in the actual parameter.

Program 11.18

#include<iostream>
using namespace std;
void display(int &x) //passing address of a//
{
 x=x*x;
 cout<<"\n\nThe Value inside display function (n1 x n1) :"<<x ;
 }
int main()
{
int n1;
cout<<"\nEnter the Value for N1 :";
cin>>n1;
cout<<"\nThe Value of N1 is inside main function Before passing : "<< n1;
display(n1);
cout<<"\nThe Value of N1 is inside main function After passing (n1 x n1) : "<< n1; return(0);
}
Output :
Enter the Value for N1 :45
The Value of N1 is inside main function Before passing : 45
The Value inside display function (n1 x n1) :2025
The Value of N1 is inside main function After passing (n1 x n1) : 2025

 Note that the only change in the display() function is in the function header. The &
symbol in the declaration of the parameter x means that the argument is a reference variable
and hence the function will be called by passing reference. Hence when the argument num1 is
passed to the display() function, the variable x gets the address of num1 so that the location
will be shared. In other words, the variables x and num1 refer to the same memory location.
We use the name num1 in the main() function, and the name x in the display() function to
refer the same storage location. So, when we change the value of x, we are actually changing
the value of num1.

11.6.3 Inline function

 Normally the call statement to a function makes a compiler to jump to the functions
(the definition of the functions are stored in STACKS) and also jump back to the instruction

Chapter 11.indd 120 14-08-2018 15:47:05

120 121

following the call statement. This reduces the speed of program execution. Inline functions
can be used to reduce the overheads like STACKS for small function definition.

 An inline function looks like normal function in the source file but inserts the function's
code directly into the calling program. To make a function inline, one has to insert the keyword
inline in the function header.

Syntax :

 inline returntype functionname(datatype parametername1, … datatype
parameternameN)

Advantages of inline functions:

• Inline functions execute faster but requires more memory space.

• Reduce the complexity of using STACKS.

#include <iostream>
using namespace std;
inline float simpleinterest(float p1,float n1, float r1)
{
 float si1=(p1*n1*r1)/100;
 return(si1);
}
int main ()
{
 float si,p,n,r;
 cout<<"\nEnter the Principle Amount Rs. :";
 cin>>p;
 cout<<"\nEnter the Number of Years :";
 cin>>n;
 cout<<"\nEnter the Rate of Interest :";
 cin>>r;
 si=simpleinterest(p,n,r);
 cout << "\nThe Simple Interest = Rs."<<si;
 return 0;
}
Output:
Enter the Principle Amount Rs. :60000
Enter the Number of Years :10
Enter the Rate of Interest :5
The Simple Interest = Rs.30000

Program 11.19

Chapter 11.indd 121 15/08/18 5:45 PM

122 123

 Though the above program is written in the normal function definition format during
compilation the function code (p1*n1*r1)/100 will be directly inserted in the calling statement
i.e.si=simpleinterest(p,n,r); this makes the calling statement to change as si= (p1*n1*r1)/100;

11.7 Different forms of User-defined Function declarations

11.7.1 A Function without return value and without parameter

 The following program is an example for a function with no return and no arguments
passed .

 The name of the function is display(), its return data type is void and it does not have
any argument.

#include<iostream>

using namespace std;

void display()

{

 cout<<"First C++ Program with Function";

}

int main()

{

 display(); // Function calling statement//

 return(0);

}

Output :

 First C++ Program with Function

Program 11.20

11.7.2 A Function with return value and without parameter

 The name of the function is display(), its return type is int and it does not have any
argument. The return statement returns a value to the calling function and transfers the
program control back to the calling statement.

Chapter 11.indd 122 14-08-2018 15:47:05

122 123

#include<iostream>
using namespace std;
int display()
{
 int a, b, s;
 cout<<"Enter 2 numbers: ";
 cin>>a>>b;
 s=a+b;
 return s;
 }
int main()
{
 int m=display();
 cout<<"\nThe Sum="<<m;
 return(0);
}
Output :
 Enter 2 numbers: 10 30
 The Sum=40

Program 11.21

11.7.3 A Function without return value and with parameter

 The name of the function is display(), its return type is void and it has two parameters
or arguments x and y to receive two values. The return statement returns the control back to
the calling statement.

#include<iostream>
using namespace std;
void display(int x, int y)
{
 int s=x+y;
 cout<<"The Sum of Passed Values: "<<s;
}

Program 11 .22

Chapter 11.indd 123 14-08-2018 15:47:05

124 125

int main()
{
 int a,b;
 cout<<"\nEnter the First Number :";
 cin>>a;
 cout<<"\nEnter the Second Number :";
 cin>>b;
 display(a,b);
 return(0);
}

Output :

Enter the First Number :50
Enter the Second Number :45
The Sum of Passed Values: 95

11.7.4 A Function with return value and with parameter

 The name of the function is display(), its return type is int and it has two parameters or
arguments x and y to receive two values. The return statement returns the control back to the
calling statement.

#include<iostream>
using namespace std;
int display(int x, int y)
{
 int s=x+y;
 return s;
}
int main()
{
 int a,b;
 cout<<"\nEnter the First Number :";
 cin>>a;
 cout<<"\nEnter the Second Number :";
 cin>>b;
 int s=display(a,b);
 cout<<”\nExample:Function with Return Value and with Arguments”;
 cout<<"\nThe Sum of Passed Values: "<<s;
 return(0);
}

Program 11.23

Chapter 11.indd 124 14-08-2018 15:47:05

124 125

Output :

Enter the First Number :45

Enter the Second Number :67

Example: Function with Return Value and with Arguments

The Sum of Passed Values: 112

11.8 Returning from function

 Returning from the function is done by using the return statement.

 The return statement stops execution and returns to the calling function. When a
return statement is executed, the function is terminated immediately at that point.

11.8.1 The return statement

 The return statement is used to return from a function. It is categorized as a jump
statement because it terminates the execution of the function and transfer the control to the
called statement. A return may or may not have a value associated with it. If return has a value
associated with it, that value becomes the return value for the calling statement. Even for void
function return statement without parameter can be used to terminate the function.

Syntax:

 return expression/variable;

Example : return(a+b); return(a);

 return; // to terminate the function

11.8.2 The Returning values:

 The functions that return no value is declared as void. The data type of a function is
treated as int, if no data type is explicitly mentioned. For example,

For Example :

 int add (int, int);

 add (int, int);

 In both prototypes, the return value is int, because by default the return value of a
function in C++ is of type int. Look at the following examples:

Chapter 11.indd 125 14-08-2018 15:47:05

126 127

Sl.No Function Prototype Return type
1 int sum(int, float) int
2 float area(float, float) float

3 char result() char

4 double fact(int n) double

Returning Non-integer values

 A string can also be returned to a calling statement.

#include<iostream>
#include<string.h>
using namespace std;
char *display()
{
 return (“chennai”);
}
int main()
{
 char s[50];
 strcpy(s,display());
 cout<<”\nExample:Function with Non Integer Return”<<s;
 return(0);}
Output :
Example: Function with Non Integer Return Chennai

Program 11.24

11.8.3 The Returning by reference

#include<iostream>
using namespace std;
int main()
{
 int n1=150;

Program 11.25

Chapter 11.indd 126 14-08-2018 15:47:05

126 127

 int &n1ref=n1;
 cout<<"\nThe Value of N1 = "<<n1<<" and n1Reference = "<<n1ref;
 n1ref++;
 cout<<"\nAfter n1 increased the Value of N1 = "<<n1;
 cout<<" and n1Reference = "<<n1ref;
 return(0);
}
Output:
The Value of N1 = 150 and n1Reference = 150
After n1 increased the Value of N1 = 151 and n1Reference = 151

Notes

The variable n1ref is alias to n1. Hence when the value of n1ref is altered automatically the
value of n1 is changed.

The two variables n1 and n1ref shares same memory or reference.

11.9 Recursive Function

 A function that calls itself is known as recursive function. And, this technique is known
as recursion.

Example 1: Factorial of a Number Using Recursion

#include <iostream>
using namespace std;
int factorial(int); // Function prototype //
int main()
{
 int no;
 cout<<"\nEnter a number to find its factorial: ";
 cin >> no;
 cout << "\nFactorial of Number " << no <<" = " << factorial(no);
 return 0;
}

Program 11.26

Chapter 11.indd 127 14-08-2018 15:47:05

128 129

int factorial(int m)
{
 if (m > 1)
 {
 return m*factorial(m-1);
 }
 else
 {
 return 1;
}
}
Output :
Enter a number to find its factorial: 5
Factorial of Number 5 = 120

Note: Function prototype is mandatory since the function factorial() is given after the main()
function.

Example 2: Finding HCF of any to number using Recursion

#include <iostream>
using namespace std;
//Function to find HCF //
int hcf(int n1, int n2)
{
 if (n2 != 0)
 return hcf(n2, n1 % n2);
 else
 return n1;
}
int main()
{
 int num1, num2;
 cout << "Enter two positive integers: ";
 cin >> num1 >> num2;
 cout << "Highest Common Factor (HCF) of " << num1;
 cout<< " & " << num2 << " is: " << hcf(num1, num2);
 return 0;
}

Program 11.27

Chapter 11.indd 128 14-08-2018 15:47:05

128 129

Output:
Enter two positive integers: 350 100
Highest Common Factor (HCF) of 350 & 100 is: 50

Notes

Function prototype is not necessary since the function hcf() is given before the main()
function.

11.10 Scope Rules of Variables

 Scope refers to the accessibility of a variable. There are four types of scopes in C++.
They are: Local scope, Function scope, File scope and Class scope.

11.10.1 Introduction

 A scope is a region or life of the variable and broadly speaking there are three places,
where variables can be declared,

• Inside a block which is called local variables.

• Inside a function is called function variables.

• Outside of all functions which is called global variables.

• Inside a class is called class variable or data members.

11.10.2 Local Scope:

• A local variable is defined within a block.A block of code begins and ends with curly braces
{ }.

• The scope of a local variable is the block in which it is defined.

• A local variable cannot be accessed from outside the block of its declaration.

Chapter 11.indd 129 14-08-2018 15:47:05

130 131

• A local variable is created upon entry into its block and destroyed upon exit.

//Demo to test Local Scope//
#include<iostream>s
using namespace std;
int main ()
{
int a, b ;
a = 10;
b = 20;
if (a > b)
{
int temp; //local to this if block//
temp = a;
a = b;
b = temp;
}
cout <<"\n Descending order \n";
cout <<a <<"\t"<<b;
return(0);
}
Output:
Descending order ….
10 20

Program 11.28 (a)

//Demo to test Local Scope//
#include<iostream>s
using namespace std;
int main ()
{
int a, b ;
a = 10;
b = 20;
if (a > b)
{
int temp; //local to this if block//
temp = a;
a = b;
b = temp;
}
cout <<temp;
return(0);
}

Program 11.28 (b)

Chapter 11.indd 130 14-08-2018 15:47:05

130 131

In function 'int main()':

[Error] 'temp' was not declared in this scope

 On compilation the Program 11.28(b), the compiler prompts an error message: The
variable temp is not accessible. Because the life time of a local variable is the life time of a block
in its state of execution. Local variables die when its block execution is completed.

11.10.3 Function Scope:

• The scope of variables declared within a function is extended to the function block, and all
sub-blocks therein.

• The life time of a function scope variable, is the life time of the function block. The scope
of formal parameters is function scope.

//Demo to test Function Scope//
#include<iostream>
using namespace std;
void add(int x, int y)
{
 int m=x+y; //'m' declared within function add()//
 cout<<"\nThe Sum = "<<m;
}
int main ()
{
int a, b ;
a = 10;
b = 20;
add(a,b);
return(0);
}

Program 11.29 (a)

//Demo to test Function Scope//
#include<iostream>
using namespace std;

Program 11.29 (b)

Chapter 11.indd 131 14-08-2018 15:47:05

132 133

void add(int x, int y)
{
 int m=x+y; //'m' declared within function add()//
 cout<<"\nThe Sum = "<<m;
}
int main ()
{
int a, b ;
a = 10;
b = 20;
add(a,b);
cout<<m; //'m' declared within function add()//
return(0);
}
Output:
The Sum = 30

Note : In function 'int main()':

[Error] 'm' was not declared in this scope

11.10.4 File Scope:

• A variable declared above all blocks and functions (including main ()) has the scope of a
file. The life time of a file scope variable is the life time of a program.

• The file scope variable is also called as global variable.

//Demo to test File or global Scope//
#include<iostream>
using namespace std;
int file_var=20; //Declared within File//
void add(int x, int y)
{
 int m=x+y+file_var;
 cout<<"\n The Sum = "<<m;
}

Program 11.30

Chapter 11.indd 132 14-08-2018 15:47:05

132 133

int main ()
{
int a, b ;
a = 10;
b = 20;
add(a,b);
cout<<”\nThe File Variable = “<<file_var;
return(0);
}
Output:
The Sum = 50
 The File Variable =20

11.10.5 Class Scope:

• A class is a new way of creating and implementing a user defined data type. Classes provide
a method for packing together data of different types.

• Data members are the data variables that represent the features or properties of a class.

class student
{
 private :
int mark1, mark2, total;
};

The class student contains
mark1, mark2 and total are
data variables. Its scope is
within the class student
only.

Note: The class scope will be discussed later in chapter “Classes and Object”.

11.10.6 Scope resolution operator

• The scope operator reveals the hidden scope of a variable. The scope resolution operator
(::) is used for the following purposes.

• To access a Global variable when there is a Local variable with same name. An example
using Scope Resolution Operator.

Chapter 11.indd 133 14-08-2018 15:47:05

134 135

// Program to show that we can access a global variable
// using scope resolution operator :: when there is a local
// variable with same name //
#include<iostream>
using namespace std;
int x=45; // Global Variable x
int main()
{
 int x = 10; // Local Variable x
 cout << "\nValue of global x is " << ::x;
 cout << "\nValue of local x is " << x;
 return 0;
}
Output:
Value of global x is 45
Value of local x is 10

Program 11.31

• A large program can typically be split into
smaller sized blocks called as functions.

• Functions can be classified into Pre-
defined or Built-in or Library Functions
and User-defined Functions.

• User-defined functions are created by
the user.

• The void function tells the compiler that
the function returns nothing.

• The return statement returns a value
to the calling function and transfers
the program control back to the calling
function.

• Default the data type of a function in
C++ is of type int.

• A function that calls itself is known as
recursive function.

• Scope refers to the accessibility of a
variable.

• There are four types of Scopes. They are:
Local scope, Function scope, File scope
and Class scope.

• The scope operator (::) reveals the hidden
scope of a variable.

Points to Remember:

Chapter 11.indd 134 14-08-2018 15:47:05

134 135

Hands on practice:

Write C++ program to slove the following problems :

1. Program that reads two strings and appends the first string to the second. For example,
if the first string is entered as Tamil and second string as nadu, the program should print
Tamilnadu. Use string library header.

2. Program that reads a string and converts it to uppercase. Include required header files.

3. Program that checkos whether a given character is an alphabety or not. If it is an alphabet,
whether it is lowercase character or uppercase character? Include required header files.

4. Program that checks whether the given character is alphanumeric or a digit. Add
appropriate header file.

5. Write a function called zero_small () that has two integer arguments being passed by
reference and sets smaller of the two numbers to 0. Write the main program to access this
funtion.

6. Write definition for a function sumseries () in c++ with two arguments/ parameters -
double x and int n. The function should return a value of type double and it should perform
sum of the following series:

 x-x2 /3! + x3 / 5! - x4 / 7! + x5 / 9! -... upto n terms.

7. Program that invokes a function calc () which intakes two intergers and an arithmetic
operator and prints the corresponding result.

Evaluation

Part – 1

Choose the best answer

1. Which of the following header file defines the standard I/O predefined functions ?

 A) stdio.h B) math.h C) string.h D) ctype.h

2. Which function is used to check whether a character is alphanumeric or not.

 A) isalpha() B) isdigit() C) isalnum() D) islower()

3. Which function begins the program execution ?

 A) isalpha() B) isdigit() C) main() D) islower()

Chapter 11.indd 135 14-08-2018 15:47:05

136 PB

4. Which of the following function is with a return value and without any argument ?

 A) x=display(int, int) B) x=display() C) y=display(float) D) display(int)

5. Which is return data type of the function prototype of add(int, int); ?

 A) int B) float C) char D) double

6. Which of the following is the scope operator ?

 A) > B) & C) % D) ::

Part –II

Answer to all the questions (2 Marks):

1. Define Functions.

2. Write about strlen() function.

3. What are importance of void data type.

4. What is Parameter and list its types?

5. Write a note on Local Scope.

Part – III

Answer to all the questions (3 Marks):

1. What is Built-in functions ?

2. What is the difference between isuppr() and toupper() functions ?

3. Write about strcmp() function.

4. Write short note on pow() function in C++.

5. What are the information the prototype provides to the compiler ?

6. What is default arguments ? Give example.

Part –IV

Answer to all the questions (5 Marks):

1. Explain Call by value method with suitable example.

2. What is Recursion? Write a program to find GCD using recursion.

3. What are the different forms of function return? Explain with example.

4. Explain scope of variable with example.

5. Write a program to accept any integer number and reverse it.

Chapter 11.indd 136 14-08-2018 15:47:05

PB 137

Learning Objectives

After learning this chapter, the students will be able to

• Know the structured data type using arrays.

• Know the types of arrays.

• Writing programs to manuplates different types of arrays.

12.1 Introduction

 The variables are used to store data. These variables are the one of the basic building
blocks in C++. A single variable is used to store a single value that can be used anywhere in the
memory. In some situations, we need to store multiple values of the same type. In that case, it
needs multiple variables of the same data type. All the values are stored randomly anywhere in
the memory.

 For example, to store the roll numbers of the 100 students, it needs 100 variables named
as roll1, roll2, roll3,…….roll100 . It becomes very difficult to declare 100 variables and store
all the roll numbers. In C++, the concept of Array helps to store multiple values in a single
variable. Literally, the meaning of Array is “More than one”. In other words, array is an easy
way of storing multiple values of the same type referenced by a common name”. An array
is also a derived data type in C++.

 “An array is a collection of variables of the same type that are referenced by
a common name”. In an array, the values are stored in a fixed number of elements of the
same type sequentially in memory. Therefore, an integer array holds a sequence of integers; a
character array holds a sequence of characters, and so on. The size of the array is referred to as
its dimension.

12.2 Types of Arrays:

There are different types of arrays used in C++. They are:

• One-dimensional arrays

CHAPTER 12Introduction of C++Unit III

Arrays and Structures

Chapter 12.indd 137 14-08-2018 15:47:58

138 139

• Two-dimensional arrays

• Multi-dimensional arrays

12.2.1 One-dimensional array

 This is the simplest form of an array.
A one dimensional array represents values
that are stored in a single row or in a single
column.

Declaration

Syntax:

<data type><array_name> [<array_size>];

data_type declares the basic type of the
array, which is the type of each element in
the array.

array_name specifies the name with which
the array will be referenced.

array_size defines how many elements the
array will hold. Size should be specified with
square brackets [].

Example:

 int num[10];

 In the above declaration, an array
named “num” is declared with 10 elements
(memory space to store 10 different values)
as integer type.

 To the above declaration, the compiler
allocated 10 memory locations (boxes) in
the common name “num” as given below

0 1 2 3 4 5 6 7 8 9

int num[10];

subscripts

 Each element (Memory box) has a
unique index number starting from 0 which
is known as “subscript”. The subscript always
starts with 0 and it should be an unsigned
integer value. Each element of an array is
referred by its name with subscript index
within the square bracket. For example,
num[3] refers to the 4th element in the
array.

Some more array declarations with various
data types:

char emp_name[25]; // character
array named emp_name with size 25

float salary[20]; // floating-point array
named salary with size 20

int a[5], b[10], c[15]; // multiple arrays are
declared of type int

Memory representation of an one
dimensional array

 The amount of storage required to
hold an array is directly related with type
and size. The following figure shows the
memory allocation of an array with five
elements.

Chapter 12.indd 138 14-08-2018 15:47:59

138 139

int numb [5];

num [0] num [1] num [2] num [3] num [4]
1

0
2

5

1
0

2
6

1
0

2
7

1
0

2
8

1
0

2
9

1
0

3
0

 1
0

3
1

 1
0

3
2

1
0

3
3

1
0

3
4

1
0

3
5

1
0

3
6

1
0

3
7

1
0

3
8

1
0

3
9

1
0

4
0

1
0

4
1

1
0

4
2

1
0

4
3

1
0

4
4

1
0

4
5

1
0

4
6

1
0

4
7

1
0

4
8

 The above figure clearly shows that, the array num is an integer array with 5 elements.
As per the Dev-C++ compiler, 4 bytes are allocated for every int type variable. Here, there are
totally 5 elements in the array, where for each element, 4 bytes will be allocated. Totally, 20
bytes will be allocated for this array.

Datatype Turbo C++ Dev C++
char 1 1
int 2 4
float 4 4
long 4 4
double 8 8
long double 10 10

The memory space allocated for an array can be calculated using the following formula:

Number of bytes allocated for type of array × Number of elements

Initialization

 An array can be initialized at the time of its declaration. Unless an array is initialized,
all the array elements contain garbage values.

Syntax:

<datatype> <array_name> [size] = {value-1,value-2,…………… ,value-n};

Example

int age[5]={19,21,16,1,50};

 In the above example, the array name is ‘age’ whose size is 5. In this case, the first
element 19 is stored in age[0], the second element 21 is stored in age[1] and so on as shown
in figure 12.1

Chapter 12.indd 139 14-08-2018 15:47:59

140 141

19 21 16 501

int age [5]={19,21,16,1,50};

ag
e

[0
]

ag
e

[1
]

ag
e

[2
]

ag
e

[3
]

ag
e

[4
]

Figure 12.1

 While declaring and initializing
values in an array, the values should be given
within the curly braces ie. { ….. }

 The size of an array may be optional
when the array is initialized during
declaration.

Example:

int age[]={ 19,21,16,1,50};

#include <iostream>
using namespace std;
int main()
{
 int num[5];
 for(int i=0; i<5; i++)
 {
 cout<< "\n Enter value " << i+1 << "= ";
 cin>>num[i];
 }
}

// Input values while execution

 In the above program, a for loop has been constructed to execute the statements within
the loop for 5 times. During each iteration of the loop, cout statement prompts you to “Enter
value …….” and cin gets the value and stores it in num[i];

 In the above initialization, the size
of the array is not specified directly in the
declaration with initialization. So, the size is
determined by compiler which depends on
the total number of values. In this case, the
size of the array is five.

More examples of array initialization:

float x[5] = {5.6, 5.7, 5.8, 5.9, 6.1};

char vowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

Accepting values to an array during run
time :

Multiple assignment statements are required
to insert values to the cells of the array during
runtime. The for loop is ideally suited for
iterating through the array elements.

Chapter 12.indd 140 14-08-2018 15:47:59

140 141

The following table shows the execution of the above code block.

Iteration i <5
cout << "\n
Enter value " <<
i+1 << "= ";

cin>>num [i];
Received

value stored in
memory

i++ (i=i+1)

1 5 > 0 (T) Enter value 1 = num[0] = 5 num[0] 5 1

2 5 > 1 (T) Enter value 2 = num[1] = 10 num[1] 10 2

3 5 > 2 (T) Enter value 3 = num[2] = 15 num[2] 15 3

4 5 > 3 (T) Enter value 4 = num[3] = 20 num[3] 20 4

5 5 > 4 (T) Enter value 4 = num[25 = [4 num[4] 25 5

6 5 > 5 (F) Exit from Loop

Note

In for loop, the index i is declared with an initial value 0 (zero). Since in most of the cases,
the initial value of the loop index will be used as the array subscript representation.

Accessing array elements

 Array elements can be used anywhere in a program as we do in case of a normal
variable. The elements of an array are accessed with the array name followed by the subscript
index within the square bracket.

Example:

 cout<<num[3];

 In the above statement, num[3] refers to the 4th element of the array and cout statement
displays the value of num[3].

Note

The subscript in bracket can be a variable, a constant or an expression that evaluates to an
integer.

Chapter 12.indd 141 14-08-2018 15:47:59

142 143

#include <iostream>
using namespace std;
int main()
{
 int num[5] = {10, 20, 30, 40, 50};
 int t=2;
 cout<<num[2] <<endl; // S1
 cout<<num[3+1] <<endl; // S2
 cout<<num[t=t+1]; // S3
}
output:
30
50
40

// Accessing array elements

 In the above program, statement S1 displays the value of the 3rd element (subscript
index 2). S2 will display the value of the 5th element (ie. Subscript value is 3+1 = 4). In the
same way statement S3 will display the value of the 4th element.

The following program illustrates the writing and reading of array elements.

#include <iostream>
using namespace std;
int main()
 {
 int age[4];//declaration of array
 cout<< "Enter the age of four persons:" <<endl;
 for(int i = 0; i < 4; i++)//loop to write array elements
 cin>> age[i];
 cout<<"The ages of four persons are:";
for(int j = 0; j< 4; j++)
 cout<< age[j]<<endl;
}

//Program to read and write the values from an array

The following table shows the execution of the above code lines

Chapter 12.indd 142 14-08-2018 15:47:59

142 143

Iteration i < 4 cin>> age [i];
Value

received
age i++ (i=i+1)

1 4 > 0 (T) cin>> age[0]; 18 age [0] = 18 1
2 4 > 1 (T) cin>> age[1]; 17 age [1] = 17 2
3 4 > 2 (T) cin>> age[2]; 21 age [2] = 21 3
4 4 > 3 (T) cin>> age[3]; 23 age [3] = 23 4
5 4 > 4 (F) Exit from loop

After the successful execution of the above statements, the given values will be stored in
memory like,

18

0

17

1
Subscripts

21

2

23

3

Second for loop:

for (int j = 0; j < 4; j++)

 cout<< age[j]<<endl;

The above statements are used to read the values from the memory and display the values.

The following table shows the execution of the above code.

Iteration j< 4 cout << age[j];
values

read from
memory

Output j++

1 4 > 0 (T) cout << age[0]; 18 18 1
2 4 > 1 (T) cout << age[1]; 17 17 2
3 4 > 2 (T) cout << age[2]; 21 21 3
4 4 > 3 (T) cout << age[3]; 23 23 4
5 4 > 4 (F) Exit from loop

So, the final output will be:

Enter the age of four persons:

18

17

21

23

Chapter 12.indd 143 14-08-2018 15:47:59

144 145

The ages of four persons are:

18

17

21

23

Traversal:
Accessing each element of an array at least once to perform any operation is known as
“Traversal”. Displaying all the elements in an array is an example of “traversal”.

#include <iostream>
using namespace std;
int main()
{
 int num[5];
 for (int i=0; i<5; i++)
 {
 cout<< "\n Enter value " << i+1 <<"= ";
 cin>>num[i]; // Reading from keyboard
// Traversing the array elements sequentially and adding 1 to each element
 num[i] = num[i] + 1;
 }
 cout<< "\n After incrementing, the values in array num..." <<endl;
 for (int j=0; j<5; j++)
 {
// Traversing the array elements sequentially and printing each one of them
 cout<<num[j] <<endl;
 }
}
Output:
 Enter value 1= 10
 Enter value 2= 20
 Enter value 3= 30
 Enter value 4= 40
 Enter value 5= 50
After incrementing, the values in array num...
11
21
31
41
51

// Traversal of an array

Chapter 12.indd 144 14-08-2018 15:47:59

144 145

#include <iostream>
using namespace std;
int main()
{
 int marks[10], sum=0;
 float avg;
 for(int i=0; i<10; i++)
 {
 cout<< "\n Enter Mark " << i+1 << "= ";
 cin>> marks[i];
 sum=sum+marks[i];
 }
 avg=sum/10.0;
 cout<< "\n The Total Marks: " << sum;
 cout<< "\n The Average Mark: " <<avg;
}
Output:
Enter Mark 1= 41
Enter Mark 2= 98
Enter Mark 3= 65
Enter Mark 4= 75
Enter Mark 5= 35
Enter Mark 6= 82
Enter Mark 7= 64
Enter Mark 8= 5
Enter Mark 9= 58
Enter Mark 10= 68
The Total Marks: 591
The Average Mark: 59

Program to read the marks of 10 students and to find the average of all
those marks.

Chapter 12.indd 145 14-08-2018 15:47:59

146 147

#include <iostream>
using namespace std;
int main()
{
 int num[10], even=0, odd=0;
 for (int i=0; i<10; i++)
 {
 cout<< "\n Enter Number " << i+1 <<"= ";
 cin>>num[i];
 if (num[i] % 2 == 0)
 ++even;
 else
 ++odd;
 }
 cout << "\n There are "<< even <<" Even Numbers";
 cout << "\n There are "<< odd <<" Odd Numbers";
}
Output:
Enter Number 1= 78
Enter Number 2= 51
Enter Number 3= 32
Enter Number 4= 66
Enter Number 5= 41
Enter Number 6= 68
Enter Number 7= 27
Enter Number 8= 65
Enter Number 9= 28
Enter Number 10= 94
There are 6 Even Numbers
There are 4 Odd Numbers

C++ program to inputs 10 values and count the number of odd and even
numbers

(HOTS : Rewrite the above program using the conditional operator instead of if)

Chapter 12.indd 146 14-08-2018 15:47:59

146 147

#include <iostream>
using namespace std;
int main()
{
 float price[10], sum=0, avg=0, prod=1;
 for(int i=0; i<10; i++)
 {
 cout<< "\n Enter the price of item " << i+1 <<"= ";
 cin>> price[i];
 sum+=price[i];
 }
 avg=sum/10.0;
 cout<< "\n Sum of all prices: " << sum;
 cout<< "\n Average of all prices: " <<avg;
}

Program to read the prices of 10 products in an array and then print the
sum and average of all the prices

#include <iostream>
using namespace std;
int main()
{
 int days;
 float sales[5], avgSales=0, totalSales=0;
 cout<< "\n Enter No. of days: ";
 cin>> days;
 for (int i=0; i<days; i++)
 {
 cout<< "\n Enter sales on day - " << i+1 <<": ";
 cin>> sales[i];
 totalSales+=sales[i];
 }
 avg=total sales/days;
 cout<< "\n Average Sales = " <<avgSales;
 return 0;
}

Program to accept the sales of each day of the month and print the average
sales for each month

Chapter 12.indd 147 14-08-2018 15:47:59

148 149

Searching in a one dimensional array:

 Searching is a process of finding a particular value present in a given set of numbers.
The linear search or sequential search compares each element of the list with the value that has
to be searched until all the elements in the array have been traversed and compared.

#include <iostream>
using namespace std;
int Search(int arr[], int size, int value)
{

for (int i=0; i<size; i++)
{

 if (arr[i] == value)
 return i; // return index value

}
return -1;

}
int main()
{
 int num[10], val, id;
 for (int i=0; i<10; i++)
 {
 cout<< "\n Enter value " << i+1 <<"= ";
 cin>>num[i];
 }
 cout<< "\n Enter a value to be searched: ";
 cin>>val;
 id=Search(num,10,val);
 if(id==-1)
 cout<< "\n Given value is not found in the array..";
 else
 cout<< "\n The value is found at the position" << id+1;
 return 0;
}

Program for Linear Search

 The above program reads an array and prompts for the values to be searched. It calls
Search() function which receives array, size and value to be searched as parameters. If the
value is found, then it returns the array index to the called statement; otherwise, it returns -1.

Chapter 12.indd 148 14-08-2018 15:47:59

148 149

Strings

 A string is defined as a sequence of characters where each character may be a letter,
number or a symbol. Each element occupies one byte of memory. Every string is terminated
by a null (‘\0’, ASCII code 0) character which must be appended at the end of the string. In
C++, there is no basic data type to represent a string. Instead, it implements a string as an
one-dimensional character array. When declaring a character array, it also has to hold a null
character at the end, and so, the size of the character array should be one character longer than
the length of the string.

Character Array (String) creation

 To create any kind of array, the size (length) of the array must be known in advance, so
that the memory locations can be allocated according to the size of the array. Once an array is
created, its length is fixed and cannot be changed during run time. This is shown in figure12.2

a [0]

First Element

Index :

Elements:

Last Element

0

a [1]

1

a [2]

2

a [3] a [n-1]

 [n-1]3

Array Name : a
Array Length : n

Figure 12.2

Syntax

Array declaration is:

 char array_name[size];

In the above declaration, the size of the array must be an unsigned integer value.

For example,

 char country[6];

 Here, the array reserves 6 bytes of memory for storing a sequence of characters. The
length of the string cannot be more than 5 characters and one location is reserved for the null
character at the end.

Chapter 12.indd 149 14-08-2018 15:47:59

150 151

#include <iostream>
using namespace std;
int main()
 {
 char country[6];
 cout<< "Enter the name of the country: ";
 cin>>country;
 cout<<" The name of the country is "<<country;
}
OUTPUT
Enter country the name: INDIA
The country name is INDIA

//Program to demonstrate a character array.

Initialization

The character array can be initialized at the time of its declaration. The syntax is shown below:

 char array_name[size]={ list of charecters separated by comma or a string } ;

For example,

char country[6]=“INDIA”;

In the above example, the text “INDIA” has 5 letters which is assigned as initial value to array
country. The text is enclosed within double quotes. The memory representation is shown in
Figure 13.3

I

C
ou

nt
ry

[0
]

10
00

10
01

10
02

10
03

10
04

10
05

C
ou

nt
ry

[1
]

C
ou

nt
ry

[2
]

C
ou

nt
ry

[3
]

C
ou

nt
ry

[4
]

C
ou

nt
ry

[5
]

N D I A '\0'

Figure 12.3

 In the above memory representation, each character occupies one byte in

Chapter 12.indd 150 14-08-2018 15:47:59

150 151

memory. At the end of the string, a null character is automatically added by the compiler.
C++ also provides other ways of initializing the character array:

char country[6]={‘I’, ‘N’, ‘D’, ‘I’, ‘A’, ‘\0’};

char country[]=“INDIA”;

char country[]={‘I’, ‘N’, ‘D’, ‘I’, ‘A’, ‘\0’};

 If the size of the array is not explicitly mentioned, the compiler automatically calculate
the size of the array based on the number of elements in the list and allocates space accordingly.

 In the initialization of the string, if all the characters are not initialized, then the rest of
the characters will be filled with NULL.

Example:

char str[5]={'5','+','A'};

str[0]; ---> 5

str[1]; ---> +

str[2]; ---> A

str[3]; ---> NULL

str[4]; ---> NULL

Note

During initialization, the array of elements cannot be initialized more than its size.

For example

char str[2]={'5','+','A','B'}; // Invalid

 In the above example, the compiler displays “initialize-string for array of chars is too
long” error message.

Chapter 12.indd 151 14-08-2018 15:47:59

152 153

#include <iostream>
using namespace std;

int main()
{
 char arr1[6]="INDIA";
 char arr2[6]={'I','N','D','I','A','\0'};
 char arr3[]="TRICHY";
 char arr4[]={'T','R','I','C','H','Y','\0'};
 char arr5[8]="TRICHY";
 cout<<"arr1 is :" <<arr1<< " and its size is "<<sizeof(arr1)<<endl;
 cout<<"arr2 is :" <<arr2<< " and its size is "<<sizeof(arr2)<<endl;
 cout<<"arr3 is :" <<arr3<< " and its size is "<<sizeof(arr3)<<endl;
 cout<<"arr4 is :" <<arr4<< " and its size is "<<sizeof(arr4)<<endl;
 cout<<"The elements of arr5"<<endl;
 for(int i=0;i<8;i++)
 cout<<arr5[i]<<" ";
 return 0;
}
Output
arr1 is :INDIA and its size is 6
arr2 is :INDIA and its size is 6
arr3 is :TRICHY and its size is 7
arr4 is :TRICHY and its size is 7
The elements of arr5
T R I C H Y

Write a program to demonstrate various methods of initializing the
character arrays

Read a line of Text

In C++, cin.get() is used to read a line of text including blank spaces. This function takes two
arguments. The first argument is the name of the string and second argument is the maximum
size of the array.

Chapter 12.indd 152 14-08-2018 15:47:59

152 153

// str10.cpp
// To read a line of text
#include <iostream>
using namespace std;
int main()
{
char str[100];
cout<< "Enter a string: ";
cin.get(str, 100);
cout<< "You entered: " <<str<<endl;
return 0;
}
Output
Enter a string: I am a student
You entered: I am a student

Write a program to display a line of text using get() function.

 In the above program, str is the name of the string and 100 is the maximum size of the
character array that represents the string str.

 In C++, getline() is also used to read a line of text from the input stream. It can read
the characters till it encounters a newline character or a delimiter specified by the user. This
function is available in the <string> header.

#include<iostream>

using namespace std;

int main()
{
 int i, j, len, flag =1;
 char a [20];

 cout<<"Enter a string:";
 cin>>a;
 for(len=0;a[len]!='\0';++len)

Write a Program to check palindrome or not

Chapter 12.indd 153 14-08-2018 15:47:59

154 155

 for(!=0,j=len-1;i<len/2;++i,--j)
 {
 if(a[j]!=a[i])
 flag=0;
 }

 if(flag==1)
 cout<<"\n The String is palindrome";
 else
 cout<<"\n The String is not palindrome";

 return 0;
}
Output:

 Enter a string : madam
 The String is palindrome

12.3 Two-dimensional array

Two-dimensional (2D) arrays are collection of similar elements where the elements are stored
in certain number of rows and columns. An example m × n matrix where m denotes the
number of rows and n denotes the number of columns is shown in Figure12.4

int arr[3][3];

arr[0] [0] arr[0] [1] arr[0] [3]

arr[1] [0] arr[1] [1] arr[1] [2]

arr[2] [0] arr[2] [1] arr[2] [2]

2D array conceptual memory representation

The array arr can be coneptually viewed in matrix form
with 3 rows and coloumns. point to be noted here is since
the subscript starts with 0 arr [0][0] represents the first
element.

Column subscript

Ro
w

 su
bs

cr
ip

t

Figure 12.4

12.3.1 Declaration of 2-D array

The declaration of a 2-D array is

data-type array_name[row-size][col-size];

Chapter 12.indd 154 14-08-2018 15:47:59

154 155

In the above declaration, data-type refers to any valid C++ data-type, array_name refers to the
name of the 2-D array, row-size refers to the number of rows and col-size refers to the number
of columns in the 2-D array.

For example

 int A[3][4];

In the above example, A is a 2-D array, 3 denotes the number of rows and 4 denotes the
number of columns. This array can hold a maximum of 12 elements.

Note

Array size must be an unsigned integer value which is greater than 0. In arrays, column size
is compulsory but row size is optional.

Other examples of 2-D array are:

int A[3][3];

float x[2][3];

char name[5][20];

12.3.2 Initialization of Two-Dimensional array

 The array can be initialized in more than one way at the time of 2-D array declaration.

For example

int matrix[4][3]={

{10,20,30},// Initializes row 0

{40,50,60},// Initializes row 1

{70,80,90},// Initializes row 2

{100,110,120}// Initializes row 3

};

int matrix[4][3]={10,20,30,40,50,60,70,80,90,100,110,120};

Array’s row size is optional but column size is compulsory.

For example

Chapter 12.indd 155 14-08-2018 15:47:59

156 157

int matrix[][3]={

{10,20,30},// row 0

{40,50,60},// row 1

{70,80,90},// row 2

{100,110,120}// row 3

};

12.3.3 Accessing the two-dimensional array

Two-dimensional array uses two index values to access a particular element in it, where the
first index specifies the row value and second index specifies the column value.

matrix[0][0]=10;// Assign 10 to the first element of the first row

matrix[0][1]=20;// Assign 20 to the second element of the first row

matrix[1][2]=60;// Assign 60 to the third element of the second row

matrix[3][0]=100;// Assign 100 to the first element of the fourth row

Chapter 12.indd 156 14-08-2018 15:47:59

156 157

#include<iostream>

#include<conio>

using namespace std;

int main()

{

 int row, col, m1[10][10], m2[10][10], sum[10][10];
 cout<<"Enter the number of rows : ";
 cin>>row;
 cout<<"Enter the number of columns : ";
 cin>>col;
 cout<< "Enter the elements of first matrix: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j <col;j++)
 cin>>m1[i][j];
 cout<< "Enter the elements of second matrix: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j<col;j++)
 cin>>m2[i][j];

Write a program to perform addition of two matrices

Chapter 12.indd 157 14-08-2018 15:47:59

158 159

 cout<<"Output: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j<col;j++)
 {
 sum[i][j]=m1[i][j]+m2[i][j];
 cout<<sum[i][j]<<" ";
 }
 cout<<endl<<endl;
 }
getch();
return 0;
}

Enter the number of rows : 2
Enter the number of column : 2
Enter the elements of first matrix:
1
1
1
1
Enter the elements of second matrix:
1
1
1
1
Output:
2 2
2 2

12.3.4 Memory representation of 2-D array

Normally, the two-dimensional array can be viewed as a matrix. Th e conceptual view of a 2-D
array is shown below:

int A[4][3];

A[0][0] A[0][1] A[0][2]

A[1][0] A[1][1] A[1][2]

A[2][0] A[2][1] A[2][2]

A[3][0] A[3][1] A[3][2]

In the above example, the 2-D array name A has 4 rows and 3 columns.

Like one-dimensional, the 2-D array elements are stored in continuous memory.

Chapter 12.indd 158 14-08-2018 15:47:59

158 159

 There are two types of 2-D array memory representations. They are:

• Row-Major order

• Column-Major order

For example

 int A[4][3]={

 { 8,6,5},

 { 2,1,9},

 {3,6,4},

 {4,3,2},

Row Major order

In row-major order, all the elements are stored row by row in continuous memory locations, that
is, all the elements in first row, then in the second row and so on. The memory representation
of row major order is as shown below;

8 6 5 2 1 9 3 6 4 4 3 2

1000 1004 1008 1012 1016 1020 1024 1028 1032 1036 1040 1044
 Row 0 Row 1 Row 2 Row 3

Column Major order

8 2 3 4 6 1 6 3 5 9 4 2

1000 1004 1008 1012 1016 1020 1024 1028 1032 1036 1040 1044

Col 0 Col 1 Col 2

12.4 Array of strings

An array of strings is a two-dimensional character array. The size of the first index (rows)
denotes the number of strings and the size of the second index (columns) denotes the maximum
length of each string. Usually, array of strings are declared in such a way to accommodate the
null character at the end of each string. For example, the 2-D array has the declaration:

char Name[6][10];

In the above declaration, the 2-D array has two indices which refer to the row size and column
size, that is 6 refers to the number of rows and 10 refers to the number of columns.

Chapter 12.indd 159 14-08-2018 15:47:59

160 161

12.4.1 Initialization

For example

char Name[6][10] = {"Mr. Bean", "Mr.Bush", "Nicole", "Kidman", "Arnold", "Jodie"};

In the above example, the 2-D array is initialized with 6 strings, where each string is a maximum
of 9 characters long, since the last character is null.

The memory arrangement of a 2-D array is shown below and all the strings are stored in
continuous locations.

r 0 1 2 3 4 5 6 7 8
o 0 M r . B e a n \0
w 1 M r . B e s n \0
s 2 N i c o l e \0

3 K i d m a n \0
4 A r n o l d \0
5 J o d i e \0

Columns

Name [5][4]

Name [2][2]

First index

Second index

Name [row] [column] = Name [0] [0]

Name [3][5]

#include<iostream>
using namespace std;

int main()
{
 // initialize 2d array

 char colour [4][10]={"Blue","Red","Orange",
 "yellow"};

 // printing strings stored in 2d array

 for (int i=0; i <4; i++)
 cout << colour [i] << "\n";
}
Output:
 Blue
 Red
 Orange
 Yellow

C++ program to demonstrate array of strings using 2d character array

Chapter 12.indd 160 14-08-2018 15:47:59

160 161

12.5 Passing Arrays to functions

 In C++, arrays can be passed to a function as an argument. To pass an array to a function
in C++, the function needs the array name as an argument.

 Passing a two-dimensional array to a function

 Write a program to display marks of 5 students by passing one-dimensional array to a
function.

#include <iostream>
using namespace std;
void display (int m[5]);
int main()
{
 int marks[5]={88, 76, 90, 61, 69};
 display(marks);
 return 0;
}
 void display (int m[5])
 {
 cout << "\n Display Marks: " << endl;
 for (int i=0; i<5; i++)
 {
 cout << "Student " << i+1 << ": " << m[i]<<endl;
 }
 }
Output:
Display Marks:
Student 1: 88
Student 2: 76
Student 3: 90
Student 4: 61
Student 5: 69

C++ program to display marks of 5 students (one dimensional array)

Chapter 12.indd 161 14-08-2018 15:48:00

162 163

12.6 Passing 2"D array to a function

#include <iostream>
using namespace std;
void display (int n[3][2]);
int main()
{
 int num[3][2] = { {3, 4}, {9, 5}, {7, 1} };
 display(num);
 return 0;
}
void display(int n[3][2])
{
 cout << "\n Displaying Values" << endl;
 for (int i=0; i<3; i++)
 {
 for (int j=0; j<2; j++)
 {
 cout << n[i][j] << " ";
 }
 cout << endl << endl;
 }
}
Output:
Displaying Values
3 4
9 5
7 1

C++ program to display values from two dimensional array

 In the above program, the two-dimensional array num is passed to the function display()
to produce the results.

Chapter 12.indd 162 14-08-2018 15:48:00

162 163

#include <iostream>
using namespace std;
int main()
{
 char str[100];
void display(char s[]);
 cout<< "Enter a string: ";
 getline(cin, str);
display(str);
 return 0;
}

void display(char s[])
{
cout<< "You entered char array: " << s <<endl;
}
output
Enter a string: welcome to C++ programming
You entered char array: welcome to C++ programming

// Function with character array as argument

Case Study:

(1) Write a program to accept the marks of 10 students and find the average, maximum and
minimum marks.

(2) Write a program to accept rainfall recorded in four metropolitan cities of India and find
the city that has the highest and lowest rainfall.

(3) Survey your neighboring shops and find the price of any particular product of interest
and suggest where to buy the product at the lowest cost.

Chapter 12.indd 163 14-08-2018 15:48:00

164 165

Evaluation

PART – I

Choose the correct answer

1. Which of the following is the collection of variables of the same type that an referenced by a
common name ?

 a) int b) float c) Array d) class

2. Array subscripts is always starts with which number ?

 a)-1 b) 0 c) 2 d) 3

3. int age[]={6,90,20,18,2}; How many elements are there in this array?

 a) 2 b) 5 c) 6 d) 4

4. cin>>n[3]; To which element does this statement accepts the value?

 a) 2 b) 3 c) 4 d) 5

5. By default, the string and with which character?

 a)\o b) \t c) \n d) \b

Part – II

Answer to all the questions (2 Marks):

1. What is Traversal in an Array?

2. What is Strings?

3. What is the syntax to declare two – dimensional array.

Part – III

Answer to all the questions(3 Marks):

1. Define an Array ? What are the types?

2. With note an Array of strings.

3. Write a C++ program to accept and print your name?

Part – IV

Answer to all the questions (5 Marks):

Chapter 12.indd 164 14-08-2018 15:48:00

164 165

1. Write a C++ program to find the difference between two matrix.

2. How will you pass two dimensional array to a function explain with example.

Structures

Learning Objectives

After the completion of this chapter, the student will be able to

• Understand the purpose of user defined data types

• Able to construct C++ programs using structures

• Execute and debug programs with structure data type

12.7 Structures Introduction

 Structure is a user-defined which has the combination of data items with different data
types. This allows to group of variables of mixed data types together into a single unit.

12.7.1 Purpose of Structures

 In any situation when more than one variable is required to represent objects of
uniform data-types, array can be used. If the elements are of different data types,then array
cannot support. If more than one variable is used, they can be stored in memory but not in
adjacent locations. It increases the time consumption while searching. The structure provides
a facility to store different data types as a part of the same logical element in one memory
chunk adjacent to each other.

12.7.2 Declaring and defining structures

 Structure is declared using the keyword ‘struct’. The syntax of creating a structure is
given below.

struct structure_name {

 type member_name1;

 type member_name2;

Objects declared along with
structure definition are called
global objects

 } reference_name;

 An optional field reference_name can be used to declare objects of the structure type
directly.

Chapter 12.indd 165 14-08-2018 15:48:00

166 167

Example:

struct Student

{

 long rollno;

 int age;

 float weight;

} ;

 In the above declaration of the struct, three variables rollno,age and weight are used.
These variables(data element)within the structure are called members (or fields). In order to
use the Student structure, a variable of type Student is declared and the memory allocation is
shown in figure 12.5

Rollno Age weight
4 Bytes 2 Bytes 4 Bytes

Fig 12.5 Memory Allocation

struct Student balu; // create a Student structure for Balu

 This defines a variable of type Student named as Balu. Similar to normal variables, struct
variable allocates memory for that variable itself. It is possible to define multiple variables of
the same struct type:

struct Student frank; // create a structure for Student Frank.

For example, the structure objects balu and frank can also be declared as the structure data
type as:

struct Student

{

longrollno;

int age;

float weight;

}balu, frank;

Chapter 12.indd 166 15/08/18 5:47 PM

166 167

12.7.3 Referencing Structure Elements

 Once the two objects of student structure type are declared (balu and frank),their
members can be accessed directly. The syntax for that is using a dot (.) between the object name
and the member name. For example, the elements of the structure Student can be accessed as
follows:

balu.rollno

balu.age

balu.weight

frank.rollno

frank.age

frank.weight

(Anonymous Structure Vs Named Structure)
A structure without a name/tag is called anonymous structure.
struct
{
long rollno;
 int age;
 float weight;
} student;
The student can be referred as reference name to the above structure and the
elements can be accessed like student.rollno, student.age and student.weight .

12.7.4 Initializing structure elements

Values can be assigned to structure elements similar to assigning values to variables.

Example

 balu.rollno= “702016”;

 balu.age= 18;

 balu.weight= 48.5;

Also, values can be assigned directly as similar to assigning values to Arrays.

balu={702016, 18, 48.5};

If the members are a pointer types then ‘’ is used
to access the members. Let name is a character
pointer ins student like char * name
It can be accessed student name

Chapter 12.indd 167 14-08-2018 15:48:00

168 169

12.7.5 Structure Assignments

Structures can be assigned directly instead of assigning the values of elements individually.

Example

 If Mahesh and Praveen are same age and same height and weight then the values of
Mahesh can be copied to Praveen

struct Student

{
Structure assignment is possible
only if both structure variables/
objects are same type. int age;

 float height, weight;

}mahesh;

 The age of Mahesh is 17 and the height and weights are 164.5 and 52.5 respectively.The
following statement will perform the assignment.

mahesh = {17, 164.5, 52.5};

praveen =mahesh;

will assign the same age, height and weight to Praveen.

Examples:

#include <iostream>
using namespace std;
struct Student
{
 int age;
 float height, weight;

The following C++ program reads student information through keyboard
and displays the same

Chapter 12.indd 168 14-08-2018 15:48:00

168 169

} mahesh;
void main()
{
 cout<< “ Enter the age:”<<endl;
 cin>>mahesh.age;
 cout<< “Enter the height:”<<endl;
 cin>>mahesh.height;
 cout<< “Enter the weight:”<<endl;
 cin>>mahesh.weight;
 cout<< “The values entered for Age, height and weight are”<<endl;
 cout<<mahesh.age<< “\t”<<mahesh.height<< “\t”<<Mahesh.
weight;
}
Output:
Enter the age:
18
Enter the height:
160.5
Enter the weight:
46.5
The values entered for Age, height and weight are
18 160.5 46.5

include<iostream>
using namespace std;
struct Employee
{
char name[50];
int age;
 float salary;
};

The following C++ Program assigns data to members of a structure variable
and displays the contents

Chapter 12.indd 169 14-08-2018 15:48:00

170 171

int main()
{
 Employee e1;
 cout<< "Enter Full name: ";
 cin>>e1.name;
 cout<<endl<<"Enter age: ";
 cin>>e1.age;
 cout<<endl<< "Enter salary: ";
 cin>>e1.salary;
 cout<< "\nDisplaying Information." <<endl;
 cout<< "Name: " <<e1.name <<endl;
 cout<<"Age: " <<e1.age <<endl;
 cout<< "Salary: " <<e1.salary;
return 0;
}
Output:
Enter Full name:
Ezhil
Enter age:
 27
Enter salary:
40000.00
Displaying Information.
Name: Ezhil
Age: 27
Salary: 40000.00

12.7.6 Nested Structures

 The structure declared within another structure is called a nested structure. A structure
‘Student’was used to hold the student’s information in the earlier examples. Date of birth can
be included in the student’s information. There are three components in the date of birth
namely, date, month and year like 25-NOV-2017. Hence, another structure is used to keep the
date of birth of a student. The following code creates a structure for the date of birth.

Chapter 12.indd 170 14-08-2018 15:48:00

170 171

struct dob

{

int date;

char month[3];

int year;

};

Values can be assigned to this structure as follows.

dob= {25,”NOV”,2017}

struct Student
{
 int age;
 float height, weight;
 struct dob
 {
 int date;
 char month[4];
 int year;
 };
}mahesh;
void main()
{
 cout<< “ Enter the age:”<<endl;
 cin>>mahesh.age;
 cout<< “Enter the height:”<<endl;
 cin>>mahesh.height;
 cout<< “Enter the weight:”<<endl;
 cin>>mahesh.weight;
 cout<< “The Date of birth:”<<endl;
 cout<< “ Enter the day:”<<endl;
 cin>>mahesh.dob.date;
 cout<< “Enter the month:”<<endl;

The date of birth can be assigned as one of the elements in the student structure

nested structures act as members
of another structure and the
members of the child structure
can be accessed as parent
structure name. Child structure
name. Member name.

Chapter 12.indd 171 14-08-2018 15:48:00

172 173

 cin>>mahesh.dob.month;
 cout<< “Enter the year:”<<endl;
 cin>>mahesh.dob.year;
 cout<< “The values entered for Age, height and weightare”<<endl;
 cout<<mahesh.age<< “\t”<<mahesh.height<< “\t”<<mahesh.weight<<endl;
 cout<< “His date of Birth is:”<<endl<<mahesh.dob.date<< “-”<<mahesh.

dob.month<< “-” <<mahesh.dob.year;
}
Output:
Enter the age:
18
Enter the height:
160.5
Enter the weight:
46.5
The Date of birth
Enter the day:
25
Enter the month:
NOV
Enter the year:
2017
The values entered for Age, height and weight are
18 160.5 46.5
His date of Birth is:
25-NOV-2017

12.7.7 Array of Structures

 A class may contain many students. So, the definition of structure for one student can
also be extended to all the students. If the class has 20 students, then 20 individual structures
are required. For this purpose, an array of structures can be used. An array of structures is
declared in the same way as declaring an array with built-in data types like int or char.

 The following program reads the details of 20 students and prints the same.

Chapter 12.indd 172 14-08-2018 15:48:00

172 173

#include <iostream>
using namespace std;
struct Student
{
 int age;
 float height, weight;
 char name[30];
};
void main()
{
Student std[20];
int i;
 cout<< “ Enter the details for 20 students”<<endl;
 for(i=0;i<20;i++)
{
 cout<< “ Enter the details of student”<<i+1<<endl;
 cout<< “ Enter the age:”<<endl;
 cin>>std[i].age;
 cout<< “Enter the height:”<<endl;
 cin>>std[i].height;
 cout<< “Enter the weight:”<<endl;
 cin>>std[i].weight;
}
 cout<< “The values entered for Age, height and weight are”<<endl;
 for(i=0;i<20;i++)
cout<<”Student ”<<i+1<< “\t”<<std[i].age<< “\t”<<std[i].height<< “\t”<<std[i].weight;
}
Output:
Enter the details of 20 students
Enter the details for student1
Enter the age:
18
Enter the height:
160.5
Enter the weight:
46.5
Enter the details for student2
Enter the age:
18

Chapter 12.indd 173 14-08-2018 15:48:00

174 175

Enter the height:
164.5
Enter the weight:
61.5
.......................
.....................
The values entered for Age, height and weight are
Student 1 18 160.5 46.5
Student 2 18 164.5 61.5
............

 The above program reads age , height and weight of 20 students and prints the same
details. The output is shown for only two students due to space constraints.

 Let an organization has three employees.If we want to read and print all their details
thenan array of structures is desirable for employees of this organization. This canbe done
through declaring an array of employee structures.

include<iostream>
using namespace std;
struct Employee
{
char name[50];
int age;
float salary;
};
int main()
{
Employee e1[3];
int i;
cout<< “Enter the details of 3 employees”<<endl;
for(i=0;i<3;i++)
{
 cout<< “Enter the details of Employee”<< i+1<<endl;
 cout<< "Enter name: ";
 cin>>e1[i].name;

Chapter 12.indd 174 14-08-2018 15:48:00

174 175

 cout<<endl<<"Enter age: ";
 cin>>e1[i].age;
 cout<<endl<< "Enter salary: ";
 cin>>e[i]1.salary;
}
 cout<< "Displaying Information" <<endl;
 for(i=0;i<3;i++)
{
 cout<< “ The details of Employee” <<i+1<<endl;
 cout<< "Name: " <<e1[i].name <<endl;
 cout<<"Age: " <<e1[i].age <<endl;
 cout<< "Salary: " <<e1[i].salary;
return 0;
}

Output:
Enter the details of 3 employees
Enter the details of Employee 1
Enter name:
Lilly
Enter age:
 42
Enter salary:
40000.00
Enter the details of Employee 2
Enter name:
Aster
Enter age:
38
Enter salary:
60000.00
Enter the details of Employee 3
Enter name:
Jasmine
Enter age:
45

Chapter 12.indd 175 14-08-2018 15:48:00

176 177

Enter salary:
80000.00
Displaying Information.
The details of Employee 1
Name:Lilly
Age: 42
Salary: 40000.00
The details of Employee 2
Name:Aster
Age:38
Salary:60000.00
The details of Employee 3
Name:Jasmine
Age:45
Salary:80000.00

12.7.8 Passing structures to functions

 A structure variable can be passed to a function in a similar way of passing any argument
that is of built-in data type.

 If the structure itself is an argument, then it is called “call by value”. If the reference of
the structure is passed as an argument then it is called, “call by reference”.

1 Call by value.

 When a structure is passed as argument to a function using call by value method,any
change made to the contents of the structure variable inside the function to which it is passed
do not affect the structure variable used as an argument.

#include <iostream>
using namespace std;
struct Employee
{
char name[50];
int age;
float salary;
};

Consider this example:

Chapter 12.indd 176 14-08-2018 15:48:00

176 177

void printData(Employee); // Function declaration
int main()
{
 Employee p;
 cout<< "Enter Full name: ";
 cin>>p.name;
 cout<< "Enter age: ";
 cin>>p.age;
 cout<< "Enter salary: ";
 cin>>p.salary;
 // Function call with structure variable as an argument
printData(p);
return 0;
}
void printData(Employee q)
{
 cout<< "\nDisplaying Information." <<endl;
 cout<< "Name: " << q.name <<endl;
 cout<<"Age: " <<q.age<<endl;
 cout<< "Salary: " <<q.salary;
}
Output:
Enter Full name: Kumar
Enter age: 55
Enter salary: 34233.4
Displaying Information.
Name: Kumar
Age: 55
Salary: 34233.4

 In the above example, a structure named Employee is declared and used. The values
that are entered into the structure are name, age and salary of a Employee are displayed using
a function named printData(). The argument for the above function is the structure Employee.
The input can be received through a function named readData().

Chapter 12.indd 177 14-08-2018 15:48:00

178 179

#include <iostream>
using namespace std;
struct Employee {
char name[50];
int age;
float salary;
};
Employee readData(Employee);
void printData(Employee);
int main()
{
 Employee p;
 p = readData(p);
 printData(p);
return 0;
}
 Employee readData(Employee p) {
 cout<< "Enter Full name: ";
 cin.get(p.name, 50);
 cout<< "Enter age: ";
 cin>>p.age;
 cout<< "Enter salary: ";
 cin>>p.salary;
return p;
}
void printData(Employee p)
{
 cout<< "\nDisplaying Information." <<endl;
 cout<< "Name: " << p.name <<endl;
 cout<<"Age: " <<p.age<<endl;
 cout<< "Salary: " <<p.salary;
}

The output of the program is the same as that of the previous programme.

2 Call by reference

 In this method of passing the structures to functions ,the address of a structure variable
/object is passed to the function using address of(&) operator. So any change made to the
contents of structure variable inside the function are reflected back to the calling function.

#include <iostream>
using namespace std;
struct Employee {
char name[50];
int age;
float salary;
};
Employee readData(Employee);
void printData(Employee);
int main()
{
 Employee p;
 p = readData(p);
 printData(p);
return 0;
}
 Employee readData(Employee p) {
 cout<< "Enter Full name: ";
 cin.get(p.name, 50);
 cout<< "Enter age: ";
 cin>>p.age;
 cout<< "Enter salary: ";
 cin>>p.salary;
return p;
}
void printData(Employee p)
{
 cout<< "\nDisplaying Information." <<endl;
 cout<< "Name: " << p.name <<endl;
 cout<<"Age: " <<p.age<<endl;
 cout<< "Salary: " <<p.salary;
}
char name[50];
int age;
float salary;
}; Structures are usually passed by

reference method because it saves the
memory space and executes faster.

Chapter 12.indd 178 14-08-2018 15:48:00

178 179

#include <iostream>
using namespace std;
struct Employee {
char name[50];
int age;
float salary;
};
void readData(Employee &);
void printData(Employee);
int main()
{
 Employee p;

Structures are usually passed by
reference method because it saves the
memory space and executes faster.

 readData(p);
 printData(p);
return 0;
}
void readData(Employee &p) {
 cout<< "Enter Full name: ";
 cin.get(p.name, 50);
 cout<< "Enter age: ";
 cin>>p.age;
 cout<< "Enter salary: ";
 cin>>p.salary;
}
void printData(Employee p)
{
 cout<< "\nDisplaying Information." <<endl;
 cout<< "Name: " << p.name <<endl;
 cout<<"Age: " <<p.age<<endl;
 cout<< "Salary: " <<p.salary;
}
Output:
Enter Full name: Kumar
Enter age: 55
Enter salary: 34233.4
Displaying Information.
Name: Kumar
Age: 55
Salary: 34233.4

3 Returning Structures from Functions

 A structure can be passed to a function through its object. Therefore, passing a structure
to a function or passing a structure object to a function is the same because structure object
represents the structure. Like a normal variable, structure variable(structure object) can be

Chapter 12.indd 179 14-08-2018 15:48:00

180 181

passed by value or by references / addresses.

Similar to built-in data types, structures also can be returned from a function.

#include<iostream.h>
using namespace std;
struct Employee
{
int Id;
char Name[25];
int Age;
long Salary;
};
 Employee Input();
void main()
{
 Employee e;
 Emp = Input();
 cout<< “The values Entered are”<<endl:
 cout<< "\n\nEmployee Id : " <<e.Id;
 cout<< "\nEmployee Name : " <<e.Name;
 cout<< "\nEmployee Age : " <<e.Age;
 cout<< "\nEmployee Salary : " <<e.Salary;
}
 Employee Input()
{
 Employee e;
 cout<< "\nEnter Employee Id : ";
 cin>>e.Id;
 cout<< "\nEnter Employee Name : ";
 cin>>e.Name;
 cout<< "\nEnter Employee Age : ";
 cin>>e.Age;
 cout<< "\nEnter Employee Salary : ";
 cin>>e.Salary;
return;
}

Chapter 12.indd 180 14-08-2018 15:48:00

180 181

Output :
 Enter Employee Id : 10
 Enter Employee Name : Ajay
 Enter Employee Age : 25
 Enter Employee Salary : 15000
 Employee Id : 10
 Employee Name : Ajay
 Employee Age : 25
 Employee Salary : 15000

• Structure is a user-defined which has the
combination of data items with different
data types

• Structure is declared using the keyword
‘struct’

• Structure elements are referenced using
its object name followed by dot(.)
operator and then the member name

• A structure without a name/tag is called
anonymous structure.

• The structure elements can be initialized
either by using separate assignment
statements or at the time of declaration
by surrounding its values with braces.

• A structure object can also be assigned
to another structure object only if both
the objects are of same structure type.

• The structure declared within another
structure is called a nested structure

• A structure can contain array as its
member element.

• Array of structure variable can also be
created.

• Structures can be passed to a function
either by call by value method or by call
by reference method .Functions can also
return structures or its references

Points to Remember:

Chapter 12.indd 181 14-08-2018 15:48:00

182 183

Evaluation

Part – I

Choose the correct answer

1. The data elements in the structure are also known as

 (a) objects (b) members (c) data (d) records

2. Structure definition is terminated by

 (a) : (b) } (c) ; (d) ::

3. What will happen when the structure is declared?

 (a) it will not allocate any memory (b) it will allocate the memory

 (c) it will be declared and initialized (d) it will be only declared

4. What is the output of this program?

 #include <iostream>

 #include <string.h>

 using namespace std;

 int main()

 {

 struct student

 {

 int n;

 char name[10];

 };

 student s;

 s.n = 123;

Chapter 12.indd 182 14-08-2018 15:48:00

182 183

 strcpy(s.name, "Balu");

 cout<<s.n;

 cout<< s.name <<endl;

 return 0; }

 (a) 123Balu (b)BaluBalu (c) Balu123 (d) 123 Balu

5. A structure declaration is given below.

 struct Time

 {

 int hours;

 int minutes;

 int seconds;

 }t;

 Using above declaration which of the following refers to seconds.

 (a) Time.seconds (b) Time::seconds (c)seconds (d) t. seconds

6. What will be the output of this program?

 #include <iostream>

 using namespace std;

 struct ShoeType

 {

 string name;

 double price;

 };

 int main()

Chapter 12.indd 183 14-08-2018 15:48:00

184 185

 {

 ShoeType shoe1, shoe2;

 shoe1.name = "Adidas";

 shoe1.price = 9.99;

 cout<< shoe1.name<< " # "<< shoe1.price<<endl;

 shoe2 = shoe1;

 shoe2.price = shoe2.price / 9;

 cout<< shoe2.name<< " # "<< shoe2.price;

 return 0;

(a) Adidas # 9.99
Adidas # 1.11

(b) Adidas # 9.99
Adidas # 9.11

(c) Adidas # 9.99
Adidas # 11.11

(d) Adidas # 9.11
Adidas # 11.11

7. Which of the following is a properly defined structure?

 (a) struct {int num;} (b) struct sum {int num;}

 (c) struct sum int sum; (d)struct sum {int num;};

8. A structure declaration is given below.

 struct employee

 {

 int empno;

 char ename[10];

 }e[5];

 Using above declaration which of the following statement is correct.

 (a) cout<<e[0].empno<<e[0].ename; (b) cout<<e[0].empno<<ename;

 (c)cout<<e[0]->empno<<e[0]->ename; (d) cout<<e.empno<<e.ename;

9. Which of the following cannot be a structure member?

 (a) Another structure (b) Function

 (c) Array (d) variable of double datatype

10. When accessing a structure member ,the identifier to the left of the dot operator is the
name of

 (a) structure variable (b) structure tag

 (c) structure member (d) structure function

Chapter 12.indd 184 14-08-2018 15:48:00

184 185

Part – II

Answer to all the questions (2 Marks):

1. Define structure .What is its use?

2. To store 100 integer number which of the following is good to use?

 Array or Structure

 State the reason.

3. What is the error in the following structure definition.

 struct employee{ inteno;charename[20];char dept;}

 Employee e1,e2;

4. Write a structure definition for the structure student containing

 examno, name and an array for storing five subject marks.

5. Why for passing a structure to a function call by reference is advisable to us?

6. What is the size of the following highlighted variable in terms of byte if it is compiled
in dev c++

 struct A{ float f[3]; char ch[5];long double d;};

 struct B{ A a; int arr[2][3];}b[3]

7. Is the following snippet is fully correct. If not identify the error.

 struct sum1{ int n1,n2;}s1;

 struct sum2{int n1,n2}s2;

 cin>>s1.n1>>s1.n2;

 s2=s1;

8. Differentiate array and structure.

9. What are the different ways to initialize the structure members?

10. What is wrong with the following C++ declarations?

 A. struct point (double x, y)

Chapter 12.indd 185 14-08-2018 15:48:00

186 187

 B. struct point { double x, double y };

 C. struct point { double x; double y }

 D. struct point { double x; double y; };

 E. struct point { double x; double y; }

PART – III

Answer to all the questions (3 Marks):

1. How will you pass a structure to a function ?

2. The following code sums up the total of all students name starting with ‘S’ and display
it.Fill in the blanks with required statements.

 struct student {int exam no,lang,eng,phy,che,mat,csc,total;char name[15];};

 int main()

 {

 student s[20];

 for(int i=0;i<20;i++)

 {

 …………………….. //accept student details

 }

 for(int i=0;i<20;i++)

 {

 …………………….. //check for name starts with letter “S”

 ……………………. // display the detail of the checked name

 }

 return 0;

 }

3. What is called nested structure.Give example

Chapter 12.indd 186 14-08-2018 15:48:00

186 187

4. Rewrite the following program after removing the syntactical error(s),if any.

 Underline each correction.

 struct movie

 {

 charm_name[10];

 charm_lang[10];

 float ticket cost =50;};

 Movie;

 void main()

 {

 gets(m_name);

 cin>>m_lang;

 return 0;

 }

5. What is the difference among the following two programs?

 (a) #include <iostream.h>

 struct point { double x; double y; };

 int main() {

 struct point test;

 test.x = .25; test.y = .75;

 cout<<test.x<<test.y;

 return 0;

 }

 (b) #include <iostream.h>

Chapter 12.indd 187 14-08-2018 15:48:00

188 189

 struct { double x; double y; } Point;

 int main(void) {

 Point test={.25,.75};

 return 0;

 }

6. How to access members of a structure?Give example.

7. Write the syntax and an example for structure.

8. For the following structure definition write the user defined function to

 accept data through keyboard.

 struct date{ int dd,mm,yy};

 struct item { int item id;char name[10];float price;date date_manif;}

9. What is called anonymous structure .Give an example

10. Write a user defined function to return the structure after accepting value through
keyboard.The structure definition is as follows

 struct Item{int item no;float price;};

Part – IV

Answer to all the questions (5 Marks):

1. Explain array of structures with example

2. Explain call by value with respect to structure.

3. How call by reference is used to pass structure to a function .Give an Example

4. Write a C++ program to add two distances using the following structure definition

 struct Distance{

 int feet;

 float inch;

 }d1 , d2, sum;

Chapter 12.indd 188 14-08-2018 15:48:00

188 189

5. Write a C++ Program to Add two Complex Numbers by Passing Structure to a Function
for the following structure definition

 struct complex

 {

 float real;

 float imag;

 };

 The prototype of the function is

 complex add Complex Numbers(complex, complex);

6. Write a C++ Program to declare a structure book containing name and author as character
array of 20 elements each and price as integer. Declare an array of book .Accept the
name ,author,price detail for each book.Define a user defined function to display the book
details and calculate the total price. Return total price to the calling function.

7. Write a c++ program to declare and accept an array of professors.Display the details of
the department=”COMP.SCI” and the name of the professors start with ‘A’. The structure
“college” should contain the following members .

 prof_id as integer

 name and Department as character array

8. Write the output of the following c++ program

 #include<iostream>

 #include<stdio>

 #include <string>

 #include<conio>

 using namespace std;

 struct books {

 char name[20], author[20];

 } a[50];

Chapter 12.indd 189 14-08-2018 15:48:00

190 191

 int main()

 {

 clrscr();

 cout<< "Details of Book No " << 1 << "\n";

 cout<< "------------------------\n";

 cout<< "Book Name :"<<strcpy(a[0].name,"Programming ")<<endl;

 cout<< "Book Author :"<<strcpy(a[0].author,"Dromy")<<endl;

 cout<< "\nDetails of Book No " << 2 << "\n";

 cout<< "------------------------\n";

 cout<< "Book Name :"<<strcpy(a[1].name,"C++programming")<<endl;

 cout<< "Book Author :"<<strcpy(a[1].author,"BjarneStroustrup ")<<endl;

 cout<<"\n\n";

 cout<< "==\n";

 cout<< " S.No\t| Book Name\t|author\n";

 cout<< "==";

 for (int i = 0; i < 2; i++) {

 cout<< "\n " << i + 1 << "\t|" << a[i].name << "\t| " << a[i].author;

 }

 cout<< "\n===";

 return 0;

 }

9. Write the output of the following c++ program

 #include <iostream>

 #include <string>

 using namespace std;

Chapter 12.indd 190 14-08-2018 15:48:00

190 191

 struct student

 {

 introll_no;

 char name[10];

 long phone_number;

 };

 int main(){

 student p1 = {1,"Brown",123443};

 student p2, p3;

 p2.roll_no = 2;

 strcpy(p2.name ,"Sam");

 p2.phone_number = 1234567822;

 p3.roll_no = 3;

 strcpy(p3.name,"Addy");

 p3.phone_number = 1234567844;

 cout<< "First Student" <<endl;

 cout<< "roll no : " << p1.roll_no <<endl;

 cout<< "name : " << p1.name <<endl;

 cout<< "phone no : " << p1.phone_number <<endl;

 cout<< "Second Student" <<endl;

 cout<< "roll no : " << p2.roll_no <<endl;

 cout<< "name : " << p2.name <<endl;

 cout<< "phone no : " << p2.phone_number <<endl;

Chapter 12.indd 191 14-08-2018 15:48:00

192 193

 cout<< "Third Student" <<endl;

 cout<< "roll no : " << p3.roll_no <<endl;

 cout<< "name : " << p3.name <<endl;

 cout<< "phone no : " << p3.phone_number <<endl;

 return 0;

}

10. Debug the error in the following program

 #include <istream.h>

 structPersonRec

 {

 charlastName[10];

 chaefirstName[10];

 int age;

 }

 PersonRecPeopleArrayType[10];

 voidLoadArray(PeopleRecpeop);

 void main()

 {

 PersonRecord people;

 for (i = 0; i < 10; i++)

 {

 cout<<people.firstName<< ‘ ‘ <<people.lastName

 <<setw(10) <<people.age;

 }

 }

Chapter 12.indd 192 14-08-2018 15:48:00

192 193

 LoadArray(PersonRecpeop)

 {

 for (int i = 0; i < 10; i++)

 {

 cout<< "Enter first name: ";

 cin<<peop[i].firstName;

 cout<< "Enter last name: ";

 cin>>peop[i].lastName;

 cout<< "Enter age: ";

 cin>> people[i].age;}

References:

1. Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

2. The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.

3. Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,
DhanpatRai& Co.

4. The C++ Programming Language, Bjarne Stroustrup

5. https://www.tutorialspoint.com

6. http://www.cs.princeton.edu

7. https://www.programiz.com

Chapter 12.indd 193 14-08-2018 15:48:00

194 195

Learing Objectives

After learning this chapter, the students
will be able to

• Understand the concept of OOPS

• Know the difference between
Procedural, Modular and Object
Oriented Programming.

• Understand the advantages and
disadvantages of Object Oriented
Programming.

13.1 Introduction

 Object-Oriented Programming
(OOP) is the term used to describe a
programming approach based on classes
and objects. The object-oriented paradigm
allows us to organize software as a collection
of objects that consist of both data and
behaviour. This is in contrast to conventional
functional programming practice, that
loosely connects data and behaviour.

 Since 1980's the word 'object' has
appeared in relation to programming
languages, with almost all languages
developed since 1990 having object-oriented
features. This chapter introduces general
OOP concepts.

CHAPTER 13
Introducton to Object Oriented Programming

Techniques

13.2 Programming Paradigms

 Paradigm means organizing
principle of a program. It is an approach
to programming. There are different
approaches available for problem solving
using computer. They are Procedural
programming, Modular Programming and
Object Oriented Programming

13.2.1 Procedural programming

 Procedural means a list of
instructions were given to the computer to
do something. Procedural programming
aims more at procedures. This emphasis on
doing things.

Important features of procedural
programming

• Programs are organized in the form of
subroutines or sub programs

• All data items are global

• Suitable for small sized software
application

• Difficult to maintain and enhance the
program code as any change in data type
needs to be propagated to all subroutines
that use the same data type. This is time
consuming.

• Example: FORTRAN and COBOL.

Unit IV Object Oriented
Programming with C++

Chapter 13.indd 194 14-08-2018 16:07:27

194 195

13.2.2 Modular programming:-

 Modular programming consist
of a list of instructions that instructs
the computer to do something. But this
Paradigm consists of multiple modules,
each module has a set of functions of
related types. Data is hidden under the
modules. Arrangement of data can be
changed only by modifying the module

Important features of Modular
programming

• Emphasis on algorithm rather than data

• Programs are divided into individual
modules

• Each modules are independent of each
other and have their own local data

• Modules can work with its own data as
well as with the data passed to it.

• Example: Pascal and C

13.2.3 Object Oriented Programming:-

 Object Oriented Programming
paradigm emphasizes on the data rather
than the algorithm. It implements programs
using classes and objects.

Class: A Class is a construct in C++ which
is used to bind data and its associated
function together into a single unit using
the encapsulation concept. Class is a user
defined data type. Class represents a group
of similar objects.

It can also be defined as a template or
blueprint representing a group objects
that share common properties and
relationship.

Objects: Represents data and its associated
function together into a single unit. Objects
are the basic unit of OOP. Basically an object
is created from a class. They are instances of
class also called as class variables

 An identifiable entity with some
characteristics and behaviour is called
object.

Important features of Object oriented
programming

• Emphasizes on data rather than
algorithm

• Data abstraction is introduced in
addition to procedural abstraction

• Data and its associated operations are
grouped in to single unit

• Programs are designed around the data
being operated

• Relationships can be created between
similar, yet distinct data types

• Example: C++, Java, VB.Net, Python
etc.

13.3 Basic Concepts of OOP

 The Object Oriented Programing has
been developed to overcome the drawbacks
of procedural and modular programming.
It is widely accepted that object-oriented
programming is the most important and
powerful way of creating software.

 The Object-Oriented Programming
approach mainly encourages:

• Modularisation: where the program can
be decomposed into modules.

Chapter 13.indd 195 14-08-2018 16:07:27

196 197

• Software re-use: where a program can
be composed from existing and new
modules.

Main Features of Object Oriented
Programming

• Data Abstraction

• Encapsulation

• Modularity

• Inheritance

• Polymorphism

13.3.1 Encapsulation

 The mechanism by which the data
and functions are bound together into a
single unit is known as Encapsulation. It
implements abstraction.

 Encapsulation is about binding the
data variables and functions together in
class. It can also be called data binding.

 Encapsulation is the most striking
feature of a class. The data is not accessible to
the outside world, and only those functions
which are wrapped in the class can access
it. These functions provide the interface
between the object’s data and the program.
This encapsulation of data from direct
access by the program is called data hiding
or information hiding.

13.3.2 Data Abstraction

 Abstraction refers to showing only
the essential features without revealing
background details. Classes use the concept
of abstraction to define a list of abstract

attributes and function which operate on
these attributes. They encapsulate all the
essential properties of the object that are
to be created. The attributes are called data
members because they hold information.
The functions that operate on these data are
called methods or member function.

13.3.3 Modularity

 Modularity is designing a system
that is divided into a set of functional units
(named modules) that can be composed
into a larger application.

13.3.4 Inheritance

 Inheritance is the technique of
building new classes (derived class) from
an existing Class (base class). The most
important advantage of inheritance is code
reusability.

13.3.5 Polymorphism

 Polymorphism is the ability of a
message or function to be displayed in more
than one form.

13.4 Advantages of OOP

Re-usability:

 “Write once and use it multiple
times” you can achieve this by using class.

Redundancy:

 Inheritance is the good feature
for data redundancy. If you need a same
functionality in multiple class you can write
a common class for the same functionality
and inherit that class to sub class.

Chapter 13.indd 196 14-08-2018 16:07:27

196 197

Easy Maintenance:

 It is easy to maintain and modify existing code as new objects can be created with small
differences to existing ones.

Security:

 Using data hiding and abstraction only necessary data will be provided thus maintains
the security of data.

13.5 Disadvantages of OOP

Size:

 Object Oriented Programs are much larger than other programs.

Effort:

 Object Oriented Programs require a lot of work to create.

Speed:

 Object Oriented Programs are slower than other programs, because of their size.

• Paradigm means organizing principle of a
program.It is an approach to programming.

• Procedural or Modular programming
means a list of instructions were given and
each instructions tell the computer to do
something.

• Procedural programming aims more ate
procedures. In this Programs are organized
in the form of subroutines or sub programs

• Modular programming combines related
procedures in a module and hides data
under modules.

• Object Oriented programming Paradigm
emphasizes on the data rather than the
algorithm. It implements programs using
classes and objects

• Class is a user defined data type. Class
represents a group of similar objects.

• Objects are the basic unit of OOP.It
represents data and associated function
together in to a single unit.

• The mechanism by which the data and
functions are bound together into a single
unit is known as ENCAPSULATION. It
implements abstraction .

• Abstraction refers to showing only the
essential features without revealing
background details

• Modularity is designing a system that is
divided into a set of functional units that
can be composed into a larger application.

• Polymorphism is the ability of a message or
function to be displayed in more than one
form.

• Inheritance is the technique of building
new classes (derived class) from an existing
class. The most important advantage of
inheritance is code reusability.Inheritance
is transitive in nature.

Points to Remember:

Chapter 13.indd 197 14-08-2018 16:07:27

198 199

Evaluation

PART I

Choose the correct answer:

1. The term is used to describe a programming approach based on classes and objects is
 (A) OOP (B) POP (C) ADT (D) SOP

2. The paradigm which aims more at procedures.
 (A) Object Oriented Programming (B)Procedural programming
 (C) Modular programming (D)Structural programming

3. Which of the following is a user defined data type?
 (A) class (B) float (C) int (D) object

4. The identifiable entity with some characteristics and behaviour is.
 (A) class (B) object (C) structure (D) member

5. The mechanism by which the data and functions are bound together into a single unit
is known as

 (A) Inheritance (B) Encapsulation
 (C) Polymorphism (D) Abstraction

6. Insulation of the data from direct access by the program is called as
 (A) Data hiding (B) Encapsulation
 (C) Polymorphism (D) Abstraction

7. Which of the following concept encapsulate all the essential properties of the object
that are to be created?

 (A) class (B) Encapsulation
 (C) Polymorphism (D) Abstraction

8. Which of the following is the most important advantage of inheritance?
 (A) data hiding (B) code reusability
 (C) code modification (D) accessibility

9. “Write once and use it multiple time” can be achieved by
 (A) redundancy (B) reusability
 (C) modification (D) composition

10. Which of the following supports the transitive nature of data?
 (A) Inheritance (B) Encapsulation
 (C) Polymorphism (D) Abstraction

Chapter 13.indd 198 14-08-2018 16:07:27

198 199

PART II

Answer to all the questions (2 Marks):
1. How is modular programming different from procedural programming paradigm?
2. Differentiate classes and objects.
3. What is polymorphism?
4. How is encapsulation and abstraction are interrelated?
5. Write the disadvantages of OOP.

PART III

Answer to all the questions (3 Marks):
1. What is paradigm ?Mention the different types of paradigm.
2. Write a note on the features of procedural programming.
3. List some of the features of modular programming
4. What do you mean by modularization and software reuse?
5. Define information hiding.

PART IV
Answer to all the questions (5 Marks):
1. Write the differences between Object Oriented Programming and procedural

programming
2. What are the advanatges of OOPs?
3 Write a note on the basic concepts that suppors OOPs?

Reference:
(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy, Mc.Graw

Hills.
(2) The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.
(3) Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,

DhanpatRai& Co.
(4) A text book of CBSE XI and XII computer science by PreetiArora and Pinky Gupta.
(5) Computer Science with C++ Reeta shoo and Gagansahoo
(6) The C++ Programming Language,BjarneStroustrup
(7) C++ Primer (5th Edition) by S. B. Lippman, J. Lajoie

Chapter 13.indd 199 14-08-2018 16:07:27

200

Learining Objectives

After learning this chapter, the students
will be able to

• Understand the purpose of classes,
objects Constructors and Destructors

• able to construct C++ programs
using classes with Constructors and
Destructors

• Execute and debug class programs with
Constructors and Destructors

14.1 Introduction to Classes

 The most important feature of C++
is the “Class”. It is significance is highlighted
by the fact that Bjarne Stroustrup initially
gave the name 'C with classes'. C++ offers
classes, which provide the four features
commonly present in OOP languages:
Abstraction, Encapsulation, Inheritance,
and Polymorphism.

14.1.1 Need for Class

 Class is a way to bind the data and
its associated functions together. Classes
are needed to represent real world entities
that not only have data type properties but
also have associated operations. It is used to
create user defined data type

CHAPTER 14
Classes and objects

14.1.2 Declaration of a class

 A class is defined in C++ using the
keyword class followed by the name of the
class. The body of the class is defined inside
the curly brackets and terminated either by a
semicolon or a list of declarations at the end.

Note

The only difference between
structure and class is the members
of structure are by default public
where as it is private in class.

class class-name
{
private:
 variable declaration;
 function declaration;
protected:
 variable declaration;
 function declaration;
public:
 variable declaration;
 function declaration;
};

The General Form of a class definition

• The class body contains the declaration
of its members (Data member and
Member functions).

Unit IV
Object Oriented
Programming with C++

Chapter 14.indd 200 14-08-2018 16:14:57

201

• The class body has three access specifiers
(visibility labels) viz., private , public
and protected.

14.1.3 Class Access Specifiers

 Data hiding is one of the important
features of Object Oriented Programming
which allows preventing the functions of
a program to access directly the internal
representation of a class type. The access
restriction to the class members is specified
by public, private, and protected sections
within the class body. The keywords public,
private, and protected are called access
specifiers. The default access specifier for
members is private.

The Public Members

 A public member is accessible from
anywhere outside the class but within a
program.You can set and get the value of
public data members even without using
any member function.

The Private Members

 A private member cannot be
accessed from outside the class. Only the
class member functions can access private
members.By default all the members of a
class would be private.

The Protected Members

 A protected member is very similar
to a private member but it Provides one
additional benefit that they can be accessed

in child classes which are called derived classes (inherited classes).

Example

Keyword class intimates the compiler that it is a class definition

These are private access specifier members

These are protected access specifier members

That means these members cannot be accessed
from outside

These members also cannot be accessed from
outside

Members under this specifier can be accessed
from outside

}
}

Class name or tag name acts as a user defined data type. Using this,
object of the same class type will be created.

class student
{
Private:
 char name [10];
 int rollno, mark1, mark2, total;
Protected:
 void accept();
 void compute();
public:
 void display();
};

Chapter 14.indd 201 14-08-2018 16:14:57

202

Note

 If all members of the class
are defined as private ,then the class
become freezed .The object of the
class can not access anything from
the class.

Activity 1
State the reason for the invalidity of the
following code fragment

(i) (ii)

class count
{
 int first;
 int second;
 public:
 int first;
};

class item
{
int prd;
 };
item int prdno;

14.1.4 Definition of class members

 Class comprises of members.
Members are classified as Data Members
and Member functions. Data members are
the data variables that represent the features
or properties of a class. Member functions
are the functions that perform specific tasks
in a class. Member functions are called as
methods, and data members are also called
as attributes.

Example
Class result
{
Private;
 char name [10];
 int rollno,mark1, mark2, total;

Public:
 void accept();
 void display();
};

}
}

Member functions

Data members

Note

Classes also contain some special
member functions called as
constructors and destructors.

14.1.5 Defining methods of a class

 Without defining the methods
(functions), class definition will become
incomplete. The member functions of a
class can be defined in two ways.

(1) Inside the class definition

(2) Outside the class definition

(1) Inside the class definition

 When a member function is defined
inside a class, it behaves like inline functions.
These are called Inline member functions.

Note

If a function is inline, the compiler
places a copy of the code of that
function at each point where the
function is called at compile time.

(2) Outside the class definition

 When Member function defined
outside the class just like normal function
definition (Function definitions you are
familiar with) then it is be called as outline
member function or non-inline member
function. Scope resolution operator (::)
is used for this purpose. The syntax for
defining the outline member function is

Chapter 14.indd 202 14-08-2018 16:14:57

203

Syntax

 return_type class_name :: function_name (parameter list)

 {

 function definition

 }

For example: Member function

Scope resolution operator

Data type of the member function

Class name / tag

void add :: display()

include <iostream>
using namespace std;
class Box
{
 double width; // no access specifier mentioned
public:
 double length;
void printWidth() //inline member function definition
 {
 cout<<”\n The width of the box is...”<<width;
 }
void setWidth(double w); //prototype of the function
};
void Box :: setWidth(double w) // outline member function definition
{
width=w;
}

Illustration 14.1 Inline and Outline member function

Absence of access specifier means
that members are private by default..

Chapter 14.indd 203 14-08-2018 16:14:57

204

ACTIVITY 2
class area
{
 int s;
public:
 void calc();
};
Write an outline function definition for
calc(); which finds the area of a square

1. Define a class in general and in
C++'s context

2. What is the purpose of a class
specifier?

3. Compare a structure and a class in
C++ context.

4. Compare private and puplic access
specifier.

5. What is non-inline member
function? Write its syntax.

?Evaluate Yourself

14.2 Creating Objects

 A class specification just defines the
properties of a class. To make use of a class
specified, the variables of that class type have
to be declared. The class variables are called
object. Objects are also called as instance of
class.

For example

 student s;

 In the above statement s is an instance
of the class student.

 Objects can be created in two
methods,

 (1) Global object

 (2) Local object

(1) Global Object

 If an object is declared outside all the
function bodies or by placing their names
immediately after the closing brace of the
class declaration then it is called as Global
object. These objects can be used by any
function in the program

int main()
{
Box b; // object for class Box
b.setWidth(10.0); // Use member function to set the width.
b.printWidth(); //Use member function to print the width.
return 0;
}
Output:
The width of the box is... 10

Note

Declaring a member function having many statements, looping
construct, switch or goto statement as inline is not advisable.

Chapter 14.indd 204 14-08-2018 16:14:57

205

(2) Local Object

 If an object is declared with in a function then it is called local object.
It cannot be accessed from outside the function.

include <iostream>
include <conio>
using namespace std
class add //Global class
{
int a,b;
public:
int sum;
void getdata()
{
a=5;
b=10;
sum = a+b;
}
} a1; //global object
add a2; //global object
int main()
{
add a3; //Local object for a global class
a1.getdata();
a2.getdata();
a3.getdata();
cout<<a1.sum; //public data member accessed from outside the class
cout<<a2.sum;
cout<<a3.sum;
return 0;
}
Output:
151515

Illustration 14.2 The use of local object

A global object can be declared only
for global class. If a class definition
is specified outside the body of all
functions in a program then it is called
global class

Chapter 14.indd 205 14-08-2018 16:14:57

206

ACTIVITY 3
Identify the error in the following code fragment
class A
{
 float x;
 void init()
 {
 A a1;
 X1.5=1;
 }};
void main()
{ A1.init(); }

14.3 Memory allocation of objects

 The member functions are created and placed in the memory space only when they
are defined as a part of the class specification. Since all the objects belonging to that class use
the same member function, no separate space is allocated for member functions when the
objects are created. Memory space required for the member variables are only allocated
separately for each object because the member variables will hold different data values for
different objects

include <iostream>
using namespace std;

class product
{
 int code, quantity;
 float price;
 public:
 void assignData();
 void Print();
};

Illustration 14.3 Memory allocation for objects

The members will be allocated with
memory space only after the creation
of the class type object

Chapter 14.indd 206 14-08-2018 16:14:57

207

int main()
{
 product p1, p2;
 cout<<”\n Memory allocation for object p1 ” <<sizeof(p1);
 cout<<”\n Memory allocation for object p2 ” <<sizeof(p2);
 return 0;
}

Output:
 Memory allocation for object p1 12
 Memory allocation for object p2 12

 Member functions assignData() and Print() belong to the common pool in the sense
both the objects p1 and p2 will have access to the code area of the common pool.

Memory for Objects for p1 and p2 is illustrated:

Code quantity price Code quantity price{ {4 bytes 4bytes 4bytes

12 bytes 12 bytes

P2 objectP1 object

4 bytes 4bytes 4bytes

ACTIVITY 4
What is the size of the objects s1, s2?
class sum
{
 int n1,n2;
 public:
 void add(){int n3=10;n1=n2=10;}
} s1,s2;

14.4 Referencing class members

 The members of a class are referenced (accessed) by using the object of the class followed
by the dot (membership) operator and the name of the member.

The general syntax for calling the member function is:

Object_name . function_name(actual parameter);

Chapter 14.indd 207 14-08-2018 16:14:57

208

For example consider the following illustration

Stud . execute();

Member function
Dot operator
Object name

#include<iostream>
using namespace std;
class compute
{
 int n1,n2; //private by default
public :
 int n;
 int add (int a, int b) //inline member function
 {
 int c=a+b; //int c ; local variable for this function
 return c;
 }

 int prd (int a, int b) //inline member function
 {
 int c=a*b;
 return c;
 }
}; // end of class specification
compute c1,c2; //global object

int main()
{
 c1.n =c1.add(12,15); //member function is called
 c2.n =c2.add(8,4);
 cout<<"\n Sum of object-1 "<<c1.n;
 cout<<"\n Sum of object-2 "<<c2.n;
 cout<<"\n Sum of the two objects are "<<c1.n+c2.n;
 c1.n=c1.prd(5,4);
 c2.n=c2.prd(2,5);
 cout<<"\n Product of object-1 "<<c1.n;
 cout<<"\n Product of object-2 "<<c2.n;
 cout<<"\n Product of the two objects are "<<c1.n*c2.n;
 return 0;
}

Illustration 14.4 C++ program to illustrate the communication of object:

Calling a member function of an object
is also known as sending message to
object or communication with the
object.

Chapter 14.indd 208 14-08-2018 16:14:57

209

Output:
 Sum of object-1 27
 Sum of object-2 12
 Sum of the two objects are 39
 Product of object-1 20
 Product of object-2 10
 Product of the two objects are 200

ACTIVITY 5
i) Write member function called display with no return.
The function should display all the member value of the
class objects.
ii) Try the output of the above coding with the necessary
modifications

14.5 Array of objects

 An array which contains the class type of element is called array of objects. It is declared
and defined in the same way as any other type of array.

#include<iostream>
#include<stdio.h>
using namespace std;
class stock
 {
 int itemno;
 char itemname[10]; // array as member variable
 float price;
 public:
 void getdata()
 {
 cin>>itemno>>price;
 gets(itemname);
}
void putdata()
{
 cout<<’\n’<<itemno<<’\t’<<itemname<<’\n’<<price;
}
};

Illustration 14.5 Array of objects

gets () can accept a string with space
which is not possible by cin.

Chapter 14.indd 209 14-08-2018 16:14:57

210

int main()
{
stock s[10];
int i;
cout<<”Enter the details\n”;
 for(i=0;i<10;i++)
 s[i].getdata();
cout<<”\n Item Details\n”;
cout<<”\nITEM NO \t ITEM NAME\t PRICE”<<endl;
 for(i=0;i<10;i++)
 s[i].putdata();
return 0;
}
Output
Item Details
ITEM NO ITEM NAME PRICE
101 APSARA PENCIL Price10.5
102 FABER CASTELL PENCIL Price12.0001
103 NATARAJ PENCIL Price9.75
201 PILOT V7 PEN Price50
201 CELLO BUTTERFLOW Price10
202 PARKER PEN Price450
202 PILOT FOUNTAIN PEN Price600
301 APSARA ERASER Price5
302 FABER CASTELL ERASER Price15.0001
303 NATARAJ ERASER Price3

itemno Name price

S[0]

S[1]

S[2]

S[9]

Memory representation of array of 10 Stock objects

 The above program accepts the details of 10 items and display the same.In the program
if you observe there are 10 objects created and are accessing the member function through for
loop. To invoke putdata() for a particular object for example for object 6 we will give

 s[5].putdata(); //array index start with 0. So index 5 refers to 6th object

Chapter 14.indd 210 14-08-2018 16:14:57

211

14.6 Functions in a class

 A wide range of operations for the class members are performed using member
functions of the class .These operations are defined in the member function.

14.6.1 Objects accessing inline and outline member functions

 As you are aware the definition of the member function can be given either inside the
class specification or outside the class

 Let us see from the illustrated example program. This program defines a class called
sales with the following description

private members of class salesman
sno integer(salesperson number)
sname 15 characters
hrwrk ,wage float (hours worked and wage per hour)

totwage float(hrwrk * wage)

calcwg() a function to find hrwrk * wage and store it in totwage
public members of class salesman

in_data()
a function to accept values for sno, sname, hrwrk, wage and invoke
calcwg() to calculate totwage

out_data()
a function to display all the data members on the screen. you should give
definitions of functions as outline

#include<iostream>
using namespace std
class sales
{
 int sno;
 char sname [15];
 float hrwrk,wage,totwage;
void calcwg()
 {
 totwage=hrwrk * wage;
 }
public :
 void in_data();
 void out_data();
};

Illustration 14.6 Inline Outline and function

An inline member function definition
should be placed above all the functions
that call it

The prototype of the outline member
function given in a class specification,
instructs the compiler about its visibility
mode.

Chapter 14.indd 211 14-08-2018 16:14:57

212

void sales :: in_data()
{
 wage=75.26;
 totwage=0.0;
 cout<<"\nEnter the salesperson id";cin>>sno;
 cout<<"\nEnter the name" ;gets(sname);
 cout<<"\nEnter the hours worked" ;cin>>hrwrk;
 calcwg(); //member function called inside by another member function
}
void sales :: out_data()
{
 cout<<"\n Wage slip ";
 cout<<"\n ~~~~~~~~ ";
 cout<<"\nID : " << sno;
 cout<<"\nName : " <<sname ;
 cout<<"\nHours worked :" <<hrwrk;
 cout<<"\nTotal Wage :"<<setprecision(2)<<totwage;
}
int main()
{
 sales sal;
 sal.in_data();
 sal.out_data();
 return 0;
}
Output:
Enter the salesperson id 1201

Enter the name ARUL

Enter the hours worked 7

 Wage slip
 ~~~~~~~~
ID : 1201
Name : ARUL
Hours worked :7
Total Wage :526.82

14.7 Nesting of member functions

 You know that only the public members of a class can be accessed by the object of that 
class, using dot operator. However a member function can call another member function of 
the same class directly without using the dot operator. This is called as nesting of member 
functions.

Chapter 14.indd   212 14-08-2018   16:14:57



213

#include<iostream>
using namespace std
class nest
{ 
 int a;
 int square_num( )
 {
  return a* a;
 }
 public:
 void input_num( )
 {
  cout<<”\nEnter a number ”;
  cin>>a;
 }
 int cube_num( )
 {
  return a* a*a;
 }
void disp_num()
{
 int sq=square_num();  //nesting of member function
 int cu=cube_num();  //nesting of member function
 cout<<”\nThe square of  “<<a<<” is   ” <<sq;
 cout<<”\nThe cube of  “<<a<<” is   ” <<cu;
}
};
int main()
 {
 nest n1;
 n1.input_num();
 n1.disp_num();
 return 0;
}
Output:
Enter a number 5
The square of 5 is 25
The cube of 5 is 125

Illustration 14.7 The use of Nesting of Member Function

A member function can call another 
member function of the same class for 
that you do not need an object. 

 In the above program  disp_num() function calls two other member function square_
num() and cube_num(). Both are defined in different visibility mode.

Chapter 14.indd   213 14-08-2018   16:14:57



214

Note

 A member function can access not only the public functions 
but also the private functions of the class it belongs to.

14.7.1 The Scope Resolution Operator

 If there are multiple variables with the same name defined in separate blocks then :: 
(scope resolution) operator will reveal the hidden file scope(global) variable.

#include<iostream>
using namespace std;
int a=100;
class A
{
 int a;
 public:
void fun()
 {
 a=20;
 a+=::a;  //using global variable value
 cout<<a;
 }  };
int main()
{
 clrscr();
 A a1;
 a1.fun();
 retun 0;
}
Output:
120

Illustration 14.8 The use of scope resolution operator

Recall :: is also used to identify the class 
to which a member function belongs 
to.

 In the above program the class data member and the global variable have same name. 
To use the global variable :: used.

14.8 Objects as Function arguments

 Objects can also be passed as arguments to a member function just like any other data 
type of C++.Objects can also be passed in both ways 

 (1) Pass By Value

 (2) Pass By Reference

Chapter 14.indd   214 14-08-2018   16:14:57



215

14.8.1 Pass By Value

 When an object is passed by value the function creates its own copy of the object and 
works on it . Therefore any changes made to the object inside the function do not affect the 
original object. 

#include <iostream>
using namespace std;
class Sample
{
private:
 int num;
public:
 void set (int x)
 {
 num = x;
 }
void pass(Sample obj1, Sample obj2)  //objects are passed
{
 obj1.num=100;     // value of the object is changed inside the function
 obj2.num=200;     // value of the object is changed inside the function
 cout<<"\n\n Changed value of object1 "<<obj1.num;
 cout<<"\n\n Changed value of object2 "<<obj2.num;
}
 void print( )
 {
  cout<<num;
 }
};
int main()
{
 //object declarations
 Sample s1;
 Sample s2;
 Sample s3;
 //assigning values to the data member of objects
 s1.set(10);
 s2.set(20);
 cout<<"\n\t\t Example program for pass by value\n\n\n";
 //printing the values before passing the object
 cout<<"\n\nValue of object1 before passing"; 
 s1.print();
 cout<<"\n\nValue of object2 before passing ";
  s2.print();

Illustration 14.9 C++ program to illustrate how the pass by value 
method work

we can assign one object to another 
object, Similar to structure object

Chapter 14.indd   215 14-08-2018   16:14:57



216

 //passing object s1 and s2
  s3.pass(s1,s2);
  //printing the values after returning to main
   cout<<"\n\nValue of object1 after passing ";
  s1.print();
  cout<<"\n\nValue of object2 after passing ";
  s2.print();
 return 0;
}
Output:
Example program for PASS BY VALUE
Value of  object1 before passing 10
Value of object2 before passing 20
Changed value of object 1 100
Changed value of object 200
Value of object 1 after passing 10
Value of object 2 after passing 20

 In the above program the objects s1,and s2 are passed to pass( ) method. They are copied 
to obj1 and obj2 respectively. The data member num’s value is changed inside the function. But 
it didn’t affected the s1 and s2 objects data member.

14.8.2 Pass By Reference

 When an object is passed by reference , its memory address is passed to the function 
so the called function works directly on the original object used in the function call. So any 
changes  made to the object inside the function definition are reflected in original object.

#include <iostream>
using namespace std;
class Sample
{
private:
 int num;
public:
 void set (int x)
 {
  num = x;
 }

Illustration 14.10 C++ program to illustrate how the pass by reference 
method work

Chapter 14.indd   216 14-08-2018   16:14:57



217

void pass(Sample &obj1, Sample &obj2)  //objects are passed
{ 
  obj1.num=100;     // value of the object is changed inside the function
  obj2.num=200;     // value of the object is changed inside the function
  cout<<"\n\n Changed value of object1 "<<obj1.num;
  cout<<"\n\n Changed value of object2 "<<obj2.num;
}
 void print()
 {
  cout<<num;
 }
};
int main()
{
 clrscr();
 //object declarations
 Sample s1;
 Sample s2;
 Sample s3;
 //assigning values to the data member of objects
 s1.set(10);
 s2.set(20);
 cout<<"\n\t\t Example program for pass by reference\n\n\n";
` //printing the values before passing the object
 cout<<"\n\nValue of object1 before passing"; 
 s1.print();
 cout<<"\n\nValue of object2 before passing ";
  s2.print();
 //passing object s1 and s2
  s3.pass(s1,s2);
  //printing the values after returning to main
 cout<<"\n\nValue of object1 after passing ";
  s1.print();
  cout<<"\n\nValue of object2 after passing ";
  s2.print();
 return 0;
}

Chapter 14.indd   217 14-08-2018   16:14:57



218

Output:
Example program for PASS BY REFERENCE
Value of object1 before passing10
Value of object 2 before passing 20
Changed value of object1 100
Changed value of object2 200
Value of object1 after passing 100
Value of object2 after passing 200

 In the above program the objects s1,and s2 are passed as reference to pass( ) method. So 
obj1 and obj2 become reference(alias name) for s1 and s2 respectively. The data member num’s 
value is changed inside the function affected s1 and s2 objects data member.

14.9 Functions Returning objects

 Member Functions not only receive object as argument it can also return an object.

#include <iostream>
using namespace std;
class Sample
{
 private:
  int num;
 public:
 void set (int x)
 {
 num = x;
 }
 Sample pass(Sample obj1, Sample obj2)  //
 {
    Sample s4;
    s4.num=obj1.num+obj2.num;
    return s4;
 }
  }
 void print()
 {

Illustration 14.11 C++ program to illustrate how an object is returned 
to the calling function

Chapter 14.indd   218 14-08-2018   16:14:57



219

 cout<<num;
 }
};
int main()
{
 //object declarations
 Sample s1;
 Sample s2;
 Sample s3;
 //assigning values to the data member of objects
 s1.set(10);
 s2.set(20);
 cout<<"\n\t\t Example program for Returning an object \n\n\n";
 //passing object s1 and s2
 s3=s3.pass(s1,s2);
 //printing the values of object
 cout<<"\nThe value of s1.num is ";
 s1.print();
 cout<<"\nThe value of s2.num is ";
 s2.print();
 //printing the sum
 cout<<"\nThe sum s3.num is  ";s3.print();
 return 0;
}
Output:
Example program for Returning an object
The value of s1.num is 10
The value of s2.num is 20
The sum s3.num is  30

14.10 Nested class

 When one class become the member of another class then it is called Nested class and 
the relationship is called containership.

Classes can be nested in two ways.

1. By defining a class within another class

2. By declaring an object of a class as a member to another class

Chapter 14.indd   219 14-08-2018   16:14:57



220

Defining a class with in another

 When a class is declared with in another class, the inner class is called as Nested class 
(ie the inner class) and the outer class is known as Enclosing class. Nested class can be defined 
in private as well as in the public section of the Enclosing class.

#include<iostream>
using namespace std;
class enclose
{
private:
 int x;
 class nest
 {
private :
 int y;
public:
int z;
void prn()
{
 y=3;z=2;
 cout<<"\n The product of "<<y<<'*'<<z<<"= "<<y*z<<"\n";
}
}; //inner class definition over
nest n1;
public:
nest n2;
void square()
{
n2.prn(); //inner class member function is called by its object
 x=2;
 n2.z=4;
 cout<<"\n The product of " <<n2.z<<'*'<<n2.z<<"= "<<n2.z*n2.z<<"\n";
 cout<<"\n The product of " <<x<<'*'<<x<<"= "<<x*x;
 }
};  //outer class definition over
int main()
{
enclose e;
 e.square();   //outer class member function is called
}

Illustration 14.12 C++ program to illustrate the nested class

Chapter 14.indd   220 14-08-2018   16:14:57



221

Output:
The product of 3*2=6
The product of 4*4=16
The product of 2*2=4

 In the above program the inner class nest is defined inside the outer class enclose. nest 
is accessed by enclose by creating an object of nest

14.10.1 Containership in C++

 Whenever an object of a class is declared as a member of another class it is known as a 
container class. In the container-ship the object of one class is declared in another class.

#include<iostream>
using namespace std;
class outer
{
 int data;
 public:
 void get();
};
class inner
{
 int value;
 outer ot; // object ot of class outer is declared in class inner
 public:
 void getdata();
};
void outer :: get()
{
 cout<<"\nEnter a value";
 cin>>data;
 cout<<"\nThe given value is "<<data;
}
void inner :: getdata()
{
 cout<<"\nEnter a value";
 cin>>value;
 cout<<"\nThe given value is "<<value;
 ot.get();       //calling of get() of class outer in getdata() of class inner
}

Illustration 14.13 C++ program to illustrate the containership

Chapter 14.indd   221 14-08-2018   16:14:57



222

int main()
{
 inner in;
 in.getdata();
 return 0;
}
Output:
Enter a value10
The given value is 10
Enter a value 20
The given value is 20

 In the above program class outer and inner are defined separately. But both the classes 
are connected by the object 'ot' which is a member of class inner

14.11 Introduction to Constructors

 The definition of a class only creates a new user defined data type. The instances of the 
class type should be instantiated (created and initialized) . Instantiating object is done using 
constructor.

14.11.1  Need for Constructors

An array or a structure in c++ can be initialized during the time of their declaration.

For example

struct sum
    {
 int n1,n2;
    };
class add 
   {
 int num1,num2;
   };
int  main()
    {
 int arr[]={1,2,3};          //declaration and initialization of array 
 sum s1={1,1};             //declaration and initialization of structure object
 add  a1={0,0};           // class object declaration and initialization throws  
        compilation error  
     }

Member function of a class can access 
all the members irrespective of their 
associated access specifier.

 The initialization of class type object at the time of declaration similar to a structure 
or an array is not possible because the class members have their associated access specifiers 
(private or protected or public). Therefore Classes include special member functions called as 
constructors. The constructor function initializes the class object.

Chapter 14.indd   222 14-08-2018   16:14:57



223

14.12 Declaration and Definition

 When an instance of a class comes into scope, a special function called the constructor 
gets executed. The constructor function name has the same name as the class name. The 
constructors return nothing. They are not associated with any data type. It can be defined 
either inside class definition or outside the class definition.

Example 1:

#include<iostream>
using namespace std;
class Sample
         {
int i,j;
             public :
int k;
               Sample()
               {
                   i=j=k=0;//constructor defined inside the class
               }
         };

  Illustration  14.14 A constructor defined inside the class specification.

#include<iostream>
using namespace std;
class Sample
         {
int i,j;
             public :
int k;
               Sample()
               {
                   i=j=k=0;//constructor defined inside the class
               }
         };
int main()
{
Samples1;
       return 0;
}
Output:

  Illustration  14.15 A constructor defined inside the class specification.

Chapter 14.indd   223 14-08-2018   16:14:57



224

ACTIVITY 6
In the above program justify your reason for no output

Example 2:

#include<iostream>
using namespace std;        
class Data
         {
int p,q;
             public :
int r;
               Data();     //only prototype to be specified here to intimate its access  
         specifier
        };       
Data ::Data()
{
        p=q=r=0;              // constructor defined outside the class                  
 } 
int main()
{
      Data d1;
return 0;
}

Illustration 14.16 A constructor defined outside the class 
specification.

Note

A constructor can be defined either in private or public section of 
a class. But it is advisable to defined in public section of a class ,so 
that its object can be created in any function.

Chapter 14.indd   224 14-08-2018   16:14:57



225

#include<iostream>
using namespace std;   
class X
  {
 int num;
 X()
      {
 num=k=0;                   
       }
   public:
   int k;      
 }; 
int main()
{
X x;    // The constructor of X cannot accessed by main() because main() is a
 //non member function
  //and the compiler throws error message [Error] 'X::X()' is private
return 0;
}

Illustration 14.17 illustrate a constructor defined inside the private 
visibility.

14.12.1 Functions of constructor

 As we know now that the constructor is a special initialization member function of a 
class that is called automatically whenever an instance of a class is declared or created. The 
main  function of the constructor is 

1) To allocate memory space to the object and

2) To initialize the data member of the class object

 There is an alternate way to initialize the class objects but in that case we have to 
explicitly call the member function.

Chapter 14.indd   225 14-08-2018   16:14:57



226

#include<iostream>
using namespace std;
class Sample
  {
 int i, j;
 public :
 int k;
 void getvalue()
        {
               i=j=k=0;                   //member function
          }
   };
int main()
{
Sample s1;
      s1.getvalue();                    //member function initializes the class object
return 0;
}

Illustration 14.18 illustrate a member function initializes the data 
member.

After creating the object the getvalue() 
should be explicitly called to initialize 
the object.

14.12.2 Default Constructors

 A constructor that accepts no parameter is called default constructor. For example in 
the class data program Data ::Data() is the default constructor . Using this constructor Objects 
are created similar to the way the variables of other data types are created. 

      Example 

 int num;         //ordinary variable declaration
              Data d1;         // object declaration  

 If a class  does not contain an explicit constructor (user defined constructor) the 
compiler automatically generate a default constructor implicitly as an inline public member.

Chapter 14.indd   226 14-08-2018   16:14:58



227

#include<iostream>
using namespace std;
class Sample
         {
 int i, j;
             public:
 int k; //no user defined constructor in this program
 void getvalue()//member function
               {
                   i=j=k=0;
               }
         };
int main()
{
 Sample  s1; //uses the default constructor generated by the compiler 
       s1.getvalue();                    
       return 0;
}

Illustration 14.19 illustrate the compiler generated constructor 

Note

In the absence of user defined constructor the compiler 
automatically provides the default constructor. It simply allocates 
memory for the object.

#include<iostream>
using namespace std;
class simple
{
private:
 int a,b;
public:
simple()
{
 a= 0 ;
 b= 0;
 cout<< "\n Constructor of class-simple ";
}

Illustration 14.20 to illustrate the  constructor and other member 
function in a class

Chapter 14.indd   227 14-08-2018   16:14:58



228

  void getdata()
 {
  cout<<"\n Enter values for a and b (sample data 6 and  7)... ";
  cin>>a>>b;
 }
 void putdata()
 {
  cout<<"\nThe two integers are... "<<a<<'\t'<< b<<endl;
  cout<<"\n The sum of the variables "<<a<<" + "<<b<<" = "<<a+b;
 }
};
int main()
{
 simple s;
 s.getdata();
 s.putdata();
 return 0;
}
Output:
 Constructor of class-simple
 Enter values for a and b (sample data 6 and  7)... 6 7
The two integers are... 6       7
 The sum of the variables 6 + 7 = 13

14.12.3 Parameterized Constructors

 A constructor which can take arguments is called parameterized constructor .This type 
of constructor helps to create objects with different initial values. This is achieved by passing 
parameters to the function.

#include<iostream>
using namespace std;
class simple
{
private:
   int a,b;
public:
simple(int m, int n)
{

Illustration 14.21  to illustrate the  Parameterized constructor used for 
creating objects

Chapter 14.indd   228 14-08-2018   16:14:58



229

a= m ;
b= n;
cout<< "\n Parameterized Constructor of class-simple "<<endl;
}
void putdata()
{
cout<<"\nThe two integers are... "<<a<<'\t'<< b<<endl;
cout<<"\n The sum of the variables "<<a<<" + "<<b<<" = "<< a+b;
}
};
int main()
{
simple s1(10,20),s2(30,45); //Created two objects with different values created
cout<<"\n\t\tObject 1\n";
s1.putdata();
cout<<"\n\t\tObject 2\n";
s2.putdata();
return 0;
}
Output:
Parameterized Constructor of class-simple
Parameterized Constructor of class-simple
Object 1
The two integers are .. 10      20
 The sum of the variables 10 + 20 = 30
Object 2
The two integers are... 30      45
 The sum of the variables 30 + 45 = 75

Note

Declaring a constructor  with arguments hides the compiler 
generated constructor .After this we cannot invoke the compiler 
generated constructor.

Chapter 14.indd   229 14-08-2018   16:14:58



230

#include<iostream>
using namespace std;
class simple
{
private:
   int a,b;
public:
simple(int m, int n)
{
a= m ;
b= n;
cout<< "\n Parameterized Constructor of class-simple "<<endl;
}

void putdata()
{
cout<<"\nThe two integers are .. "<<a<<'\t'<< b<<endl;
cout<<"\n The sum of the variables "<<a<<" + "<<b<<" = "<< a+b;
}
};
int main()
{
simple s,s1(10,20)     // [Error] no matching function for call to 'simple::simple()'
s1.putdata();
s2.putdata();
return 0;
}

Illustration 14.22 to illustrate the creation of object with no argument 
after defining parameterized constructor throws error

Note

Just like normal function parameterized constructor can also have 
default arguments.

#include<iostream>
using namespace std;
class simple
{
private:
   int a,b;
public:
simple(int m, int n=100)     //default argument
{
a= m ;

Illustration 14.23 to illustrate the default argument in parameterized 
constructor 

Note:- Just like normal function 
parameterized constructor can also 
have default arguments.

Chapter 14.indd   230 14-08-2018   16:14:58



231

b= n;
cout<< "\n Parameterized Constructor with default argument"<<endl;
}

void putdata()
{
cout<<"\nThe two integers are... "<<a<<'\t'<< b<<endl;
cout<<"\n The sum of the variables "<<a<<" + "<<b<<" = "<< a+b;
}
};
int main()
{
simple s1(10,20),s2(50);
 cout<<"\n\t\tObject 1 with both values \n";
s1.putdata();
cout<<"\n\t\tObject 2 with one value and one deafult value\n";
s2.putdata();
return 0;
}
Output:
Parameterized Constructor with default argument
Parameterized Constructor with default argument
                Object 1 with both values
The two integers are... 10      20
The sum of the variables 10 + 20 = 30
                Object 2 with one value and one deafult value
The two integers are... 50      100
The sum of the variables 50 + 100 = 150

14.13 Significance of Default constructors

 Default constructors are very useful to crate objects without having  specific initial 
value. It is also used to create array of objects.

#include<iostream>
using namespace std;
class simple
{
private:
int a, b;
public:
simple()      //default constructor

Illustration 14.24 to illustrate the significance of default constructor 

Chapter 14.indd   231 14-08-2018   16:14:58



232

{
a=0 ;
b= 0;
cout<< "\n default constructor"<<endl;
}
int getdata();

};
int simple :: getdata()
{  int tot;
cout<<"\nEnter two values ";
cin>>a>>b;
tot=a+b;
return tot;
}
int main()
{
int sum=0;
simple s1[3];
cout<<"\n\t\tObject 1 with both values \n";
for (int i=0;i<3;i++)
    sum+=s1[i].getdata();
cout<<"\nsum of all object values is"<<sum;
return 0;
}
Output:
 default constructor
 default constructor
 default constructor
                Object 1 with both values
Enter two values 10 20
Enter two values 30 40
Enter two values 50 50
sum of all object values is200

14.14 Invocation of constructors

There are two ways to create an object using parameterized constructor

• Implicit call

• Explicit call

14.14.1 Implicit call

 In this method ,the parameterized constructor is invoked automatically whenever an 
object is created. For example  simple s1(10,20); in this for creating the object s1 parameterized 
constructor is automatically invoked.

Chapter 14.indd   232 14-08-2018   16:14:58



233

14.14.2 Explicit call

 In this method ,the name of the constructor is explicitly given to invoke the parameterized 
constructor so that the object can be created and initialized .

For example 
simple s1=simple(10,20);         //explicit call

 Explicit call method is the most suitable method as it creates a temporary object ,the 
chance of data loss will not arise.A temprory object lives in memory as long as it is being used 
in an expression.After this it get destroyed.

Note

An explicit call to constructor creates temporary instance which remains 
in the memory as long as it is used and after that it get released.

#include<iostream>
using namespace std;
class simple
{
private:
int a, b;
public:
simple(int m,int n)
{
a= m ;
b= n;
cout<< "\n Constructor of class-simple invoked for implicit and explicit call"<<endl;
}
void putdata()
{
cout<<"\nThe two integers are... "<<a<<'\t'<< b<<endl;
cout<<"\n The sum of the variables "<<a<<" + "<<b<<" = "<<a+b;
}
};
int main()
{
simple s1(10,20);                 //implicit call
simple s2=simple(30,45);        //explicit call
cout<<"\n\t\tObject 1\n";
s1.putdata();

Illustration14.25 to illustrate implicit call and explicit call 

Chapter 14.indd   233 14-08-2018   16:14:58



234

s2.putdata();
return 0;
}
Output:

 Constructor of class-simple invoked for implicit and explicit call

 Constructor of class-simple invoked for implicit and explicit call

Object 1

The two integers are... 10      20

The sum of the variables 10 + 20 = 30

Object 2

The two integers are... 30      45

 The sum of the variables 30 + 45 = 75

Explicit call to constructor creates a 
temporary instance

14.15 Copy Constructors

 A constructor having a reference to an already existing object of its own class is called 
copy constructor .In other words Copy Constructor is a type of constructor which is used 
to create a copy of an already existing object of a class type. It is usually of the form simple 
(simple&), where simple is the class name. The compiler provides a default Copy Constructor 
to all the classes.

14.15.1 Calling copy constructors

 A copy constructor is called

1)  When an object is passed as a parameter to any of themember functions

 Example void simple::putdata(simple x);

2) When a member function returns an object

 Example simple getdata() {   }

3) When an object is passed by reference to an instance of its own class

 For example, simples1, s2(s1);  // s2(s1) calls copy constructor

#include <iostream>
using namespace std;
class Test
{

Illustration 14.26  to illustrate Copy constructor

Chapter 14.indd   234 14-08-2018   16:14:58



235

    private:
    int X;
    int Y;
    public:
 Test (int , int );    //parameterized constructor declaration 
 Test (Test &);   //Declaration of copy constructor to initialize data members.
void    Display();
};//End of class
Test:: Test(int a, int b)      //Definition of parameterized constructor.
{
    X = a;
    Y = b;
}
Test::Test(Test &T)      //Definition of copy constructor.
{
    X = T.X;
    Y = T.Y;
}
void Test:: Display()//Definition of Display () member function.
{
cout<<endl<< "X: " << X;
cout<<endl<< "Y: " << Y <<endl;
}
int main()
{
 Test T1(10,20) ; //Parameterized Constructor  automatically called when 
 //object is created.
 cout<<endl<<"T1 Object: " <<endl; 
 cout<< "Value after initialization : " ;
 T1.Display();  
 Test T2(T1);//Intialize object with other object using copy constructor
 cout<<endl<< "T2 Object: " <<endl;
 cout<< "Value after initialization : ";
 T2.Display();   
 return 0;
}
Output:

T1 Object:

Value after initialization :

X: 10

Y: 20

T2 Object:

Value after initialization :

X: 10

Y: 20

Chapter 14.indd   235 14-08-2018   16:14:58



236

Note

While defining copy constructor the argument (object) should be passed 
only by reference not by value method.

14.16 Order of constructor invocation

 The constructors are executed in the order of the object declared. (If it is in same 
statement left to right)

For example 

 Test t1;

 Test t2; // the order of constructor execution is first for t1 and then  for t2.

Let us consider the following example

 Sample s1,s2,s3 ;  //The order of construction is s1 then s2 and finally s3

 But if a class containing an object of another class as its member then that class 
constructor is executed first.

#include<iostream>
using namespace std;
class outer
   {
 int data;
 public:
 outer()
 { 
 cout<<"\nconstructor  of class outer ";
 }
     };
class inner
   {
 outer ot;       // object ot of class outer is declared in class inner
 public:
 inner()
 { 
 cout<<"\n constructor  of class inner ";} 
   };

Illustration14.27  to illustrate order of execution of constructor  

Chapter 14.indd   236 14-08-2018   16:14:58



237

int main()
{
      inner in;
      return 0;
}
Output:
 constructor  of class outer
 constructor  of class inner

14.17 Dynamic initialization of Objects

 When the initial values are provided during runtime then it is called dynamic 
initialization.

#include<iostream>
using namespace std;
class X
{
     int n;
     float avg;
     public:
 X(int p,float q)
 {
 n=p;
 avg=q;
 }
void disp()
 {
 cout<<"\n Roll numbe:- " <<n;
 cout<<"\nAverage :- "<<avg;
 }
};
int main()
{
int a ; float b;

Illustration14.28  to illustrate dynamic initialization

Chapter 14.indd   237 14-08-2018   16:14:58



238

 cout<<"\nEnter the Roll Number";
 cin>>a;
 cout<<"\nEnter the Average";
 cin>>b;
 X x(a,b);         // dynamic initialization
 x.disp();
 return 0;
}
Output:
Enter the Roll Number 1201
Enter the Average 98.6
 Roll numbe:- 1201
Average :- 98.6

14.18 Characteristics of Constructors

• The name of the constructor must be same as that of the class

• No return type can be specified for constructor 

• A constructor can have parameter list

• The constructor function can be overloaded

• They cannot be inherited but a derived class can call the base class constructor

• The compiler generates a constructor, in the absence of a user defined constructor. 

• Compiler generated constructor is public member function

• The constructor is executed automatically when the object is created

• A constructor can be used explicitly to create new object of its class type

14.19 Destructors

 When a class object goes out of scope, a special function called the destructor gets 
executed. The destructor has the same name as the class tag but prefixed with a ~(tilde).
Destructor function also return nothing and it does not associated with anydata type.

14.19.1 Need of Destructors

 The purpose of the destructor is to free the resources that the object may have acquired 
during its lifetime.  A destructor  function removes the memory of an object which was 
allocated by the constructor at the time of creating a object.

Chapter 14.indd   238 14-08-2018   16:14:58



239

14.20 Declaration and Definition

 A destructor is a special member function that is called when the lifetime of an object 
ends and destroys the object constructed by the constructor. Normally declared under public.

#include<iostream>
using namespace std;
class simple
{
private:
int a, b;
public:
simple()
{
a= 0 ;
b= 0;
cout<< "\n Constructor of class-simple ";
}
void getdata()
{
cout<<"\n Enter values for a and b (sample data 6 and  7)... ";
cin>>a>>b;
}
void putdata()
{
cout<<"\nThe two integers are .. "<<a<<'\t'<< b<<endl;
cout<<"\n The sum of the variables "<<a<<" + "<<b<<" = "<<a+b;
}
~simple()
{    cout<<”\n Destructor is executed to destroy the object”;}
};
int main()
{

Illustration14.29 to illustrate destructor function in a class

Chapter 14.indd   239 14-08-2018   16:14:58



240

simple s;
s.getdata();
s.putdata();
return 0;
}
Output:
Constructor of class-simple
Enter values for a and b (sample data 6 and  7)... 6 7
The two integers are .. 6       7
The sum of the variables 6 + 7 = 13
Destructor is executed to destroy the object

14.21 Characteristics of Destructors

• The destructor has the same name as that of the class prefixed by the  tilde character ‘~’.

• The destructor cannot have arguments

•  It has no return type

• Destructors cannot be overloaded i.e., there can be only one destructor in a class

• In the absence of user defined destructor, it is generated by the compiler

• The destructor is executed automatically when the control reaches the end of class scope 
to destroy the object

• They cannot be inherited

• A class binds data and associated 
functions together.

• A class in C++ makes a user defined data 
type using which objects of this type can 
be created.

• While declaring a class data members , 
member functions ,access specifiers and 
class tag name are given.

• The member functions of a class can 
either be defined within the class (inline) 
definition or outside the class definition.

• The public members of the class can be 
accessed outside the class directly by 
using object of this class type.

Points to Remember:

Chapter 14.indd   240 14-08-2018   16:14:58



241

• A class binds data and associated 
functions together.

• A class in C++ makes a user defined data 
type using which objects of this type can 
be created.

• While declaring a class data members , 
member functions, access specifiers and 
class tag name are given.

• The member functions of a class can 
either be defined within the class (inline) 
definition or outside the class definition.

• The public members of the class can be 
accessed outside the class directly by 
using object of this class type.

• A class supports OOP features 
ENCAPSULATION by binding data and 
functionsassociated together.

• A class supports Data hiding by hiding 
the information from the outside world 
through private and protected members.

• When a member function is called by 
another member function of the same 
class , it is calledas nesting of member 
functions.

• The scope resolution operator (::),  when 
used with the class name depicts that the 
members belong to that class as in class_
name :: function_name and only used 
with the variable name as in :: s variable 
–name , depicts the global variable.(the 
one with file scope ).

• When an instance of a class comes into 
scope, a special function called the 
constructor gets executed.

• The constructor function allocates 
memory and initializes the class object.

• When an instance of a class comes into 
scope, a special function called the 
constructor gets executed.

• The constructor function allocates 
memory and initializes the class object.

• When a class object goes out of scope, 
a special function called the destructor 
gets executed. 

• The constructor function name and the 
destructor have the same name as the 
classtag.

• A constructor without parameters  is 
called as default constructor.

• A constructor with default argument is 
equivalent to a default constructor  

• Both the constructors and destructor  
return nothing. They are not associated 
with any data type.

• Objects can be initialized dynamically .

Points to Remember:

Chapter 14.indd   241 14-08-2018   16:14:58



242

Hands on practice:

1 Define a class Employee with the following specification

 private members of class Employee

  empno- integer

  ename – 20 characters

  basic – float

  netpay, hra, da, - float

  calculate () – A function to find the basic+hra+da with float return type

 public member functions of class employee

  havedata() – A function to accept values for empno, ename, basic, hra,

  da and call calculate() to compute netpay

  dispdata() – A function to display all the data members on the screen

2. Define a class MATH with the following specifications

 private members

  num1, num2, result – float

  init() function to initialize num1, num2 and result to zero

 protected members

  add() function to add num1 and num2 and store the sum in result

  diff() function to subtract num1 from num2 and store the difference in

  the result

 public members

Chapter 14.indd   242 14-08-2018   16:14:58



243

  getdata() function to accept values for num1 and num2

  menu() function to display menu

  1. Add…

  2. Subtract…

  invoke add() when choice is 1 and invoke prod when choice is 2 and

  also display the result.

3. Create a class called Item with the following specifications

 private members

  code, quantity     - Integer data type

  price    - Float data type

  getdata()-function to accept values for all data members with no return

 public members

  taxt – float

  dispdata() member function to display code,quantity,price and tax .The tax is  
  calculated as if the quantity is more than 100 tax is 2500 otherwise 1000.

4. Write the definition of a class FRAME in C++ with following description

 Private members

  FrameID       - Integer data type

  Height, Width, Amount  - Float data type

  SetAmount( )   -Member function to calculate and assign amount as 

  10*Height*Width

 Public members

  GetDetail() Afunction to allow user to entervalues of       

Chapter 14.indd   243 14-08-2018   16:14:58



244

  FrameID, Height, Width. This function should also call SetAmount() to       

  calculate the amount.

  ShowDetail()    A function to display the values of all data members.

5. Define a class RESORT in C++ with the following description :

 Private Members :

  Rno //Data member to store Room No

  RName //Data member t store customer name

  Charges //Data member to store per day charges

  Days //Data member to store number of days of stay

  COMPUTE() //A function to calculate and return Amount as

  //Days*Chagres and if the value of Days*Charges is

  more than 5000 then as 1.02*Days*Charges

 Public Members :

  Getinfo() //A function to enter the content Rno, Name, Charges //and Days

  Displayinfo() //A function to display Rno, RName, Charges, Days and

  // Amount (Amount to displayed by calling functionCOMPUTE( ))

7. struct pno

 {

  int pin;

  float balance;

 }

  Create a BankAccount classwith the following specifications

 Protected members

Chapter 14.indd   244 14-08-2018   16:14:58



245

  pno_obj //array of 10 elements

  init(pin)     // to accept the pin number and initialize it and initialize

  // the balance  amount is 0

 public members

 deposit(pin, amount):

 Increment the account balance by accepting the amount and pin. Check the pin number 
for matching. If it matches   increment the balance and display the balance else display an 
appropriate message

  withdraw(self, pin, amount): 

 Decrement the account balance by accepting the amount and pin. Check the pin 
number for matching and balance is greater than 1000 and amount is less than the balance. If 
it matches withdraw the amount and display the balance else display an appropriate message

8. Define a class Hotel in C++ with the following description :

 Private Members :

  Rno //Data member to store Room No

  Name //Data member t store customer name

  Charges //Data member to store per day charges

  Days //Data member to store number of days of stay

  Calculate() //A function to calculate and return Amount as

  //Days*Chagres and if the value of Days*Charges is

  more than 12000 then as 1.2*Days*Charges

 Public Members :

  Hotel()     //to initialize the class members

  Getinfo() //A function to enter the content Rno, Name, Charges //and Days

  Showinfo() //A function to display Rno, RName, Charges, Days and

  //Amount (Amount to displayed by calling function

  CALCULATE( ))

Chapter 14.indd   245 14-08-2018   16:14:58



246

9. Define a class Exam in C++ with the following description :

 Private Members :

  Rollno  - Integer data type

  Cname - 25 characters

  Mark  - Integer data type

 public :

  Exam(int,char[],int )     //to initialize the object

  ~Exam( ) // display message   “Result will be intimated shortly” 

  void Display( ) // to display all the details if t the mark is 

  // above 60 other wise display “Result  Withheld”

10. Define a class Studentin C++ with the following specification :

 Private Members :

  A data member Rno(Registration Number) type long

  A data member Cname of type string

  A data member Agg_marks (Aggregate Marks) of type float

  A data member Grade of type char

  A member function setGrade () to find the grade as per the aggregate marks

  obtained by the student. Equivalent aggregate marks range and the 

  respective grade as shown below.

Aggregate Marks Grade
>=90 A

Less than 90 and >=75 B
Less than 75 and >=50 C

Less than 50 D

Chapter 14.indd   246 15/08/18   5:48 PM



247

 Public members:

  A constructor to assign default values to data members:

  A copy constructor to store the value in another object

  Rno=0,Cname=”N.A”,Agg_marks=0.0

    A function Getdata () to allow users to enter values for Rno.Cname, Agg_marks 
and call

  functionsetGrade () to find the grade.

  A function dispResult( ) to allow user to view the content of all the data members.

  A destructor to display the message “END”

Evaluation

PART I

Choose the correct answer
1. The variables declared inside the class are known as data members and the functions are 

known as 

 (A) data functions      (B) inline functions     

  (C) member functions  (D) attributes

2. Which of the following statements about member functions are True or False?

 i) A member function can call another member function directly with using the dot 
operator.

 ii) Member function can access  the private data of the class.

 (A) i-True, ii-True            (B) i-False, ii-True 

 (C) i-True, ii-False      (D) i-False, ii-False

3. A member function can call another member function directly, without using the dot 
operator called as

 (A) sub function

 (B) sub member

Chapter 14.indd   247 14-08-2018   16:14:58



248

 (C) nesting of member function

 (D) sibling of member function

4. The member function definedwithin the class behave like 

 (A)  inline functions   (B) Non inline function

 (C)  Outline function   (D) Data function

5. Which of the following access specifier protects data from inadvertent modifications?

 (A) Private             (B) Protected    

 (C) Public       (D) Global

6. class x

   {

 int y;

 public:

 x(int z){y=z;}

 } x1[4];

int main()

 {   x x2(10);

return 0;}

How many objects are created for the above program

 (A)   10  (B)  14  (C) 5  (D) 2

7. State whether the following statements about  the constructor are True or False.

 i) constructors should be declared in the private section.

 ii) constructors are invoked automatically when the objects are created.

 (A) True, True       (B) True, False     (C) False, True    (D) False, False

8. Which of the following constructor is executed for the following prototype ?

 add display( add &);             // add is a class name

Chapter 14.indd   248 14-08-2018   16:14:58



249

 (A) Default constructor  (B) Parameterized constructor 

 (C) Copy constructor  (D) Non Parameterized constructor 

9. What happens when a class with parameterized constructors and having no default 
constructor is used in a program and we create an object that needs a zero-argument 
constructor?

 (A)  Compile-time error  (B) Domain error

 (C)  Runtime error   (D) Runtime exception.

10. Which of the following create a temporary instance?

 (A) Implicit call to the constructor  (B) Explicit call to the constructor  

 (C)  Implicit call to the destructor   (D) Explicit call to the destructor

PART II

Answer to all the questions (2 Marks):

1. What are called members?

2. Differentiate structure and class though both are user defined data type.

3. What is the difference between the class and object in terms of oop?

4. Why it is considered as a good practice to define a constructor though compiler can 
automatically generate a constructor ?

5. Write down the importance of destructor.

PART III

Answer to all the questions(3 Marks):

1. Rewrite the following program after  removing the syntax errors if any and underline the 
errors: 

 #include<iostream>
 #include<stdio.h>
  classmystud
  { intstudid =1001;
  char name[20];
 public
  mystud( )

Chapter 14.indd   249 14-08-2018   16:14:58



250

  { }
 void register ( ) {cin>>stdid;gets(name);
 }
 void display ( )
  { cout<<studid<<”: “<<name<<endl;}
 }
 int main( )
  { mystud MS;
  register.MS( );
  MS.display( );
 }
2. Write with example how will you dynamically initialize objects?

3. What are advantages of declaring constructors and destructor under public accessability?

4. Given the following C++ code, answer the questions (i) & (ii).

 class TestMeOut

 {

 public:

  ~TestMeOut() //Function 1

  {cout<<“Leaving the examination hall”<<endl;}
  TestMeOut() //Function 2
  {cout<<“Appearing for examination”<<endl;}
  void MyWork() //Function 3
  {cout<<“Attempting Questions//<<endl;}
 };
 (i) In Object Oriented Programming, what is Function 1 referred as and when doesit get 

invoked / called ?

 (ii) In Object Oriented Programming, what is Function 2 referred as and when doesit get 
invoked / called ?

Chapter 14.indd   250 14-08-2018   16:14:58



251

5. Write the output of the following C++ program code :

 #include<iostream>
 using namespace std;
 class Calci
 {
 char Grade;
 int Bonus;
 public:
  Calci() {Grade='E'; Bonus=0;}        //ascii value of A=65
 void Down(int G)
 {
  Grade-=G;
 }
 void Up(int G)
 {
  Grade+=G;
  Bonus++;
 }
 void Show()
 {
  cout<<Grade<<"#"<<Bonus<<endl;
  }
 };
 int main()
 {
 Calci c;
 c.Down(3);

 c.Show();

 c.Up(7);

 c.Show();

 c.Down(2);

 c.Show();

 return 0;

 }

Chapter 14.indd   251 14-08-2018   16:14:58



252

PART IV

Answer to all the questions (5 Marks):

1. Explain nested class with example.

2. Mention the differences between constructor and destructor

3.  Define a class RESORT with the following description in C++ :

  Private members:

 Rno  // Data member to store room number

 Name   //Data member to store user name

 Charges    //Data member to store per day charge

 Days    //Data member to store the number of days

 Compute ( )  // A function to calculate total amount as Days * Charges and if the 

   //total amount exceeds 11000 then total amount is 1.02 * Days *Charges

 Public member:

 getinfo( )    // Function to Read the information like name , room no, charges and days

 dispinfo ( )   // Function to display all entered details and total amount calculated 

   //using COMPUTE function

4. Write the output of the following

 #include<iostream>

 #include<stdio.h>

 using namespace std;

 class sub

 {

 int day, subno;
 public :
  sub(int,int);     // prototype
 void  printsub() 
  { cout<<" subject number : "<<subno;
  cout<<" Days : " <<day;
  }
 };
  sub::sub(int d=150,int sn=12)

Chapter 14.indd   252 14-08-2018   16:14:58



253

  { cout<<endl<<"Constructing the object "<<endl;
  day=d;
  sub no=sn;
 }
 class stud
 {
  int rno;
  float marks;
 public:
  stud( )
  { cout<<"Constructing the object of students "<<endl;
  rno=0;
  marks=0.0;
 }
 void getval()
 {
  cout<<"Enter the roll number and the marks secured ";
  cin>>rno>>marks;
 }
 void printdet()
  { cout<<"Roll no : "<<rno<<"Marks : "<<marks<<endl;
  }
 };
 class addmission {
  sub obj;
  stud objone;
  float fees;

 public :
  add mission ( )
  { cout<< "Constructing the object of admission "<<endl;
  fees=0.0;
  }
  void printdet( )
  { objone.printdet();
  obj.printsub( );

Chapter 14.indd   253 14-08-2018   16:14:58



254

  cout<<"fees : "<<fees<<endl ;
 }
 };
  int main() 
  {system("cls");
  addmission adm;
  cout<<endl<< "Back in main ( )";
  return 0; }
5. Write the output of the following
 #include<iostream>
 #include<stdio.h>
  using namespace std;
 class P 
 { public: 
  P ( )
  { cout<< "\nConstructor of class P "; }
  ~ P ( )
  { cout<< "\nDestructor of class P "; }
  };
  class Q
 { public:
  Q( )
  { cout<<"\nConstructor of class Q "; }
  ~ Q( )
  { cout<< "\nDestructor of class Q "; }
  };
  class R 
  {  P obj1, obj2;
  Q obj3;
 public: 
  R ( )
  { cout<< "\nConstructor of class R ";}
  ~ R ( )
  { cout<< "\nDestructor of class R  ";} 
  };

Chapter 14.indd   254 14-08-2018   16:14:58



255

int main ( )
  {
  Ro R;
  Q oq;
  P op;
  return 0;
  }

Reference:

(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy, 
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.

(3) Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora, 
DhanpatRai& Co.

(4) A text book of CBSE XI and XII computer science by PreetiArora and Pinky Gupta.

(5)  Computer Science with C++ Reeta shoo and Gagansahoo

(6) The C++ Programming Language,BjarneStroustrup

(7) C++ Primer (5th Edition) by S. B. Lippman, J. Lajoie.

Chapter 14.indd   255 14-08-2018   16:14:58



256 257

Learning Objectives

After learning this chapter, the students will be able to

• Understand the purpose of overloading

• Construct C++ programs using function, constructor and operator overloading 

• Execute and debug programs which contains the concept of polymorphism

15.1 Introduction

 The word polymorphism means many forms (poly – many, morph – shapes) 
Polymorphism is the ability of a message or function to be displayed in more than one form. In 
C++, polymorphism is achieved through function overloading and operator overloading. The 
term overloading means a name having two or more distinct meanings. Thus an ‘overloaded 
function’ refers to a function having more than one distinct meaning.

15.2 Function overloading

 The ability of the function to process the message or data in more than one form is 
called as function overloading. In other words function overloading means two or more 
functions in the same scope share the same name but their parameters are different.  In this 
situation, the functions that share the same name are said to be overloaded and the process 
is called function overloading .  The number and types of a function's parameters are called 
the function's signature. When you call an overloaded function, the compiler determines the 
most appropriatedefinition to use, by comparing the argument types you have used to callthe 
function with the parameter types specified in the definitions. The process of selecting the 
most appropriate overloaded function or operator is called overload resolution

15.2.1 Need For Function overloading

 sometimes it's hard to find many different meaningful names for a single action. 

 Consider the situation to find the area of circle ,triangle and rectangle the following 
function prototype is given

CHAPTER 15
Polymorphism

Unit IV Object Oriented 
Programming with C++

Chapter 15.indd   256 14-08-2018   16:50:49



256 257

float area_circle(float radius) // to calculate the area of a circle

float area_triangle(float half,floatbase,float height) // to calculate the area of a triangle

float area_rectangle(float length , float breadth) // to calculate the area of a rectangle

This can be rewritten using a single function header in the following manner

float area ( float radius);

float area ( float half, float base, float height );

float area ( float length , float breadth);

#include <iostream>
using namespace std;
void print(int i)
 {cout<< " It is integer " << i <<endl;}
void print(double  f) 
{  cout<< " It is float " << f <<endl;}
void print(string c) 
{  cout<< " It is string " << c <<endl;}
int main() {
 print(10);
 print(10.10);
 print("Ten");
 return 0;
}
Output:
It is integer 10
 It is float 10.1
It is string Ten

Illustration 15.1 C++ Program to demonstrate function overloading

Tip Notes

Function overloading is not only implementing polymorphism but also 
reduces the number of comparisons in a program and makes the program 
to execute faster. It also helps the programmer by reducing the number of 
function names to be remembered.

Chapter 15.indd   257 14-08-2018   16:50:49



258 259

15.2.2 Rules for function overloading

1. The overloaded function must differ in the number of its arguments or data types

2. The return type of overloaded functions are not considered for overloading same data type

3. The default arguments of overloaded functions are not considered as part of the parameter 
list in function overloading.

#include <iostream>
using namespace std;
long add(long, long);
long add(long,long,long);
float add(float, float);
int main()
{
 long a, b, c,d;
 float e, f, g;
 cout << "Enter three integers\n";
cin >> a >> b>>c;
d=add(a,b,c); //number of arguments different  but  same data type 
cout << "Sum of 3 integers: " << d << endl;
cout << "Enter two integers\n";
cin >> a >> b;
c = add(a, b); //two arguments data type same with above function call 
 and different with below function call
cout << "Sum of 2 integers: " << c << endl;
cout << "Enter two floating point numbers\n";
 cin >> e >> f;
 g = add(e, f); //two arguments  similar to the above function call but data 
 type different 
cout << "Sum of floats: " << g << endl;
}
long add(long c, long g)
{
 long sum;
 sum = c + g;
 return sum;
}

Illustration 15.2 C++ Program to demonstrate function overloading

Chapter 15.indd   258 14-08-2018   16:50:49



258 259

float add(float c, float g)
{
 float sum;
 sum = c + g;
 return sum;
}
long add(long c, long g,long h)
{
 long sum;
 sum = c + g+h;
 return sum;
}
Output
Enter three integers
3 4 5
Sum of 3 integers: 12
Enter two integers
4 6
Sum of 2 integers: 10
Enter two floating point numbers
2.1 3.1
Sum of floats: 5.2

#include <iostream>

using namespace std;

long add(long, long); 

long add(long long g=0);

int add(long,long); //  [Error] ambiguating new declaration of 'int add(long int, long 
 int)

Illustration 15.3 Default argument and return type are not considered in overloading

Chapter 15.indd   259 14-08-2018   16:50:49



260 261

int main()
{
long a, b, c;
int d;
cout<< "Enter two integers\n";
cin>> a >> b;
 d=add(a,b); //arguments and  datatype are same but return is different 
cout<< "Sum of 2 integers: " << d <<endl;
cout<< "Enter two long integers\n";
cin>> a >> b;
 c = add(a, b);
cout<< "Sum of 2 long integers: " << c <<endl;
cout<< "Enter a long integers\n";
cin>> a ;
 c = add(a); //  [Error] ambiguating new declaration of 'int add(long int, long int)
cout<< "Sum of 2 long integers: " << c <<endl;
}
long add(long c, long g) //  'long int add(long int, long int)' previously defined here
{
 long sum;
 sum = c + g;
 return sum;
}
int add(long c, long g) //  [Error] ambiguating new declaration of 'int add(long int, 
long int)
{
int sum;
 sum = c + g;
 return sum;
}
long add(long c, long g=20)     // [Error] redefinition of 'long int add(long int, long 
int)'
{
 long sum;
 sum = c + g;
 return sum;
}

Chapter 15.indd   260 14-08-2018   16:50:49



260 261

ERROR Message

15.3 Constructor overloading

 Function overloading can be applied for constructors, as constructors are special 
functions of classes .A class can have more than one constructor with different signature.
Constructor overloading provides flexibility of creating multiple type of objects for a class.

#include<iostream>

using namespace std;

class add

{

int num1, num2, sum;

public:

add()

{

cout<<"\n Constructor without parameters.. ";

num1= 0;

num2= 0;

sum = 0;

}

add ( int s1, int s2 )
{
cout<<"\n Parameterized constructor... ";
num1= s1;
num2=s2;
sum=0;
}

Illustration 15.4 constructor  overloading

Compiler identifies a given member function is 
a constructor by its name and the return type.

Chapter 15.indd   261 14-08-2018   16:50:49



262 263

add (add &a)
{
cout<<"\n Copy Constructor ... ";
num1= a.num1;
num2=a.num2;
sum = 0;
}
void getdata()
{
cout<<"\nEnter data ... ";
cin>>num1>>num2;
}
void addition()
{
sum=num1+num2;
}
void putdata()
{
cout<<"\n The numbers are..";
cout<<num1<<'\t'<<num2;
cout<<"\n The sum of the numbers are.. "<< sum;
}
};
int main()
{
add a, b (10, 20) , c(b);
a.getdata();
a.addition();
b.addition();
c.addition();
cout<<"\n Object a : ";
a.putdata();
cout<<"\n Object b : ";
b.putdata();
cout<<"\n Object c.. ";
c.putdata();
return 0;
}

Chapter 15.indd   262 14-08-2018   16:50:49



262 263

Output
Constructor without parameters..
 Parameterized constructor...
 Copy Constructor ...
Enter data ...  20 30
 Object a :
 The numbers are..20    30
 The sum of the numbers are.. 50
 Object b :
 The numbers are..10    20
 The sum of the numbers are.. 30
 Object c..
 The numbers are..10    20
 The sum of the numbers are.. 30

 
Note

Since, there are multiple constructors present, argument to the constructor 
should also be passed while creating an object.

// constructor declared as outline member function
#include<iostream>
using namespace std;
class Perimeter
{
int l, b, p;
public:
Perimeter ();
Perimeter (int);
Perimeter (int,int);
Perimeter (Perimeter&);
void Calculate();
};
Perimeter :: Perimeter ()

Illustration 15.5 to find the perimeter of a rectangle using constructor overloading 
in a class.

Chapter 15.indd   263 14-08-2018   16:50:49



264 265

{
cout<<"\n Enter the value of length and breath";
cin>>l>>b;
cout<<"\n\nNonParameterizd constructor ";
}
Perimeter ::Perimeter (int a)
{
l=b=a;
cout<<"\n\n Parameterizd constructor with one argument ";
}
Perimeter ::Perimeter (int l1, int b1)
{
cout<<"\n\n Parameterizd constructor with 2 argument ";
l=l1;
b=b1;
}
Perimeter ::Perimeter (Perimeter &p)
{
l= p.l;
b= p.b;
cout<<"\n\n copy constructor  ";
}
void Perimeter ::Calculate(){
p = 2*(l+b);
cout<<p;
}
int main ()
{
Perimeter Obj;
cout<<"\n perimeter of rectangle is ";
Obj. Calculate ();
Perimeter Obj1(2);
cout<<"\n perimeter of rectangle ";
Obj1.Calculate ();
Perimeter Obj2 (2, 3);
cout<<"\n perimeter of rectangle ";
Obj2.Calculate ();
Perimeter obj3 (Obj2);
cout<<"\n perimeter of rectangle ";
obj3.Calculate ();
return 0;
}

Chapter 15.indd   264 14-08-2018   16:50:49



264 265

Output
Enter the value of length and breath 10 20

Non Parameterizd constructor

perimeter of rectangle is 60

Parameterizd constructor with one argument

perimeter of rectangle 8

Parameterizd constructor with 2 argument

perimeter of rectangle 10

copy constructor

perimeter of rectangle 10

15.4 Operator overloading

The term operator overloading, refers to giving additional

 functionality to the normal C++ operators like +,++,-,—,+=,-=,*.<,>. It is also a type of 
polymorphism in which an operator is overloaded to give user defined meaning to it .

 For example '+' operator can be overloaded to perform addition on various data types, 
like for Integer, String(concatenation) etc.

 Almost all operators can be overloaded in C++. However there are few operator which 
can not be overloaded. Operator that are not overloaded are follows

• scope operator ::

• sizeof

• member selector .

• member pointer selector *

• ternary operator ?:

Chapter 15.indd   265 14-08-2018   16:50:49



266 267

Operator Overloading Syntax

ReturnType classname :: Operator Operator Symbol (argument list)
{
 \\ Function body
}

Keyword Operator to be overloaded

15.4.1 Restrictions on Operator Overloading

 Following are some restrictions to be kept in mind while implementing operator 
overloading.

1. Precedence and Associativity of an operator cannot be changed.

2. No new operators can be created, only existing operators can be overloaded.

3. Cannot redefine the meaning of an operator’s procedure. You cannot change how integers 
are added.Only additional functions can be to an operator

4. Overloaded operators cannot have default arguments.

5. When binary operators are overloaded, the left hand object must be an object of the relevant 
class

//Complex number addition and subtraction
#include<iostream>
using namespace std;  
class complex  
{  
int real,img;  
public:  
void read()  
{  
cout<<"\nEnter the REAL PART : ";  
cin>>real;  
cout<<"\nEnter the IMAGINARY PART : ";  
cin>>img;  
}

Illustration 15.6 binary operator overloading using ‘+’ and - symbol

Chapter 15.indd   266 14-08-2018   16:50:49



266 267

complex operator +(complex c2)  
{  

complex c3;  
c3.real=real+c2.real;  
c3.img=img+c2.img;  
return c3;  

}  
complex operator -(complex c2)  

{  
complex c3;  
c3.real=real-c2.real;  
c3.img=img-c2.img;  
return c3;  

}
void display()  

{  
cout<<real<<"+"<<img<<"i";  

}  
};  
int main()  
{  

complex c1,c2,c3;  
int choice, cont;  
do  
{  

cout<<"\t\tCOMPLEX NUMBERS\n\n1.ADDITION\n\n2.SUBTRACTION\n\n";
cout<<"\nEnter your choice : ";
cin>>choice;  
if(choice==1||choice==2)  

{
cout<<"\n\nEnter the First Complex Number"; 
c1.read();  
cout<<"\n\nEnter the Second Complex Number"; 
c2.read();  

}
switch(choice)  

{  
case 1     : c3=c1+c2;  // binary + overloaded
cout<<"\n\nSUM = ";  

 c3.display();  
 break;  

Chapter 15.indd   267 14-08-2018   16:50:49



268 269

case 2     : c3=c1-c2;  // binary -overloaded
cout<<"\n\nResult = ";  
 c3.display();  
 break;  
 default     : cout<<"\n\nUndefined Choice";  
 }  
cout<<"\n\nDo You Want to Continue?(1-Y,0-N)";  
cin>>cont;  
 }while(cont==1);  
 return 0;  
 }  
Output
               COMPLEX NUMBERS
1.ADDITION
2.SUBTRACTION
Enter your choice : 1
Enter the First Complex Number
Enter the REAL PART : 3
Enter the IMAGINARY PART : 4
Enter the Second Complex Number
Enter the REAL PART : 5
Enter the IMAGINARY PART : 8
SUM = 8+12i
Do You Want to Continue?(1-Y,0-N)1
                COMPLEX NUMBERS
1.ADDITION
2.SUBTRACTION
Enter your choice : 2
Enter the First Complex Number
Enter the REAL PART : 8
Enter the IMAGINARY PART : 10
Enter the Second Complex Number
Enter the REAL PART : 4
Enter the IMAGINARY PART : 5
Result = 4+5i
Do You Want to Continue?(1-Y,0-N)0

Chapter 15.indd   268 14-08-2018   16:50:49



268 269

#include<string.h>
#include<iostream>
using namespace std;
class strings 
{
 public:
 char s[20];
 void getstring(char str[])
{
 strcpy(s,str);
   }
 void operator+(strings);
};
void strings::operator+(strings ob)
{
 strcat(s,ob.s);
 cout<<"\nConcatnated String is:"<<s;
}
int main()
{
 strings ob1, ob2;
 char string1[10], string2[10];
 cout<<"\nEnter First String:";
 cin>>string1;
 ob1.getstring(string1);
 cout<<"\nEnter Second String:";
 cin>>string2;
 ob2.getstring(string2);
 //Calling + operator to Join/Concatenate strings
 ob1+ob2;
 return 0;
}
Output
Enter First String:COMPUTER
Enter Second String:SCIENCE
Concatenated String is:COMPUTERSCIENCE

Illustration 15.7 concatenation of string using operator overloading

Chapter 15.indd   269 14-08-2018   16:50:49



270 271

 
Evaluation

PART I

Choose the correct answers

1. Which of the following refers to a function having more than one distinct meaning?
 (A) Function Overloading   (B) Member overloading
 (C) Operator overloading   (D) Operations overloading

2. Which of the following reduces the number of comparisons in a program ?
 (A) Operator overloading   (B) Operations overloading
 (C) Function Overloading   (D) Member overloading

• n C++, polymorphism is achieved 
through function overloading and 
operator overloading.

• The term overloading means a name 
having two or more distinct meanings.

• Overloaded function’ refers to a function 
having more than one distinct meaning.

• Overloaded functions have same name 
but different signatures (Number of 
argument and type of argument)

• A function’s argument list is known as a 
function signature

• Two function cannot be overloaded 
when the only difference is that one takes 
a reference parameter and the other takes 
a normal, call-by-value parameter.

• Ordinary functions as well member 
functions can be overloaded

• A class can have overloaded 
constructorswhereasdestructor function 
cannot be overloaded.

• The mechanism of giving special 
meaning to an operator is known as 
operator overloading.

• Operator overloading provides new 
definitions for most of the C++ operators.

• Even user defined types (objects) can be 
overloaded.

• The definition of the overloaded operator 
is given using the keyword 'operator' 
followed by an operator symbol.

• We can overload all the C++ operators 
except the following:

• Class member access operator (., .*) 
,Scope resolution operator (::), Size 
operator (sizeof) andConditional 
operator ( ?: )

Points to Remember:

Chapter 15.indd   270 14-08-2018   16:50:49



270 271

3. void dispchar(char ch=’$’,int size=10)

      {

 for(int i=1;i<=size;i++)

 cout<<ch;

       }

How will you invoke the function dispchar() for the following input?

To print $ for 10 times

 (A) dispchar();   (B) dispchar(ch,size);

 (C) dispchar($,10);   (D)dispchar(‘$’,10 times);

4. Which of the following is not true with respect to function overloading?   
 (A) The overloaded functions must differ in their signature.
 (B) The return type is also considered for overloading a function.
 (C) The default arguments of overloaded functions are notconsidered for Overloading.
 (D) Destructor function cannot be overloaded.

5. Which of the following is invalid prototype for function overloading

 (A) void fun (intx); 

        void fun (char ch) ; 

 (B) void fun (intx); 

       void fun (inty);

 (C) void fun (double d);

        void fun (char ch);

 (D) void fun (double d); 

        void fun (inty);

6. Which of the following  function(s) combination cannot  be considered as

 overloaded function(s) in the given snippet ? 

 void print(char A,int B); // F1

 void printprint(int A, float B); // F2

 void Print(int P=10); // F 3

 void print(); // F4

 (A)  F1,F2,F3,F4           (B) F1,F2,F3             (C) F1,F2,F4    (D) F1,F3,F4

Chapter 15.indd   271 14-08-2018   16:50:49



272 273

7. Which of the following operator is by default  overloaded by the compiler?

 (A) *  (B) +  (C) +=  (D) ==

Based on the  following program    answer the questions (8) to (10)

#include<iostream>

using namespace std;

class Point {

private:

int x, y;

public:

Point(int x1,int y1) 

  {

  x=x1;y=y1;

  }

void operator+(Point &pt3);

void show() {cout << "x = " << x << ", y = " << y; }

};

void Point::operator+(Point &pt3)

{

    x += pt3.x;

    y += pt3.y;

}

int main()

{

  Point pt1(3,2),pt2(5,4);

  pt1+pt2;

  pt1.show();

  return 0;

}

Chapter 15.indd   272 14-08-2018   16:50:49



272 273

8. Which of the following operator is overloaded?

 (A) +                           (B) operator      (C) ::        (D) =

9. Which of the following statement invoke operator overloading?

 (A) pt1+pt2;    (B) Point pt1(3,2),pt2(5,4);   

 (C) pt1.show();  (D) return 0;

10. What is the output for the above program?

 (A) x=8, y=6             (B) x=14, y=14      (C) x=8, y=6      (D) = x=5, y=9

PART II

Answer to all the questions (2 Marks):

1. What is function overloading?

2. List the operators that cannot be overloaded.

3. class add{int x; public: add(int)};  Write an outline definition for the constructor.

4. Does the return type of a function help in overloading a function?

5. What is the use of overloading a function?

PART III

Answer to all the questions (3 Marks):
1. What are the rules for function overloading?
2.   How does a compiler decide as to which function should be invoked when there are 

many functions? Give an example.
3.  What is operator overloading? Give some example of  operators which can be    

overloaded.
4. Discuss the benefit of constructor overloading ?
5.  class sale ( int cost, discount ;public: sale(sale &); Write a non inline definition for 

constructor specified;

Chapter 15.indd   273 14-08-2018   16:50:49



274 275

PART IV

Answer to all the questions (5 Marks):

1. What are the rules for operator overloading?

2. Answer the question (i) to (v) after going through the following class.

classBook

{

intBookCode ; char Bookname[20];float fees;

public:

Book( )                  //Function 1

{

fees=1000;

BookCode=1;

strcpy    (Bookname,"C++");

 }

void display(float C)       //Function 2

{

cout<<BookCode<<":"<<Bookname<<":"<<fees<<endl;

}

~Book( )          //Function 3

{

cout<<"End of Book Object"<<endl;

}

          Book (intSC,char S[ ],float F)  ;              //Function 4

};

(i)  In the above program, what are Function 1 and Function 4 combined  together referred as?

(ii) Which concept is illustrated by Function3? When is this function called/ invoked?

(iii) What is the use of Function3?

(iv) Write the statements in main to invoke function1 and function2

 (v)  Write the definition for Function4  .

Chapter 15.indd   274 14-08-2018   16:50:49



274 275

3. Write the output of the following program

include<iostream>

using namespace std;

class Seminar

{

int Time;

public:

Seminar()

 {

      Time=30;cout<<"Seminar starts now"<<endl;

  }

void Lecture() 

{

cout<<"Lectures in the seminar on"<<endl;

}

Seminar(int Duration) 

{

    Time=Duration;cout<<"Welcome to Seminar "<<endl;

}

Seminar(Seminar &D) 

{

    Time=D.Time;cout<<"Recap of Previous Seminar Content "<<endl;

}

~Seminar()

{

cout<<"Vote of thanks"<<endl;

}

};

Chapter 15.indd   275 14-08-2018   16:50:49



276 277

int main()

{

 Seminar s1,s2(2),s3(s2);

 s1.Lecture();

 return 0;

}

4. Debug the following program

#include<iostream>

using namespace std;

class String

{

public:

charstr[20];

public:

void accept_string

                {

cout<<"\n Enter String              :   ";

cin>>str;

                }

display_string()

                {

cout<<str;

                }

                String operator *(String x)  //Concatenating String

                {

                        String s;

strcat(str,str);

strcpy(s.str,str);

Chapter 15.indd   276 14-08-2018   16:50:49



276 277

goto s;

                }

}

int main()

{

        String str1, str2, str3;

        str1.accept_string();

        str2.accept_string();

cout<<"\n\n First String is           :  ";

        str1=display_string();

cout<<"\n\n Second String is          :  ";

        str2.display_string();

        str3=str1+str2;       

cout>>"\n\n Concatenated String is    :  ";

        str3.display_string();

return 0;

}

5. Answer the questions based on the following program

#include<iostream>

#include<string.h>

using namespace std;

class comp {

public:

chars[10];

void getstring(char str[10])

    {

strcpy(s,str);

    }

Chapter 15.indd   277 14-08-2018   16:50:49



278 279

void operator==(comp);

};

void comp::operator==(comp ob)

{

if(strcmp(s,ob.s)==0)

cout<<"\nStrings are Equal";

else

cout<<"\nStrings are not Equal";

}

int main()

{

comp ob, ob1;

char string1[10], string2[10];

cout<<"Enter First String:";

cin>>string1;

ob.getstring(string1);

cout<<"\nEnter Second String:";

cin>>string2;

ob1.getstring(string2);

ob==ob1;

return 0;

}

(i) Mention the objects which will have the scope till the end of the program.

(ii) Name the object which gets destroyed in between the program

(iii)Name the operator which is over loaded and write the statement that invokes it.

(iv) Write out the prototype of the overloaded member function

(v)What types of operands are used for the overloaded operator?

(vi) Which constructor will get executed? Write the output of the program

Chapter 15.indd   278 14-08-2018   16:50:50



278 279

CASE STUDY

 Suppose you have a Kitty Bank with an initial amount of Rs500 and you have to add 
some more amount to it. Create a class 'Deposit' with a data member named 'amount' with an 
initial value of Rs500. Now make three constructors of this class as follows:

1. without any parameter - no amount will be added to the Kitty Bank

2. having a parameter which is the amount that will be added to the Kitty Bank

3. whenever amount is  added an additional equaly amount will be deposited automatically

Create an object of the 'Deposit’ and display the final amount in the Kitty Bank.

Reference:

1. Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy, 
Mc.Graw Hills.

2. The Complete Reference C++ (Forth Edition), Herbert Schildt. Mc.Graw Hills.

3. Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,  
DhanpatRai& Co.

4. A text book of CBSE XI and XII computer science by PreetiArora and Pinky Gupta.

5. Computer Science with C++ Reeta shoo and Gagansahoo

6. The C++ Programming Language,BjarneStroustrup

7. C++ Primer (5th Edition) by S. B. Lippman, J. Lajoie

Chapter 15.indd   279 14-08-2018   16:50:50



280 281

Learning Objectives

 After the completion of this chapter, 
the student will be able to

• Understand the 
purpose of Inheritance

• Construct C++ 
programs using 
Inheritance

• Execute and debug programs which 
contains the concept of Inheritance

16.1 Introduction to Inheritance

Inheritance is one of the most important 
features of Object Oriented Programming is 
Inheritance.In object-oriented programming, 
inheritance enables new class and its objects 
to take on the properties of the existing classes. 
A class that is used as the basis forinheritance 
is called a superclass or base class. A class that 
inherits from a superclass is called a subclass or 
derived class

16.2 Need for Inheritance

 Inheritance is an important feature of 
object oriented programming used for code 
reusability. It is a process of creating new classes 
called derived classes, from the existing or base 
classes. Inheritance allows us to inherit all the 
code (except declared as private) of one class to 
another class. The class to be inherited is called 
base class or parent class and the class which 

CHAPTER 16
Inheritance

inherits the other class is called derived class or 
child class. The derived class is a power packed 
class, as it can add additional attributes and 
methods and thus enhance its functionality.

Notes

The main advantage of inheritance is 

• It represents real world 
relationships well

• It provides reusability of code

• It supports transitivity

16.3 Types of Inheritance

 There are different types of 
inheritance viz., Single Inheritance, Multiple 
inheritance, Multilevel inheritance, hybrid 
inheritance and hierarchical inheritance.

1. Single Inheritance
 When a derived class inherits only 
from one base class, it is known as single 
inheritance

2. Multiple Inheritance
 When a derived class inherits from 
multiple base classes it is known as multiple 
inheritance

3. Hierarchical inheritance
 When more than one derived classes 
are created from a single base class , it is 
known as Hierarchical inheritance.

Unit IV Object Oriented 
Programming with C++

Chapter 16.indd   280 14-08-2018   16:50:11



280 281

4. Multilevel Inheritance

 The transitive nature of inheritance is itself reflected by this form of inheritance. When 
a class is derived from a class which is a derived class  – then it is referred to as multilevel 
inheritance.

5. Hybrid inheritance

 When there is a combination of more than one type of inheritance, it is known as 
hybrid inheritance. Hence, it may be a combination of Multilevel and Multiple inheritance or 
Hierarchical and Multilevel inheritance or Hierarchical, Multilevel and Multiple inheritance.

The following  diagram represents the different types of inheritance

A

B

B

C

A

A

B C

D

A B

C

A

B C D

Multilevel Inheritance

Hybrid Inheritance

Hierarchical Inheritance

Single Inheritance Multiple Inheritance

16.4 Derived Class and Base class

 While defining a derived class, the derived class should identify the class from which it 
is derived.The following points should be observed for defining the derived class.

i The keyword class has to be used

ii The name of the derived class is to be given after thekeyword class

Chapter 16.indd   281 14-08-2018   16:50:11



282 283

iii A single colon

iv The type of derivation (the visibility mode ), namely private, public or protected. If no 
visibility mode is specified ,then by default the visibility mode is considered as private.

v The names of all base classes(parent classes) separated by comma. 

class derived_class_name :visibility_mode base_class_name

{

 //  members of  derivedclass

};

The following are some of the examples for different forms of inheritance

16.4.1 Single Inheritance

# include <iostream>
using namespace std;
class student           //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{
cout<<"\n Enter roll no and name .. ";
cin>>rno>>name;
}
void displayname()
{
cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl;
}
};

Illustration 16.1 single inheritance

Though the derived class inherits 
all the members of base class ,it has 
access privilege only to non-private 
members of the base class .

A

B

Single Inheritance

Chapter 16.indd   282 14-08-2018   16:50:11



282 283

 class exam : public student            //derived class with single base class
 {
public:
 int  mark1, mark2 ,mark3,mark4,mark5,mark6,total;
   void acceptmark()
   {
     cout<<"\n Enter lang,eng,phy,che,csc,mat marks.. ";
     cin>>mark1>>mark2>>mark3>>mark4>>mark5>>mark6;
}
void displaymark()
{
cout<<"\n\t\t Marks Obtained ";
cout<<"\n Language.. "<<mark1;
cout<<"\n English .. "<<mark2;
cout<<"\n Physics .. "<<mark3;
cout<<"\n Chemistry.. "<<mark4;
cout<<"\n Comp.sci.. "<<mark5;
cout<<"\n Maths ..   "<<mark6;
}
 };
int main()
{
   exam e1;
 e1.acceptname();       //calling base class function using derived class 
 object
 e1.acceptmark();
 e1.displayname();        //calling base class function using derived class 
 object
 e1.displaymark();
 return 0;
}

Chapter 16.indd   283 14-08-2018   16:50:11



284 285

Output
Enter roll no and name .. 1201 KANNAN
Enter lang,eng,phy,che,csc,mat marks.. 100 100 100 100 100 100
Roll no :-1201
Name :-KANNAN
                 Marks Obtained
 Language.. 100
English .. 100
Physics .. 100
 Chemistry.. 100
Comp.sci.. 100
Maths ..   100

 In the above program the derived class “exam” inherits all the members of the base class 
“student”. But it has access privilege only to the non private members of the base class.

16.4.2 Multiple Inheritance

Program to illustrate Multiple inheritance

# include <iostream>
using namespace std;
class student  //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{
cout<<"\n Enter roll no and name .. ";
cin>>rno>>name;
}
void displayname()
{
cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl;

Illustration 16.2 single inheritance

The order of inheritance by derived 
class  to inherit the base class is left 
to right.

A B

C

Multiple Inheritance

Chapter 16.indd   284 14-08-2018   16:50:11



284 285

;
}
};
class detail  //Base class
{
 int dd,mm,yy;
 char cl[4];
public:
void acceptdob()
{
cout<<"\n Enter date,month,year in digits and class .. ";
cin>>dd>>mm>>yy>>cl;
}
void displaydob()
{
cout<<"\n class:-"<<cl;
cout<<"\t\t DOB     :  "<<dd<<” - “<<mm<<” –“ <<yy<<endl;
}
};
class exam : public student,public detail            //derived class with multiple  
base class
 {
     public: 
     int  mark1, mark2 ,mark3,mark4,mark5,mark6,total;
   void acceptmark()
   {
     cout<<"\n Enter lang,eng,phy,che,csc,mat marks.. "; 
     cin>>mark1>>mark2>>mark3>>mark4>>mark5>>mark6;}
void displaymark()
{
cout<<"\n\t\t Marks Obtained ";
cout<<"\n Language.. "<<mark1;
cout<<"\n English .. "<<mark2;
cout<<"\n Physics .. "<<mark3;
cout<<"\n Chemistry.. "<<mark4;
cout<<"\n Comp.sci.. "<<mark5;
cout<<"\n Maths ..   "<<mark6;
}
 };

Chapter 16.indd   285 14-08-2018   16:50:11



286 287

int main()
{
   exam e1;
 e1.acceptname();       //calling base class function using derived class 
 object
e1.acceptdob();            //calling base class function using derived class 
 object
 e1.acceptmark();
 e1.displayname();        //calling base class function using derived class 
 object
e1.displaydob();            //calling base class function using derived class 
 object
 e1.displaymark();
 return 0;
}
Output:
Enter roll no and name .. 1201 MEENA
Enter date,month,year in digits and class .. 7 12 2001 XII
Enter lang,eng,phy,che,csc,mat marks.. 96 98 100 100 100 100
Roll no :-1201
Name :- MEENA
 class       :-XII               DOB     :  7 - 12 -2001
                 Marks Obtained
 Language.. 96
English .. 98
Physics .. 100
 Chemistry.. 100
Comp.sci.. 100
Maths ..   100

In the above program the class “exam” is derived from class “student” and “detail” 

Hence it access all the members of both the classes.

Notes

In multiple inheritance the base classes do not have any relationship 
between them. However the derived class acquires all the properties of 
both the classes

Chapter 16.indd   286 14-08-2018   16:50:11



286 287

16.4.3 Multilevel Inheritance

# include <iostream>
using namespace std;
class student  //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{
cout<<"\n Enter roll no and name .. ";
cin>>rno>>name;
}
void displayname()
{
cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl;
}};
 class exam : public student             //derived class with single base class
{
 public:
 int  mark1, mark2 ,mark3,mark4,mark5,mark6;
 void acceptmark()
 {
 cout<<"\n Enter lang,eng,phy,che,csc,mat marks.. ";
 cin>>mark1>>mark2>>mark3>>mark4>>mark5>>mark6;
 }
void displaymark(){
cout<<"\n\t\t Marks Obtained ";
cout<<"\n Language... "<<mark1;
cout<<"\n English... "<<mark2;
cout<<"\n Physics... "<<mark3;
cout<<"\n Chemistry... "<<mark4;
cout<<"\n Comp.sci... "<<mark5; 
cout<<"\n Maths...   "<<mark6;
} 
 };

Illustration 16.3 single inheritance

In multilevel inheritance a derived 
class itself acts as a base class to derive   
another class.

B

C

A

Multilevel Inheritance

Chapter 16.indd   287 14-08-2018   16:50:11



288 289

 class result : public exam
 {
 int total;
 public:
  void showresult()
  {
   total=mark1+mark2+mark3+mark4+mark5+mark6;
   cout<<"\nTOTAL MARK SCORED    :  "<<total;
  }
 };
int main()
{
 result r1;
r1.acceptname();       //calling base class function using derived class object
r1.acceptmark();       //calling base class function which itself is a derived 
   // class  function using its derived class object
r1.displayname(); //calling base class function using derived class 
   //object
r1.displaymark(); //calling base class function which itself is a derived 
   //class  function using its derived class object
r1.showresult(); //calling the child class function
return 0;
}
Output:
Enter roll no and name .. 1201 SARATHI
 Enter lang,eng,phy,che,csc,mat marks.. 96 98 100 100 100 100
 Roll no :-1201
 Name :-SARATHI
                 Marks Obtained
Language... 96
English...  98
Physics...  100
Chemistry... 100
Comp.sci...  100
Maths...    100
TOTAL MARK SCORED    :  594

Chapter 16.indd   288 14-08-2018   16:50:12



288 289

In the above program class “result “ is derived from class “exam” which itself is derived from 
class student.

Note

In multilevel inheritance the level of inheritance can be extended to any 
number of level depending upon the relation. Multilevel inheritance is 
similar to relation between grandfather, father and child. 

# include <iostream>
using namespace std;
class student  //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{
cout<<"\n Enter roll no and name .. ";
cin>>rno>>name;
}
void displayname()
{
cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl;
}
};
 class qexam : public student //derived class with single base class
 {
    public:
 int  mark1, mark2 ,mark3,mark4,mark5,mark6;
  void acceptmark()
   {
     cout<<"\n Enter lang,eng,phy,che,csc,mat marks for quarterly exam.. ";
     cin>>mark1>>mark2>>mark3>>mark4>>mark5>>mark6;
  }

Illustration 16.4 Hierarchical  inheritance

A

B C D

Hierarchical Inheritance

Chapter 16.indd   289 14-08-2018   16:50:12



290 291

void displaymark()
{
cout<<"\n\t\t Marks Obtained in quarterly";
cout<<"\n Language.. "<<mark1;
cout<<"\n English .. "<<mark2;
cout<<"\n Physics .. "<<mark3;
cout<<"\n Chemistry.. "<<mark4;
cout<<"\n Comp.sci.. "<<mark5; 
cout<<"\n Maths ..   "<<mark6;
} 
 };
  class hexam : public student             //derived class with single base class
 {
    public:
 int  mark1, mark2 ,mark3,mark4,mark5,mark6;
   void acceptmark()
   {
     cout<<"\n Enter lang,eng,phy,che,csc,mat marks for halfyearly exam.. ";
     cin>>mark1>>mark2>>mark3>>mark4>>mark5>>mark6;
  }
void displaymark()
{
cout<<"\n\t\t Marks Obtained in Halfyearly";
cout<<"\n Language.. "<<mark1;
cout<<"\n English .. "<<mark2;
cout<<"\n Physics .. "<<mark3;
cout<<"\n Chemistry.. "<<mark4;
cout<<"\n Comp.sci.. "<<mark5; 
cout<<"\n Maths ..   "<<mark6;
} 
 };

Chapter 16.indd   290 14-08-2018   16:50:12



290 291

int main()
{
  qexam q1;
  hexam h1;
 q1.acceptname();      //calling base class function using derived class object
 q1.acceptmark();       //calling base class function
 h1.acceptname();      //calling base class function using derived class object
 h1.displayname();    //calling base class function using derived class object
 h1.acceptmark();
 h1.displaymark();        //calling base class function using its 
   //derived class object
  return 0;
}
Output
Enter roll no and name .. 1201 KANNAN
 Enter lang,eng,phy,che,csc,mat marks for quarterly exam.. 
95 96 100 98 100 99
 Roll no :-1201
 Name :-KANNAN
                 Marks Obtained in quarterly
Language.. 95
English .. 96
Physics .. 100
Chemistry.. 98
Comp.sci.. 100
Maths ..   99
Enter roll no and name .. 1201 KANNAN
Enter lang,eng,phy,che,csc,mat marks for halfyearly exam..
96 98 100 100 100 100
Roll no :-1201
Name :-KANNAN
                 Marks Obtained in Halfyearly
Language.. 96
English .. 98
Physics .. 100
 Chemistry.. 100
Comp.sci.. 100
Maths ..   100

Chapter 16.indd   291 14-08-2018   16:50:12



292 293

 In the above program the class “qexam” and “hexam” are derived from class “student”. 
Here for single base class more than one derived class.So this comes under hierarchical 
inheritance.

Note

A class without any declaration will have 1 byte size.class x{}; X occupies 
1 byte.

# include <iostream>
using namespace std;
class student           //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{
cout<<"\n Enter roll no and name .. ";
cin>>rno>>name;
}
void displayname()
{
cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl;
} };
class exam : public student             //derived class with single base class
 {
 public:
 int  mark1, mark2 ,mark3,mark4,mark5,mark6;
 void acceptmark()
   {
 cout<<"\n Enter lang,eng,phy,che,csc,mat marks.. ";
 cin>>mark1>>mark2>>mark3>>mark4>>mark5>>mark6;
  }

Illustration 16.5 HYBRID  inheritance

A

B C

D

Hybrid Inheritance

Chapter 16.indd   292 14-08-2018   16:50:12



292 293

void displaymark() {
cout<<"\n\t\t Marks Obtained ";
cout<<"\n Language.. "<<mark1;
cout<<"\n English .. "<<mark2;
cout<<"\n Physics .. "<<mark3;
cout<<"\n Chemistry.. "<<mark4;
cout<<"\n Comp.sci.. "<<mark5; 
cout<<"\n Maths ..   "<<mark6;
} 
 };
 class detail  //base classs 2
{
   int dd,mm,yy;
  char cl[4];
public:
  void acceptdob()
{
cout<<"\n Enter date,month,year in digits and class .. ";
cin>>dd>>mm>>yy>>cl;
}
void displaydob()
{
cout<<"\n class       :-"<<cl;
cout<<"\t\t DOB     :  "<<dd<<" - "<<mm<<" -" <<yy<<endl;
}
};
class result : public exam,public detail   //inherits from exam ,which itself is a 
     //derived class and also from class detail
 {
 int total;
 public:
  void showresult()
 {
  total=mark1+mark2+mark3+mark4+mark5+mark6;
   cout<<"\nTOTAL MARK SCORED    :  "<<total;
  }
 };

Chapter 16.indd   293 14-08-2018   16:50:12



294 295

  class detail  //base classs 2
{
   int dd,mm,yy;
  char cl[4];
public:
  void acceptdob()
{
cout<<"\n Enter date,month,year in digits and class .. ";
cin>>dd>>mm>>yy>>cl;
}
void displaydob()
{
cout<<"\n class       :-"<<cl;
cout<<"\t\t DOB     :  "<<dd<<" - "<<mm<<" -" <<yy<<endl;
}
};
class result : public exam,public detail   //inherits from exam ,which itself is a 
     //derived class and also from class detail
 {
 int total;
 public:
  void showresult()
 {
  total=mark1+mark2+mark3+mark4+mark5+mark6;
   cout<<"\nTOTAL MARK SCORED    :  "<<total;
  }
 };
int main()
{
  result r1;
 r1.acceptname();       //calling base class function using derived class object
 r1.acceptmark();       //calling base class which itsel is a derived class  function 
using its derived class object

Chapter 16.indd   294 14-08-2018   16:50:12



294 295

int main()
{
  result r1;
 r1.acceptname();       //calling base class function using derived class object
 r1.acceptmark();       //calling base class which itsel is a derived class  function 
using its derived class object
r1.acceptdob();
 cout<<"\n\n\t\t MARKS STATEMENT";
 r1.displayname();        //calling base class function using derived class object
 r1.displaydob();
 r1.displaymark();         //calling base class which itsel is a derived class  function 
using its derived class object
 r1.showresult();         //calling the child class function
 return 0;
}
Output:
Enter roll no and name .. 1201 RAGU
 Enter lang,eng,phy,che,csc,mat marks.. 96 98 100 100 100 100
 Enter date,month,year in digits and class .. 7 12 2001 XII
                 MARKS STATEMENT
 Roll no :-1201
 Name :-RAGU
 class       :-XII               DOB     :  7 - 12 -2001
                 Marks Obtained
 Language.. 96
English .. 98
Physics .. 100
 Chemistry.. 100
Comp.sci.. 100
Maths ..   100
TOTAL MARK SCORED    :  594

 In the above program the derived class “result” has acquired the properties of class 
“detail” and class “exam” which is derived from “student”. So this inheritance is a combination 
of multi level and multiple  inheritance and so it is called hybrid inheritance 

Chapter 16.indd   295 14-08-2018   16:50:12



296 297

16.5 VISIBILITY MODES

 An important feature of Inheritance is to know  which member of the base class will be 
acquired by the derived class. This is done by using visibility modes. 

 The accessibility of base class by the derived class is controlled by visibility modes. The 
three visibility modes are private, protected and public. The default visibility mode is private. 
Though visibility modes and access specifiers look similar, the main difference between them 
is Access specifiers control the accessibility of the members with in the class where as visibility 
modes control the access of inherited members with in the class.

16.5.1 Private visibility mode

 When a base class is inherited with private visibility mode the public and protected 
members of the base class become ‘private’ members of the derived class

BASE CLASS when inherited with 
private visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

16.5.2 protected visibility mode

 When a base class is inherited with protected visibility mode the protected and public 
members of the base class become ‘protected members ‘ of the derived class

BASE CLASS when inherited with 
protected visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

Chapter 16.indd   296 14-08-2018   16:50:12



296 297

16.5.3 public visibility mode

 When a base class is inherited with public visibility mode , the protected members 
of the base class will be inherited as protected members of the derived class and the public 
members of the base class will be inherited as public members of the derived class.

BASE CLASS when inherited with 
public visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

Tip Notes

When classes are inherited with public, protected or private the private 
members of the base class are notinherited they are only visible i.e 
continue to exist in derived classes, and cannot be accessed

//Implementation of Single Inheritance using public visibility mode
#include <iostream>
using namespace std;
class Shape
{
   private:
 int count;
   protected:
    int width;
 int height;
   public:
 void setWidth(int w)
 {
 width = w;
 }

Illustration 16.6  explains the significance of different visibility modes.

Chapter 16.indd   297 14-08-2018   16:50:12



298 299

void setHeight(int h)
{
height = h;
}
};
class Rectangle: publicShape
{
public:
int getArea()
{
return (width * height);
}
};
int main()
{
Rectangle Rect;
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of theobject.
cout<< "Total area: "<<Rect.getArea() <<endl;
return 0;
}
Output
Total area: 35

The following table contain the members defined inside each class before inheritance

MEMBERS of class
visibility modes

Private Protected Public

Shape(base class) int count;        
int width;
int height;

void setWidth(int )
void setHeight(int)

Rectangle (derived 
class only with its 
defined members)

intgetArea();

The following table contain the details of members defined after inheritance

Chapter 16.indd   298 14-08-2018   16:50:12



298 299

MEMBERS of class
visibility modes –public for acquiring the properties of the 

base class
Private Protected Public

Shape(base class) int count;        
int width;
int height;

void setWidth(int )
void setHeight(int)

Rectangle (derived 
class acquired the 
properties of base 
class with public 
visibility)

Private members of 
base classes are not 
directly accessible 
by the derived class

int width;
int height;

int getArea();
void setWidth(int )
void setHeight(int)

 Suppose the class rectangle is derived with protected visibility then the  properties of 
class rectangle will change as follows

MEMBERS of class
visibility modes –protected for acquiring the properties of the 

base class
Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int )
void setHeight(int)

Rectangle (derived 
class acquired the 
properties of base 
class with protected 
visibility)

Private members of 
base classes are not 
directly accessible 
by the derived class

int width;
int height;
void setWidth(int )
void setHeight(int)

intgetArea();

 In case the class rectangle is derived with private visibility mode from its base class 
shape then the  property of class rectangle will change as follows

MEMBERS of class
visibility modes –private for acquiring the properties of the 

base class
Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int )
void setHeight(int)

Rectangle (derived 
class acquired the 
properties of base 
class with private 
visibility)

Private members of 
base classes are not 
directly accessible 
by the derived class

int width;
int height;
void setWidth(int )
void setHeight(int)

int getArea();

Chapter 16.indd   299 14-08-2018   16:50:12



300 301

 When you derive the class from an existing base class,it may inherit the properties 
of the base class based on its visibility mode.So one must give appropriate visibility mode 
depends up on the need.

 Private inheritance should be used when you want the features of the base class to be 
available to the derived class but not to the classes that are derived from the derived class.

 Protected inheritance should be used when features of base class to be available only to 
the derived class members but not to the outside world.

 Public inheritance can be used when features of base class to be available  the derived 
class members and also to the outside world.

   16.6 Inheritance and constructors and destructors 

 When an object of the derived class is created ,the compiler first call the base class 
constructor and then the constructor of the derived class. This because the derived class is 
built up on the members of the base class. When the object of a derived class expires first the 
derived class destructor is invoked followed by the base class destructor.

#include<iostream>
using namespace std;
class base
{
public:
base()
{
cout<<"\nConstructor of base class...";
}
~base()
{
cout<<"\nDestructor of base class.... ";
}
};
class derived:public base
{
public :
derived()

Illustration 16.7 The order of constructors and destructors

Chapter 16.indd   300 14-08-2018   16:50:12



300 301

{
cout << "\nConstructor of derived ...";
}
~derived()
{
cout << "\nDestructor of derived ...";
}
};
class derived1 :public derived
{
public :
derived1()
{
cout << "\nConstructor of derived1 ...";
}
~derived1()
{
cout << "\nDestructor of derived1 ...";
}
};
int main()
{
derived1 x;
return 0;
}
Output:
Constructor of base class...
Constructor of derived ...
Constructor of derived1 ...
Destructor of derived1 ...
Destructor of derived ...
Destructor of base class....

Chapter 16.indd   301 14-08-2018   16:50:12



302 303

Notes

The constructors are executed in the order of inherited class i.e., from 
base constructor to derived. Thedestructors are executed in the reverse 
order.

Some Facts About the execution of constructor in inheritance

• Base class constructors are executed first ,before the derived class constructors execution

• Derived class can not inherit the base class constructor  but it can call the base class 
constructor by using 

 Base_class name::base_class_constructor() in derived class definition

• If there are multiple base classes ,then its start executing from the left most base class

• In multilevel inheritance, the constructors will be executed in the order of inheritance.

Notes

size of derived class object=size of all base class data members + size of 
all data members in derived class.

16.7 Inheritance and Access Control

 When you declare a derived class, a visibility mode can precede each base class in 
the base list of the derived class. This does not alter the access attributes of the individual 
members of a base class , but allows the derived class to access the members of a base class with 
restriction.

As you already know ,you can  derive classes using any of the three visibility mode:

• In a public base class, public and protected members of the base class remain public and 
protected members of the derived class.

• In a protected base class, public and protected members of the base class are protected 
members of the derived class.

• In a private base class, public and protected members of the base class become private 
members of the derived class.

 In all these cases, private members of the base class remain private and cannot be 
used by the derived class. However it can be indirectly accessed by the derived class using the 

Chapter 16.indd   302 14-08-2018   16:50:12



302 303

public or protected member function of the base class since they have the access privilege for 
the private members of the base class.

#include<iostream>
using namespace std;
class add
{
int num1,sum;//private data member can’t be derived by derived class
protected:
  int num2;
public:
add()
{
  num1= num2= sum=0;
cout<<"\n Add constructor .. ";
}
accept()
{
cout<<"\n Enter two numbers .. ";
cin>>num1>>num2;
}
plus()
{
sum = num1 + num2;
cout<<"\n The sum of two numbers is .. "<< sum;
}
int difference(){ return num1-num2;}        //return an integer value
 ~add()
 {cout<<endl<<"Add destructor"; }
};
class subtract :public add                          //subtract derived from add
{
int sub;
public:
subtract()
{

Illustration 16.8 the private member of base class is accessed by the 
derived class

Chapter 16.indd   303 14-08-2018   16:50:12



304 305

sub = 0;
cout<<"\n Subtract constructor .. ";
}
minus()
{
  accept();       // member function of base class can access its datamember
  sub= difference();
cout<<"\n The difference of two numbers are ... "<< sub;
}
~subtract()
 {cout<<endl<<"Subtract destructor"; }
};
int main()
{
subtract s;
int choice = 0;
cout<<"\n Enter your choice ";
cout<<" \n1. Add..\n2. Subtract ..";
cin>>choice;
switch( choice )
{
case 1:
s.accept();
s.plus();
break;
case 2:
s.minus();
break;
}
return 0;
}

A member function can call another member 
function without dot operator and object

Chapter 16.indd   304 14-08-2018   16:50:12



304 305

Output:
Add constructor ..
 Subtract constructor ..
 Enter your choice
1. Add..
2. Subtract .. 2
 Enter two numbers ..  20 10
 The difference of two numbers are ... 10
Subtract destructor
Add destructor

 In the above program the data member num1 which is under private visibility in add 
class cannot be inherited by the subtract class.But subtract class can inherit the protected and 
public members of add class. Hence using the inherited accept() function the value of num1 is 
accepted and using the inherited difference() function the values are subtracted and passed to 
the subtract class.

16.7.1 Access control in publicly derived class

 From a publicly derived class, public and protected members of the base class remain 
public and protected members of the derived class. The public members can accessed by the 
object of the derived class similar to its own members in public.

#include<iostream>
#include<string>
using namespace std;
class Employee
{
    private:
 char name[50];
 int code;
    public:
 void getinfo();
 void dispinfo();
};
class staff: public Employee

Illustration 16.9 the publicly inherited derived class

Chapter 16.indd   305 14-08-2018   16:50:12



306 307

{
 private:
 int ex;
 public:
 void getdata();
 void display();
};
void Employee::getinfo()
{
 cout<<"Name:";
 gets(name);
 cout<<"Code:";
 cin>>code;
}
void Employee::dispinfo()
{
 cout<<"Name:"<<name<<endl;
 cout<<"Code:"<<code<<endl;
}
void staff::getdata()
{
 cout<<"Experience:";
 cin>>ex;
}
void staff::display()
{
    cout<<"Experience:"<<ex<<" Years"<<endl;
}

Chapter 16.indd   306 14-08-2018   16:50:12



306 307

int main()
{
 staff s;
 cout<<"Enter data"<<endl;
 s.getinfo();  //derived member function
 s.getdata();  //defined member function
 cout<<endl<<endl<<"\tDisplay Data"<<endl;
 s.dispinfo();  //derived member function
 s.display();//defined member function
return 0;
}
Output:
Enter data
Name:USHA
Code:1201
Experience: 30
        Display Data
Name:USHA
Code:1201
Experience:30 Years

 In the above program since “staff ”  is derived publicly even the derived function can be 
accessed by the object of the  class.

Note

We cannot deny access to certain members of a base class when inhering 
publicly. 

16.7.2 Access control in privately derived class

 From a privately derived class, public and protected members of the base class become 
private members of the derived class. Hence it is not possible to access the derived members 
using the object of the derived class.The Derived members are invoked  by calling it from the 
publicly defined members

Chapter 16.indd   307 14-08-2018   16:50:12



308 309

#include<iostream>
#include<string>
using namespace std;
class Employee
{
    private:
 char name[50];
 int code;
    public:
 void getinfo();
 void dispinfo();
};
class staff: private Employee
{
    private:
 int ex;
    public:
 void getdata();
 void display();
};
void Employee::getinfo()
{
 cout<<"Name:";
 gets(name);
 cout<<"Code:";
 cin>>code;
}
void Employee::dispinfo()
{
 cout<<"Name:"<<name<<endl;
 cout<<"Code:"<<code<<endl;
}

Illustration 16.10 the privately inherited derived class

Chapter 16.indd   308 14-08-2018   16:50:12



308 309

void staff::getdata()
{
     getinfo();                //invoked inside
cout<<"Experience:";
    cin>>ex;
}
void staff::display()
{
   dispinfo();       //member function called inside another member function
cout<<"Experience:"<<ex<<" Years"<<endl;
}
int main()
{
    staff s;
    cout<<"Enter data"<<endl;
 s.getdata();
    cout<<endl<<endl<<"\tDisplay Data"<<endl;
 s.display();
    return 0;
}
Output:
Enter data
Name: BALAMURUGAN
Code: 1201
Experience: 30
        Display Data
Name:  BALAMURUGAN
Code: 1201
Experience: 30 Years

 If you look at the output of publicly derived class and privately derived class are same 
the way of defining is different. This is because the private members of the derived class cannot 
be accessed by its object. In the above program since staff is privately derived getinfo() and 
dispinfo() become private to class “staff ”.  To access both the member function they are invoked 
inside the publ;ic member functions getdata() and display() respectively.

Note

Member functions can access the private members

Chapter 16.indd   309 14-08-2018   16:50:12



310 311

16.8 Overriding / Shadowing Base class functions in derived class

 In case of inheritance there are situations where the member function of the base 
class and derived classes have the same name. If the derived class object calls the overloaded 
member function it leads confusion to the compiler as to which function is to be invoked. The 
derived class member function have higher priority than the base class member function.This 
shadows the member functionof the base class which has the same name like the member 
function of the derived class. The scope resolution operator resolves this problem.

#include<iostream>
#include<string>
using namespace std;
class Employee
{
    private:
        char name[50];
        int code;
    public:
        void getdata();
        void display();
};
class staff: public Employee
{
    private:
        int ex;
    public:
 void getdata();
        void display();
};
void Employee::display()
{
 cout<<"Name:"<<name<<endl;
 cout<<"Code:"<<code<<endl;
}

Illustration 16.11  the use of scope resolution operator in derived class

Chapter 16.indd   310 14-08-2018   16:50:12



310 311

void staff::display()
{
 Employee :: display();//overriding
 cout<<"Experience:"<<ex<<" Years"<<endl;
}
int main()
{
 staff s;
 cout<<"Enter data"<<endl;
 s.getdata();
 cout<<endl<<endl<<"\tDisplay Data"<<endl;
 s.display();
 return 0;
}
Output
Enter data
Name: SUGANYA
Code: 1201
Experience: 30
        Display Data
Name: SUGANYA
Code:1201
Experience:30 Years

 In the above program  getdata() and display() are defined both in base and in derived 
class. So when the derived class staff inherits the properties of Employee class it will have 
two getdata() and display() each. To differentiate the derived getdata() and display() from the 
defined getdata() and display() :: (scope resolution) operator is given along with the base class 
name to the base class members

Chapter 16.indd   311 14-08-2018   16:50:12



312 313

Note

When a derived class member function has the same name as 
that of its base class member function ,the derived class member 
function shadows/hides the base class’s inherited function .This 
situation is called function overriding and this can be resolved 
by giving the base class name followed by :: and the member 
function name.

16.8.1 thisPointer

 'this' pointer is a constant pointer that holds the memory address of the current object. 
.It  identifies the currently calling object.It is useful when the argument variable name in the 
member function and the data member name are same. To identify the datamember it will be 
given as this->data member name

#include<iostream>
using namespace std;
class T
{
    public:
int x;
     void foo()
    {
        x = 6;       // same as this->x = 6;
        this->x = 5; // explicit use of this->
        cout<<endl<<x<<"  "<<this->x;
    }
    void foo(int x)  // parameter x shadows the member with the same name
    {
        this->x = x;                // unqualified x refers to the parameter.'this->' 
required for disambiguation
        cout<<endl<<x<<"  "<<this->x;
    }};

Illutration 16.8.1 illustrates the use of this pointer

Chapter 16.indd   312 14-08-2018   16:50:12



312 313

int main()
    {
 T t1,t2;
 t1.foo();
 t2.foo();
 }
Ouput
5  5
5  5
--------------------------------
Process exited after 0.1 seconds with return value 0
Press any key to continue . . .

#include <iostream>
using namespace std;

class Container {
   public:
      // Constructor definition
         Container(double l = 2.0, double b = 2.0, double h = 2.0) {
         cout<<"Constructor called." << endl;
         length = l;
         breadth = b;
         height = h;
      }
      double Volume() {
      return length * breadth * height;
      }
      int compare(Container container) 
      {
      return this->Volume() >Container.Volume();
      }

Another Example Program 16.8.1A using this pointer

Chapter 16.indd   313 14-08-2018   16:50:12



314 315

   private:
      double length;     // Length of a Container
      double breadth;    // Breadth of a Container
      double height;     // Height of a Container
};
int main(void) {
   Container Container1(3.3, 1.2, 1.5);    // Declare Container1
   Container Container2(8.5, 6.0, 2.0);    // Declare Container2
   if(Container1.compare(Container2)) {
      cout << "Container2 is smaller than Container1" <<endl;
   } else {
      cout << "Container2 is equal to or larger than Container1" <<endl;
   }
      return 0;
}
Output
Constructor called.
Constructor called.
Container2 is equal to or larger than Container1
--------------------------------
Process exited after 0.09358 seconds with return value 0
Press any key to continue . . .

Chapter 16.indd   314 14-08-2018   16:50:12



314 315

• The mechanism of deriving new class from 
an existing class is called inheritance.

• The main advantage of Inheritance is it 
supports reusability of code.

• The derived class inherits all the properties 
of the base class. It is a power packed class, 
as it can add additional attributes and 
methods and thus enhance its functionality.

• The various types of Inheritance are 
Single inheritance, multiple inheritance, 
hierarchical inheritance and hybrid 
inheritance 

• When a derived class inherits only from one 
base class, it isknown as single inheritance

• When a derived class inherits from 
multiple base classes itis known as multiple 
inheritance

• When a class is derived from a class which 
is a derived class itself – then this is referred 
to as multilevel inheritance. The transitive 
nature of inheritance is reflected by this 
form of inheritance.

• When more than one derived classes are 
created from a single base class , it is known 
as Hierarchical inheritance.

• When there is a combination of more than 
one type of inheritance, it is known as 
hybrid inheritance. 

• In multiple inheritance, the base classes 
are constructed in the order in which they 
appear in the declaration of the derived 
class.

• A sub-class can derive itself publicly, 
privately or protectedly.

• The private member of a class cannot be 
inherited .

• In publicly derived class,the public 
members of the base class remain public 
and protected members of base class remain 
protected in derived class.

• In privately derived class, the public and 
the protected members of the base class 
become protected in derived class

• In publicly derived class, the public 
members of the base class remain public

• and protected members of base class remain 
protected in derived class.

• When class is derived in protected mode, 
the public and protected members of base 
class become protected in derived class.

• constructors and destructors of the base 
class are not inherited but during the 
creation of an object for derived class the 
constructors of base class will automatically 
invoked.

• The destructors are invoked in reverse 
order .The destructors of the derived classes 
are invoked first and then the base class.

• size of derived class object=size of all 
base class data members + size of all data 
members in derived class

• overriding of the members are resolved by 
using :: Scope resolution operator. 

• this pointer used to refer the current objects 
members

Points to Remember:

Chapter 16.indd   315 14-08-2018   16:50:12



316 317

Evaluation

PART I

Choose the correct answers

1. Which of the followingis the process of creating new classes from an existing class

 (a) Polymorphism  (b) Inheritance (c) Encapsulation (d) super class

2. Which of the following derives a class student from the base  class school    

 (a) school: student    (b) class student : public school 

 (c) student : public school   (d) class school : public student

3. The type of inheritance that reflects the transitive nature is 

 (A) Single Inheritance    (B) Multiple  Inheritance

 (C) Multilevel  Inheritance   (D) Hybrid  Inheritance 

4. Which visibility mode should be used when you want the features of the base class to 
be available to the derived class but not to the classes that are derived from the derived 
class?

 (A) Private  (B) Public  (C) Protected  (D) All of these

5. Inheritance is process of creating new class from

 (A) Base class  (B) abstract  (C) derived class (D) Function

6. A class is derived from a class which is a derived class itself, then this is referred to as

 (A) multiple inheritance   (B) multilevel inheritance 

 (C) single inheritance    (D) double inheritance

7. Which amongst the following is executed in the order of inheritance?

 (A) Destructor      (B) Member function (C) Constructor (D) Object

8. Which of the following is true with respect to inheritance?

 (A) Private members of base class are inherited to the derived class with private

 (B)  Private members of base class are not inherited to the derived class with private 
accessibility

 (C) Public members of base class are inherited but not visible to the derived class 

 (D) Protected members of base class are inherited but not visible to the outsideclass 

Chapter 16.indd   316 14-08-2018   16:50:12



316 317

9. Based on the following class declaration answer the questions (from9.1 o 9.5 )

class vehicle
{ int wheels;
public:
void input_data(float,float);
void output_data();
protected:
int passenger;
 };
class heavy_vehicle : protected vehicle {
int diesel_petrol;
protected:

int load;

protected:

int load;

public:

voidread_data(float,float)

voidwrite_data(); };

class bus: private heavy_vehicle {

charTicket[20];

public:

voidfetch_data(char);

voiddisplay_data(); };

};

9.1. Which is the base class of the class heavy_vehicle?

 (a) Bus  (b) heavy_vehicle (c) vehicle (d) both (a) and (c)

9.2. The data member that can be accessed from the function displaydata()

 (a) passenger (b) load  (c) Ticket (d) All of these

Chapter 16.indd   317 14-08-2018   16:50:12



318 319

9.3. The member function that can be accessed by an objects of bus Class is

 (a) input_data() ,  (b) read_data() ,output_data()write_data()

 (c) fetch_data()  (d) All of these display_data()

9.4. The member function that is inherited as public by Class Bus

 (a) input_data() ,  (b) read_data() , output_data()write_data()

 (c) fetch_data()  (d) All of these display_data()

10.

class x
{  int a;
public :
x()

  {}
};
class y
{  x x1;
public :
y(){}
};
class z : public y,x
{
int b;
public:
z(){}
}z1;

What is the order of constructor for object z1 to be invoked?

 (A) z , y,x,x  (B) x,y,z,x  (c) y,x,x,z  (D) x,y,z

PART II

Answer to the all qustions (2 Marks):
1. What is inheritance?
2. What is a base class?

Chapter 16.indd   318 14-08-2018   16:50:12



318 319

3. Why derived class is called power packed class?

4. In what multilevel and multiple inheritance differ though both contains many base class?
5. What is the difference between public and private visibility mode?

PART III

Answer to the all questions (3 Marks):
1. What are the points to be noted while deriving a new class?
2.  What is difference between the members present in the private visibility mode and the 

members present in the public visibility mode 
3. What is the difference between polymorphism and inheritance though are usedfor 

reusability of code?
4.  What do you mean by overriding?
5. Write some facts about the execution of constructors and destructors in inheritance

PART IV

Answer to the all questions (5 Marks):

1. Explain the different types of inheritance

2. Explain the different visibility mode through pictorial representation

3.

#include<iostream>
#include<string.h>
#include<stdio.h>
using  name spacestd;
class publisher
{
char pname[15];
char hoffice[15]; 
char address[25]; 
double turnover;
protected:
char phone[3][1O];
void register();

Chapter 16.indd   319 14-08-2018   16:50:12



320 321

public:
publisher();
~publisher();
void enter data(); 
void disp data();
};
class branch
{
charbcity[15];
char baddress[25];
protected:
intno_of_emp;
public:
charbphone[2][10]; 
branch();
~branch();
void have data(); 
void give data();
};
class author: public branch, publisher
{
intaut_code;
charaname[2O];
float income;
public:
author();
~author();
voidgetdata(); 
voidputdata();
};

Answer the following questions based on the above given program:

3.1. Which type of Inheritance is shown in the program?

3.2. Specify the visibility mode of base classes.

3.3 Give the sequence of Constructor/Destructor Invocation when object of class author is 
created. 

3.4. Name the base class(/es) and derived class (/es).

3.5 Give number of bytes to be occupied by the object of the following class:

 (a) publisher  (b) branch  (c) author

Chapter 16.indd   320 14-08-2018   16:50:12



320 321

3.6. Write the names of data members accessible from the object of class author. 

3.7. Write the names of all member functions accessible from the object of class author.

3.8 Write the names of all members accessible from member functionsof class author.

4. Consider the following c++ code and answer the questions

class Personal
{
int Class,Rno;
char Section;
protected:
char Name[20];
public:
personal();
void pentry();
voidPdisplay();
};
class Marks:private Personal
{
float M{5};
protected:
char Grade[5];
public:
Marks();
void M entry();
void M display();
};
class Result:public Marks
{
float Total,Agg;
public:
char FinalGrade, Commence[20];
Result();
void R calculate();
void R display();
}:

4.1. Which type of Inheritance is shown in the program?

4.2. Specify the visibility mode of base classes.

4.3 Give the sequence of Constructor/Destructor Invocation when object of class Result is 
created. 

4.4. Name the base class(/es) and derived class (/es).

Chapter 16.indd   321 14-08-2018   16:50:12



322 323

4.5 Give number of bytes to be occupied by the object of the following class:

 (a) Personal  (b) Marks  (c) Result

4.6. Write the names of data members accessible from the object of class Result. 

4.7. Write the names of all member functions accessible from the object of class Result.

4.8 Write the names of all members accessible from member functionsof class Result.

5. Write the output of the following program

#include<iostream>
using namespace std;
class A
{
protected:
int x;
public:
void show()
{
cout<<"x = "<<x<<endl;
}
A()
{
 cout<<endl<<" I am class A "<<endl;
}
~A()
{
 cout<<endl<<" Bye ";
}
};
class B : public A
{

Chapter 16.indd   322 14-08-2018   16:50:12



322 323

{
protected:
int y;
public:
B(int x, int y)
{
this->x = x;  //this -> is used to denote the objects datamember
this->y = y;  //this -> is used to denote the objects datamember
}
B()
{
 cout<<endl<<" I am class B "<<endl;
}
~B()
{
 cout<<endl<<" Bye ";
}
void show()
{
cout<<"x = "<<x<<endl;
cout<<"y = "<<y<<endl;
}
};
int main()
{
A objA;
B objB(30, 20);
objB.show();
return 0;
}

Chapter 16.indd   323 14-08-2018   16:50:12



324 325

6. Debug the following program

Output
-------------
15
14
13
Program :
-------------
%include(iostream.h)
#include<conio.h>
Class A
{
public;
int a1,a2:a3;
Void getdata[]
{
  a1=15;
  a2=13;a3=13;
}
}
Class B:: public A()
{
 PUBLIC
 voidfunc()
 {
  int b1:b2:b3;
  A::getdata[];
  b1=a1;
  b2=a2;
  a3=a3;
  cout<<b1<<’\t’<<b2<<’t\’<<b3;
 }
void main()
{
 clrscr()
 B der;
 der1:func();
 getch();
}

Chapter 16.indd   324 14-08-2018   16:50:12



324 325

CASE STUDY

 All the banks operating in India are controlled by RBI. RBI has set certain guidelines (e.g. 
minimum interest rate, minimum balance allowed, maximum withdrawal limit etc) for all 
banks to follow. For example, suppose RBI has set minimum interest rate applicable to a saving 
bank account to be 5% annually; however, banks are free to use 5% interest rate or to set any 
rates above it.

 Write a program to implement bank functionality in the above scenario. Note: Create few 
classes namely Customer, Account, RBI (Base Class) and few derived classes (SBI, ICICI, 
PNB,IOBetc). Assume and implement required member variables and functions in each class.

Hint:

class Customer
{
//Personal Details ...
// Few functions ...
}
class Account
{
// Account Detail ...
// Few functions ...
} 
} 
class RBI
{
Customer c; //hasA relationship
Account a; //hasA relationship
..
Public double GetInterestRate() { }
Public double GetWithdrawalLimit() { }
}
class SBI: public RBI
{
//Use RBI functionality or define own functionality.
} 
class ICICI: public RBI
{
//Use RBI functionality or define own functionality.
}
class IOB: public RBI
{
//Use RBI functionality or define own functionality.
}

Chapter 16.indd   325 14-08-2018   16:50:12



326 PB

CASE STUDY 2

Write a class for a class Stock

1. − Each Stock has a data member which holds the net price, and a constructor which sets this price.

 −  Each Stock has a method get_Price(), which calculates and returns the gross price (the gross 
price includes VAT at 21%)

2. Write 2 classes which inherit from the general Stock class, of type Notebook and Book

 − The gross price for Notebook  includestax at 21%,

 −  Books are free of tax, so the gross price is unchanged from the net price, and you will need to 
re-define the getGrossPrice method in this class

3. Write a program which does the following:

 a. Declare an array of 10 objects to Stock

 b. Declare aobject  to a Book and an object  to Notebook

 c. Ask the user to enter details of the book, and of the Notebook item,.

 d. Check your method getGrossPrice works correctly with each type and then displaythe result

Reference:

(1) Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,  
Mc.Graw Hills.

(2) The Complete Reference C++ (Forth Edition), Herbert Schildt. Mc.Graw Hills.

(3) Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,  
DhanpatRai& Co.

(4) A text book of CBSE XI and XII computer science by PreetiArora and Pinky Gupta.

(5)  Computer Science with C++ Reeta shoo and Gagansahoo

(6) The C++ Programming Language,BjarneStroustrup

(7) C++ Primer (5th Edition) by S. B. Lippman, J. Lajoie

Chapter 16.indd   326 14-08-2018   16:50:12



PB 327

Learning Objectives

After learning this chapter, the students will be able to

• To know about cyber-crimes.

• To understand the guidelines and need for ethics in cyber-world.

• To understand issues related to cyber-crimes.

• To know the functionality of firewalls and proxy servers.

• To learn aboutencryption and decryption.

• To gain knowledge on the IT Act.

17.1 INTRODUCTION

 Internet is a communication media which is easily accessible and open to all. Information 
Technology iswidespread through computers, mobile phones and internet. There is a lot of 
scope and possibility for misuse of Information Technology. 

 Computer systems in general are vulnerable. They play an important role in the daily 
lives of individuals and businesses. Special care must be taken explicitly in order to ensure that 
the valuable data do not get into wrong hands. Hence, the data need to be protected. 

 A cyber-crime is a crime which involves computer and network.This is becoming a 
growing threat to society and is caused by criminals or irresponsible action of individuals who 
are exploiting the widespread use of Internet. It presents a major challenge to the ethical use of 
information technologies. Cyber-crime also poses threats to the integrity, safety and survival 
of most business systems.

Figure. 17.1 presents the types of cyber-crimes that happen across the world.

Computer Ethics And Cyber Security

CHAPTER 17Unit V COMPUTER ETHICS AND 
CYBER SECURITY

Chapter 17.indd   327 14-08-2018   16:52:54



328 329

PHISHING

CYBER CRIMES

VIRUSES

PIRACY

HACKING

PHARMING

IDENTITY THEFTS

ONLINE FINANCIAL 
TRANSACTIONS

Figure 17.1 Types of cyber – crimes

ETHICS

 Ethics means “What is wrong andWhat 
is Right”. It is a set of moral principles that 
rule the behavior of individuals who use 
computers. An individual gains knowledge 
to follow the right behavior, using morals 
that are also known as ethics. Morals refer 
to the generally accepted standards of right 
and wrong in the society.  Similarly, in cyber-
world, there are certain standards such as

• Do not use pirated software

• Do not use unauthorized user accounts

• Do not steal others’ passwords

• Do not hack

 The core issues in computer ethics 
are based on the scenarios arising from the 
use of internet such as privacy, publication 
of copyrighted content, unauthorized 
distribution of digital content and user 
interaction with web sites, software and 
related services.

COMPUTER ETHICS

 With the help of internet, world has 
now become a global village. Internet has 

been proven to be a boon to individuals as 
well as various organizations and businesses. 
e-Commerce is becoming very popular 
among businesses as it helps them to reach 
a wide range of customers faster than any 
other means.

 Computer ethics deals with the 
procedures, values and practices that 
govern the process of consuming computer 
technology and its related disciplines without 
damaging or violating the moral values and 
beliefs of any individual, organization or 
entity.

GUIDELINES OF ETHICS

 Generally, the following guidelines 
should be observed by computer users:

1. Honesty: Users should be truthful while 
using the internet.

2. Confidentiality: Usersshould not 
share any important information with 
unauthorized people.

3. Respect: Each user should respect the 
privacy of other users.

Chapter 17.indd   328 14-08-2018   16:52:54



328 329

4. Professionalism: Each user should maintain professional conduct.

5. Obey The Law: Users should strictly obey the cyber law in computer usage.

6. Responsibility: Each user should take ownership and responsibility for their actions

Ethics is a set of moral principles that govern the behavior of 
an individual in a society, and Computer ethics is set of moral 
principles that regulate the use of computers by users.

17.2 ETHICAL ISSUES

 An Ethical issue is a problem or issue that requires a person or organization to choose 
between alternatives that must be evaluated as right (ethical) or wrong (unethical). These 
issues must be addressed and resolved to have a positive influence in society. 

Some of the common ethical issues are listed below:

• Cyber crime

• Software Piracy

• Unauthorized Access

• Hacking

• Use of computers to commit fraud

• Sabotage in the form of viruses

• Making false claims using computers

CYBER CRIME

 Cybercrime is an intellectual, white-collar crime. Those who commit such crimes 
generally manipulate the computer system in an intelligent manner. 

For example – illegal money transferviainternet. 

Examples of some Computer crimes and their functions are listed below in Table 17.1:

Chapter 17.indd   329 14-08-2018   16:52:54



330 331

Table 17.1 Computer Crime

Crime Function

Crime Function
Hacking, threats, and blackmailing towards a
business or a person.

Cyber stalking Harassing through online.

Malware

Malicious programs that can perform a variety of 
functions including stealing, encrypting or deleting 
sensitive data, altering or hijacking core computing 
functions and monitoring user’s computer activity 
without their permission. 

Denial of service attack
Overloading a system with fake requests so that it 
cannot serve normal legitimate requests.

Fraud
Manipulating data, for example changing the banking 
records to transfer money to an unauthorized account.

Harvesting
A person or program collects login and 
passwordinformation from a legitimate user to 
illegally gainaccess to others’ account(s).

Identity theft
It is a crime where the criminals impersonate 
individuals, usually for financial gain.

Intellectual property theft 
Stealing practical or conceptual information  
developed by another person or company.

Salami slicing Stealing tiny amounts of money from each transaction.

Scam
Tricking people into believing something that isnot 
true.

Spam
Distribute unwanted e-mail to a large number 
ofinternet users.

Spoofing
It is a malicious practice in which communication 
is send from unknown source disguised as a source 
known to the receiver.

SOFTWARE PIRACY

 Software Piracy is about the copyright 
violation of software created originally by 
an individual or an institution. It includes 
stealing of codes / programs and other 
information illegally and creating duplicate 
copies by unauthorized means and utilizing 

this data either for one’s own benefit or for 
commercial profit.

In simple words,Software Piracy is 
“unauthorized copying of software”.  
Figure 17.2 shows a diagrammatical 
representation of software piracy.

Chapter 17.indd   330 14-08-2018   16:52:54



330 331

SOFTWARE PIRACY

Duplicating and 
selling copyrighted 
programs

D o w n l o a d i n g 
software illegally 
through network  

Figure 17.2- Diagrammatic representation 
of Software piracy

 Most of the commercial software is 
licensed for use at a single computer site or 
for use by only one user at any time. When 
a user buys any software, he becomes 
a licensed user for that software.  He is 
allowed to make copies of the program for 
backup purposes, but it is against the law 
to distribute duplicate copies to others. 
Such illegal copying and distribution 
of commercial software should not be 
practiced.

 An entirely different approach 
to software piracy is  called shareware, 
acknowledges the futility of trying to stop 
people from copying software and instead 
relies on people’s honesty. Shareware 
publishers encourage users to give copies of 
programs to friends and colleagues but ask 
everyone who uses that program regularly 
to pay a registration fee to the program’s 

author directly. Commercial programs that 
are made available to the public illegally are 
often called warez. 

UNAUTHORIZED ACCESS

 Unauthorized access is when 
someone gains access to a website, program, 
server, service, or other system by breaking 
into a legitimate user account. For example, 
if someone tries guessing a password or 
username for an account that was not theirs 
until they gained access, it is considered an 
unauthorized access. 

 To prevent unauthorized access, 
Firewalls, Intrusion Detection Systems 
(IDS), Virus and Content Scanners, Patches 
and Hot fixes are used. 

HACKING

 Hacking is intruding into a computer 
system to steal personal data without 
the owner’s permission or knowledge 
(liketo steal a password). It is also gaining 
unauthorized access to a computer system, 
and  altering its contents. It may be done 
in pursuit of a criminal activity or it may 
be a hobby. Hacking may be harmless if 
the hacker is only enjoying the challenge 
of breaking systems’ defenses, but such 
ethical hacking should be practiced only as 
controlled experiments. Figure 17.4 shows 
a diagrammatic representation of Hacking.

Chapter 17.indd   331 14-08-2018   16:52:54



332 333

The act of gaining illegal 
access to a computer

Identity theft or 
gaining personal 
information

Firewalls, passwords 
and user Id’s , anti 
hacking software

HACKING

Leads to Protected by

Figure 17.3  Diagramatic representation of 
Hacking

CRACKING

 Cracking is where someone edits 
a program source so that the code can 
be exploited or modified. A cracker (also 
called a black hat or dark side hacker) is a 
malicious or criminal hacker. “Cracking” 
means trying to get into computer systems 
in order to steal, corrupt, or illegitimately 
view data. 

 A cracker is someone who breaks into 
someone else's computer system, often on a 
network, bypassing passwords or licenses in 
computer programs.

 Software cracking is the most often 
used type of cracking which is nothing but 
removing the encoded copy protection. 
There is another type of cracking called 
password cracking. This is mainly used to 

crack the passwords. Password cracking can 
be perform either by using an automated 
program or can be manually realized. 

 One more interesting fact about 
cracking is social engineering. It is a  method 
of getting passwords and information using 
human weakness. These crackers trick 
people, not software. They can use just the 
phone for getting information, they can 
pretend being your friend and talk to you 
on Internet Relay Chat(IRC) or by Instant 
messenger. e-mail can also be a source 
for them. They may send official e-mail 
requesting some sensitive information. It 
may look like a legitimate e-mail from bank 
or other official institution. 

 The other method that uses social 
engineering crackers is password guessing. 
They find your personal information from 
some personal data/facts and try to guess a 
password.

 Usually a cracker maintains 
knowledge of the vulnerabilities he or 
she finds and exploits them for personal 
advantage, not revealing them to either to 
the general public or to the manufacturer.

17.3 Cyber Security and Threats

 Cyber attacks are launched 
primarily for causing significant damage to 
a computer system or for stealing important 
information from an individual or from an 
organization.Cyber security is a collection 
of various technologies, processes and 
measures that reduces the risk of cyber 
attacks and protects organizations and 
individuals from computer based threats.

Chapter 17.indd   332 14-08-2018   16:52:54



332 333

TYPES OF CYBER ATTACKS

 Malware is a type of software designed through which the criminals gain illegal access 
to software and cause damage. Various types of cyber-attacks and their functions are given 
inTable 17.2.

Table 17.2 – Cyber Attacks and Functions

S.No. Cyber Attack Function

1. Virus

A virus is a small piece of computer code that can repeat itself 
and spreads from one computer to another by attaching itself 
to another computer file. One of the most common virus is 
Trojan.
A Trojan virus is a program that appears to perform one 
function (for example, virus removal) but actually performs 
malicious activity when executed.

2. Worms

Worms are self- repeating and do not require a computer 
program to attach themselves. Worms continually look for 
vulnerabilities and report back to the author of the worm when 
weaknesses are discovered.

3. Spyware
Spyware can be installed on the computer automatically 
when the attachments are open, by clicking on links or by 
downloading infected software.

4. Ransomware

Ransomware is a type of malicious program that demands 
payment after launching a cyber-attack on a computer system. 
This type of malware has become increasingly popular among 
criminals and costs the organizations millions each year.

Cyber Security Threats

 In recent years, most of the 
individuals and enterprises are facing 
problems due to the weaknesses inherent 
in security systems and compromised 
organizational infrastructures. Different 
types of Cyber Security Threats are 
categorized as below:

Social engineering

 A misuse of an individual’s weakness, 
achieved by making them to click malicious 
links, or by physically accessing the computer 

through tricks. Phishing and pharming are 
examples of social engineering.

Phishing

 Phishing is a type of computer crime 
used to attack, steal user data, including 
login name, password and credit card 
numbers. It occurs when an attacker targets 
a victim into opening an e-mailor an instant 
text message. The attacker uses phishing to 
distribute malicious links or attachments 
that can perform a variety of functions, 
including the extraction of sensitive login 
credentials from victims.

Chapter 17.indd   333 14-08-2018   16:52:54



334 335

PHISHING

This can lead 
to fraud or 
identity theft

Users should always 
be cautious when 
opening emails or 
attachments

Figure 17.4 Diagrammatic representation 
of Phishing

Pharming

 Pharming is a scamming practice 
in which malicious code is installed on a 
personal computer or server, misdirecting 
users to fraudulent web sites without their 
knowledge or permission. Pharming has 
been called "phishing without a trap”. It is 
another way hackers attempt to manipulate 
users on the Internet.  It is a cyber-attack 
intended to redirect a website's traffic to a 
fake site.

PHARMING

This can lead 
to fraud or 
identity theft

Users should always 
be cautious when 
opening emails or 
attachments

Figure 17.5 Diagrammatic representation 
of Pharming

Man In The Middle (MITM)

 Man-in-the-middle attack (MITM; 
also Janus attack) is an attack where the 
attacker secretly relays and possibly alters 
the communication between two parties 
who believe they are directly communicating 
with each other. 

Example: Suppose Alice wishes to 
communicate with Bob. Meanwhile, 
Mallory wishes to intercept the conversation 
to overhear and optionally to deliver a false 
message to Bob.

Alice Mallory Bob

Figure 17.6 - An illustration of the man-in-
the-middle attack

Cookies 

 A cookie (also called HTTP cookie, 
web cookie, Internet cookie, browser 
cookie, or simply cookie) is a small piece 
of data sent from a website and stored on 
the user's computer memory (Hard drive) 
by the user's web browser while the user is 
browsing internet. Cookies were designed 
to be a reliable mechanism for websites to 
remember stateful information (such as 
items added in the shopping cart in an online 
store) or to record the user's browsing activity 
(including clicking particular buttons, 
logging in etc.). They can also be used to 
remember arbitrary pieces of information 
that the user previously entered into form 
fields such as names, addresses, passwords, 
and credit card numbers. From the security 
point of view, if cookie data is not encrypted, 
any anonymous user (hacker) can access the 
cookie information and misuse it.

Chapter 17.indd   334 14-08-2018   16:52:54



334 335

Web sites typically use cookies for the 
following reasons:

• To collect demographic information 
about who has visited the Web site.

• Sites often use this information to track 
how often visitors come to the site and 
how long they remain on the site. 

• It helps to personalize the user's 
experience on the Web site. 

• Cookies can help store personal 
information about users so that when 
a usersubsequently returns to the site, 
a more personalized experience is 
provided.

 If you ever returned to a site and 
have seen your name mysteriously appear 
on the screen, it is because on a previous 
visit, you gave your name to the site and it 
was stored in a cookie. A good example of 
this is the way some online shopping sites 
will make recommendations to users based 
on their previous purchases. It helps to 
monitor advertisements. Cookies do not act 
maliciously on computer system. They are 
merely text files that can be deleted at any 
time. 

 Cookies cannot be used to spread 
viruses and they cannot access your hard 
drive. However, any personal information 
that you provide to a Web site, including 
credit card information, will most likely be 
stored in a cookie unless the cookie feature 
is explicitly turned off in your browser. This 
is the way in which cookies threaten privacy.

Firewall  and  Proxy Servers

 A firewall is a computer network 
security based system that monitors and 
controls incoming and outgoing network 
traffic based on predefined security rules. 
A firewall commonly establishes a block 
between a trusted internal computer 
network and entrusted computer outside 
the network. They are generally categorized 
as network-based or host-based. Network 
based firewalls are positioned on the gateway 
computers of LANs [local area Network], 
WANs [Wide Area Network] and intranets. 
Host-based firewalls are positioned on the 
network node itself. The host-based firewall 
may be a service as a part of the operating 
system or an agent application such as 
endpoint security or protection. Each has 
advantages and disadvantages. However, 
each has a role in layered security. Firewalls 
also vary in type depending on where 
communication originates, where it is 
intercepted, and the state of communication 
being traced. Figure 17.7 shows the working 
of firewall server.

 A proxy server acts as an intermediary 
between the endusersand a web server.  
A client connects to the proxy server, 
requesting some service, such as a file, 
connection, web page, or other resources 
available from a different server. The 
proxy server examines the request, checks 
authenticity and grants the request based 
on that. Proxy servers typically keep the 
frequently visited site addresses in its cache 
which leads to improved response time.

Figure 17.8 shows the working of a proxy 
server.

Chapter 17.indd   335 14-08-2018   16:52:54



336 337

Restricted Area

Trusted Users

LAN

R e q u e s t 
Permitted

Request Denied

Connection to internet (Point of vulnerability)

Internet

Firewall servers 
as a filter Unrestricted Area

Figure 17.7  Firewall Server

Users computer

web browser
sends request

web browser
request forwarded 

web servers send back 
response to proxy server

web server
response is filtered

Proxy server web server

Figure 17.8 Working of Proxy server

Encryption  and Decryption

 Encryption and decryption are processes that ensure confidentiality that only authorized 
persons can access the information.

Encryption is the process of translating the plain text data (plaintext) into random and mangled 
data (called cipher-text). 

 Decryption is the reverse process of converting the cipher-text back to plaintext.
Encryption and decryption are done by cryptography. In cryptography a key is a piece of 
information (parameter) that determines the functional output of a cryptographic algorithm.

Figure 17.9 shows the encryption and decryption process.

Chapter 17.indd   336 14-08-2018   16:52:54



336 337

Basic Encryption & Decryption

decryptionencryption

Plain text Plain textCipher text

Figure 17.9 Encryption and Decryption

 Encryption has been used by militaries and governments to facilitate secret 
communication. It is now commonly used in protecting information within many kinds of 
civilian systems. It is also used to protect data in communication system, for example data 
being transferred via networks (e.g. the Internet, ecommerce), mobile telephones, wireless 
microphones, wireless intercom systems, Bluetooth devices and bank automatic teller 
machines. There have been numerous reports of data in communication being intercepted 
in recent years. Data should also be encrypted when transmitted across networks in order to 
protect against the  network traffic by unauthorized users.

TYPES OF ENCRYPTION

There are two types of encryption schemes as listed below:

• Symmetric Key encryption

• Public Key encryption

SYMMETRIC KEY ENCRYPTION

 Symmetric encryption is a technique to use the same key for both encryption and 
decryption. The main disadvantage of the symmetric key encryption is that all authorized 
persons involved, have to exchange the key used to encrypt the data before they can decrypt 
it. If anybody intercepts the key information, they may read all message. Figure 17.10 depicts 
the working of symmetric key encryption.

Plain Text Plain TextCipher Text

Same Key Secret KeySecret Key

Encryption Decryption

A4$h*L@9.

T6=#/>B#1

Ro6/J2.>1L

1PRL39P20

Figure 17.10  Symmetric key encryption

Chapter 17.indd   337 14-08-2018   16:52:54



338 339

PUBLIC KEY ENCRYPTION

 Public key encryption isalso called Asymmetric encryption. It uses the concept of a key 
value pair, a different key is used for the encryption and decryption process. One of the keys is 
typically known as the private key and the other is known as the public key.

 The private key is kept secret by the owner and the public key is either shared amongst 
authorized recipients or made available to the public at large.

 The data encrypted with the recipient’s public key can only be decrypted with the 
corresponding private key.  Figure 17.11 shows the public key encryption.

Sender

Plain text document Plain text document

Recipient

Encrypted document

Decrypted with recipient's 
private key

Decrypted with recipient's 
private key

Figure 17.11  Public key encryption

Asymmetric Encryption in Digital Certificates:

 A digital certificate in a client-server model of communication is one of the example of 
Asymmetric Encryption. A certificate is a package of information that identifies a user and a 
server. It contains information such as an organization’s name, the organization that issued the 
certificate, the users’ email address and country, and user’s public key.

 When a server and a client require a secure encrypted communication, they send a 
query over the network to the other party, which sends back a copy of the certificate. The 
other party’s public key can be extracted from the certificate. A certificate can also be used to 
uniquely identify the holder.

Digital Signature

 Digital signatures are based on asymmetric cryptography and can provide assurances 
of evidence to origin, identity and status of an electronic document, transaction or message, as 
well as acknowledging informed by the signer. 

Chapter 17.indd   338 14-08-2018   16:52:55



338 339

 To create a digital signature, signing software (email) creates a one-way hash of the 
electronic data to be signed. The user's private key to encrypt the hash, returning a value 
that is unique to the hashed data. The encrypted hash, along with other information such as 
the hashing algorithm, forms the digital signature. Any change in the data, even to a single 
bit, results in a different hash value. This attribute enables others to validate the integrity of 
the data by using the signer's public key to decrypt the hash. If the decrypted hash matches 
a second computed hash of the same data, it proves that the data hasn't changed since it was 
signed. If the two hashes don't match, the data has either been tampered with in some way 
(indicating a failure of integrity) or the signature was created with a private key that doesn't 
correspond to the public key presented by the signer (indicating a failure of authentication). 
Figure 17.12 shows the function  of a digital signature.

Message

Message, Digital Signature 
and Sender X.509

Message

RecipientSender

Sender Private Key

Different keys are used to create and verify Digital Signature

Sender Public Key

Create Signature Verify Signature

Figure 17.12 –Function of  Digital Signature

17.4 INTRODUCTION TO INFORMATION TECHNOLOGY ACT

 In the  21stcentury, Computer, Internet and ICT or e-revolution has changed the life style 
of the people. Today paper based communication has been substituted by e-communication. 
Accordingly we have new terminologies like cyber world, e-transaction, e-banking, e-return 
and e-contracts. Apart from positive side of e-revolution there is also negative  side of computer, 
that is, the  internet and ICT in the hands of criminals which has become a weapon of offence. 
Accordingly a new panel of members  emerged to tackle the problems of cyber crimes in cyber 
space i.e. Cyber Law or Cyber Space Law or Information Technology Law or Internet Law.

 In India Cyber law and IT Act 2000 , modified in 2008 are being articulated to prevent 
computer crimes. IT Act 2000 is an act to provide legal recognition for transactions carried out 
by means of  ElectronicData Interchange(EDI) and other means of electronic communication. 
It is the primary law in India dealing with cybercrime and electronic commerce(e-Commerce). 
e-Commerce is electronic data exchange or electronic filing of information.

Chapter 17.indd   339 14-08-2018   16:52:55



340 341

“Cyber law or Internet law is a term that encapsulates the legal 
issues related to use of the Internet.

PREVENTION

25% of cyber crime remains unsolved. To protect the information the following points to be 
noted:  

• Complex password setting can make your surfing secured. 

• When the internet is not in use, disconnect it.

• Do NOT open spam mail or emails that have an unfamiliar sender. 

• When using anti-virus software, keep it up-to-date.

• Awareness is the key to security.

• Information security is the immune system in the body of business. 

•  A check that does not bounce is called the Security Check. Do it every day before you leave! 

• Do Your Part - Be Security Smart !!! 

• Don’t be Quick to Click… be wary when you shop online. 

• Restart is Smart job  

• Passwords are like toothbrushes. They are best when new and should never be shared. 

• When you and your system part away, your system should be first off for the day. 

• Your mind is a storage room of information, keep the door locked. 

•  _ a _ _word is not a PaSSword without Protect, Save and Secure! 

• Link Link stop neglect….Think Think before connect…..

 
Evaluation

PART - I

Choose the best Answer.
1. Which of the following  deals with procedures, practices and values?
 a. piracy b. programs  c. virus   d. computer ethics

2. Commercial programs made available to the public illegally are known as
 a. freeware b. warez  c. free software  d. software

3. Which one of the following are self-repeating and do not require a computer program to 
attach themselves?

 a. viruses b. worms  c. spyware  d. Trojans

4. Which one of the following tracks a user visits a website?
 a. spyware b. cookies  c. worms  d. Trojans

Chapter 17.indd   340 14-08-2018   16:52:55



340 341

5. Which of the following is not a malicious program on computer systems?
 a. worms d. Trojans  c. spyware  d. cookies

6. A computer network security that monitors and controls incoming and outgoing traffic is 
 a.  Cookies b.Virus  c. Firewall  d. worms

7. The process of converting cipher text to plain text is called
 a. Encryption  b. Decryption  c. key d. proxy server

8. e-commerce means
 a. electronic commerce  b. electronic data exchange
 c. electric data exchange  d. electronic commercialization.

9. Distributing unwanted e-mail to others is called.
 a. scam b. spam c. fraud d. spoofing

10. Legal recognition for transactions are carried out by 
 a. Electronic Data Interchange  b. Electronic Data Exchange
 c. Electronic Data Transfer   d. Electrical Data Interchange

PART - II
Answer to all the questions (2 Marks):
1. What is harvesting?
2. What are Warez?
3. Write a short note on cracking.
4. Write two types of cyber attacks.
5. What is a Cookie?

PART - III
Answer to all the questions (3 Marks):
1. What is the role of firewalls?
2. Write about encryption and decryption.
3. Explain symmetric key encryption.
4. What are the guidelines to be followed by any computer user?
5. What are ethical issues? Name some.

PART - IV
Answer to all the questions (5 Marks):
1. What are the various crimes happening using computer?
2. What is piracy? Mention the types of piracy? How can it be prevented?
3. Write the different types of cyber attacks.

Reference Books :
• Computer Network Security and Cyber Ethics by Joseph MiggaKizza
• “Investigating Cyber Law and Cyber Ethics: Issues, Impacts and Practices: 1” by Alfreda 

Dudley and James Braman

Chapter 17.indd   341 14-08-2018   16:52:55



342 343

18.1 Introduction

“ பிறநாட்டு நல்லறிஞர் சாத்ிரங்கள் 

்மிழ்மாழியிற் ்பயர்த்ல வேண்டும்; 

இறோ் பு்கழுடைய புதுநூல்கள் 

்மிழ்மாழியில இயற்றல வேண்டும்; 

மடறோ்க நமக்குள்வளே பழங்கட்்கள் 

்சாலே்ிவ்லார் ம்கிடம இலட்ல;

்ிறமான பு்லடம்யனில ்ேளேிநாட்வைார்; 

அட் ேணக்்கஞ் ்சய்ல வேண்டும்.”

-  ம்கா்கேி பார்ி

 Human civilization developed with the innovation of computer in the twentieth century. 
Computer development began as the early calculating tool that was essential ingredient for 
gigantic growth for the existence of human life without computers. 

 It is true that any language will be outdated when it does not have the ability to adapt itself 
to the changing technologies. Tamil is the living language for thousands of years. Development 
of modern technologies, does not affect the growth of classical Tamil as it is ready to adopt the 
growing technological changes. Tamil is not just a language, it is our identity, our life and 
our sense.

“எங்கள் ோழவும், எங்கள் ேளேமும் மங்கா் ்மி்ழன்று சஙவ்க முழஙகு” – புரட்சி ்கேி.

18.2 Tamil in Internet

 We know that the internet today is a plays a vital role in every man's life. Internet is the 
best information technological device, through which we get know everything from Internet .

 In 2017 a study conducted by KPMG a Singapore based organizationalong with google, 
reported that, Tamil topped the list, among the most widely used languages in India where 
42%  are using the Internet in Tamil 

CHAPTER 18
Tamil Computing

Unit V COMPUTER ETHICS AND 
CYBER SECURITY

Chapter 18.indd   342 14-08-2018   16:36:03



342 343

 Moreover in 2021 onwards, 74% of people in India will access internet using Tamil and 
it will be in the top usage of Internet in India.

These statistical data will be useful to improve internet services in Tamil.

Chapter 18.indd   343 14-08-2018   16:36:04



344 345

18.3 Search Engines in Tamil

 The “Search Engines” are used to search any information from the cyber space. Although 
there are many search engines, but only a few of them are frequently in use. In the top ten 
search engines, Google, Bing and Yahoo are takes first three places respectively. Google and 
Bing provide searching facilities in Tamil, which means you can search everything through 
Tamil. A Google search engine gives you an inbuilt Tamil virtual keyboard. 

உள்ளீட்டுக் கருவிகள்

Figure 18.1(a) Google Search Engine (India)

உள்ளீட்டுக் கருவிகள்

Figure 18.1(b) Google Search Engine (Singapore)

Chapter 18.indd   344 14-08-2018   16:36:04



344 345

Figure 18.2 Searching in Tamil

18.4  e – Governance:

 Getting Government services through internet is known as e-Governance. Govt. of 
Tamilnadu has been giving its services through Internet. One can communicate with Govt. of 
Tamilnadu from any corner of the state. One can get important announcements, government 
orders, and government welfare schemes from the web portal of Govt. of. Tamilnadu.

Figure 18.3 Official Website of Govt. of Tamilnadu

Chapter 18.indd   345 14-08-2018   16:36:04



346 347

E-Governance through Tamil Web Address
Official Website of Govt. of Tamilnadu http://www.tn.gov.in/ta
Department of Agricultural Engineering http://www.aed.tn.gov.in/ 
Department of Environment http://www.environment.tn.nic.in/ 
Directorate of Govt. Examinations http://www.dge.tn.nic.in/ 
Tamilnadu Health Department http://www.tnhealth.org/ 
Tamilnadu Micro, Small and Medium 
Enterprises Department

http://www.msmeonline.tn.gov.in/ 

Rural Development and Panchayat Raj 
Department

http://www.tnrd.gov.in/ 

Backward, Most Backward and Minorities 
Welfare Department

http://www.bcmbcmw.tn.gov.in/ 

Tamilnadu Forest Department https://www.forests.tn.gov.in/ 
Hindu Religious and Charitable 
Endowments Department.

http://www.tnhrce.org/ 

Tamil Nadu Public Service Commission 
(TNPSC)

http://www.tnpsc.gov.in/tamilversion/index.
html 

Official Website of Govt. of Srilanka https://www.gov.lk/index.php 

 Outside India, Government of Srilanka provides all their services through the official 
website in Tamil.

18.5 e-Library

 E-Libraries are portal or website of collection of e-books. Tamil e-Library services 
provide thousands of Tamil Books as ebooks mostly at free of cost. It is the most useful service 
to Tamil people who live far away from their home land.

Tamil e-Library Website address
Tamilnadu School Education 
and Teacher Education Training 
Textbooks and Resource Books

http://www.textbooksonline.tn.nic.in/ 

Tamil Virtual Academy http://www.tamilvu.org/library/libindex.htm 

Connemara Public Library
http://connemarapubliclibrarychennai.com/
Veettukku_oru_noolagam/index.html 

Tamil Digital Library http://tamildigitallibrary.in/ 
Chennai Library http://www.chennailibrary.com/ 

Thamizhagam
http://www.thamizhagam.net/parithi/
parithi.html 

Chapter 18.indd   346 14-08-2018   16:36:04



346 347

Project Madurai
http://www.projectmadurai.org/pmworks.
html 

Old Books and Manuscripts
http://www.tamilheritage.org/old/text/
ebook/ebook.html 

Noolaham http://www.noolaham.org/wiki/index.php/ 
Anna Centenary Libraray http://www.annacentenarylibrary.org/ 

18.6 Tamil Typing and Interface software

 Tamil is mostly used to type documents in word processors and search information 
from internet. Typing Tamil using Tamil interface software is the familiar one among the 
different methods of typing. This is the simplest method of typing Tamil in both Computer 
and Smart phones.

18.6.1 Familiar Tamil Keyboard Interface:

• NHM Writer, E-Kalappai and Lippikar – are familiar Tamil keyboard interfaces software 
that is used for Tamil typing which works on Tamil Unicode, using phonetics. 

• Sellinam and Ponmadal – are familiar Tamil keyboard layouts  that works on Android 
operating system in Smart phone using phonetics. 

Figure 18.4 eKalappai Opening screen

18.7 Tamil Office Automation Applications

 Famous Office automation software like Microsoft Office, Open Office etc., provides 
complete Tamil interface facility. These softwares are downloadable and installed in your 
computer. After installation, your office automation software environment will completely 

Chapter 18.indd   347 14-08-2018   16:36:04



348 349

changed to Tamil. Menu bars, names of icons, dialog boxes will be shown in Tamil. Moreover, 
you can save files with Tamil names and create folders with Tamil names.

Figure 18.5 Libra Office Writer Environments in Tamil

 Apart from that Tamil Libra Office, Tamil Open Office, Azhagi Unicode Editor, 
Ponmozhi, Menthamiz, Kamban, Vani are office automation software working exclusively for 
Tamil. You can these applications are designed to work completely in Tamil.

18.8 Tamil Translation Applications

 Thamizpori (்மிழ்பாறி) is a Tamil tranlation application having more than 30000 
Tamil words equalent to English words.  Using this application, we can transalte small english 
sentences into Tamil. Google also gives an online translation facility, using this online facility 
we can translate from Tamil to any other language vice versa. 

18.9 Tamil Programming Language

 Programming languages to develop software to computers and smart phones are 
available only in English. Now, efforts are taken to develop programming languages in Tamil. 
Based on Python programming language, the first Tamil programming language “Ezhil” (எழில) 
is designed. With the help of this programming language, you can write simple programs in 
Tamil. 

Chapter 18.indd   348 14-08-2018   16:36:04



348 349

18.10 Tamil Information Interchange Coding Systems

TSCII (Tamil Script Code for Information Interchange) 

 Computers are handle data and information as binary system. Every data should be 
converted into binary while it is feed into a computer system. You learnt about all these things 
in the first unit of this text book. Computers use ASCII encoding system to handle data and 
information. The ASCII encoding system is applicable only for handling English language. 
Therefore, TSCII (Tamil Script Code for Information Interchange) is the first coding system 
to handle our Tamil language in an analysis of an encoding scheme that is easily handled in 
electronic devices, including non-English computers. This encoding scheme was registered in 
IANA (Internet Assigned Numbers Authority) unit of ICANN. 

ISCII (Indian Script Code for Information Interchange) 

 This is one of the encoding schemes specially designed for Indian languages including 
Tamil. It was unified with Unicode.

Unicode:

 Unicode is an encoding system, designed to handle various world languages, including 
Tamil. Its first version 1.0.0 was introduced on October 1991. While introduction of this 
scheme, can be able to handle nearly 23 languages including Tamil. Among the various 
encoding scheme, Unicode is the suitable to handle Tamil.

18.11 Tamil Operating System

 An operating system is needed to access electronic systems such as computer and 
smart phone. Microsoft Windows is very popular operating system for personal computers. 
Linux is another popular open source operating system. Operating systems are used to access 
a computer easily. An operating system should be easy to work and its environment should 
be in understandable form.  Thus, all operating systems used in computers and smart phones 
offered environment in Tamil.

 Windows Tamil Environment interface should be downloading and install from 
internet. It shows all windows elements such as Taskbar, desktop elements, names of icons, 
commands in Tamil. 

18.12 Organisation and projects to develop Tamil

Tamil Virtual Academy:

 With the objectives of spreading Tamil to the entire world through internet, Tamil 
Virtual University was established on 17th February 2001 by the Govt. of Tamilnadu. Now, 
this organisation functioning with the name “Tamil Virtual Academy”. This organisation offers 
different courses regarding Tamil language, Culture, heritage etc., from kindergarten to under 
graduation level. 

Chapter 18.indd   349 14-08-2018   16:36:04



350 351

Website:  http://www.tamilvu.org/index.php

Tamil Language Council, Singapore

 With the objectives of promoting the awareness and greater use of Tamil among the 
Singaporeans, in 2001 the council of Tamil Language was formed by the ministry of Information 
Communications and Arts, Govt. of Singapre. The council is called as “ேளேர்்மிழ இயக்்கம்”. 

Website:  http://tamil.org.sg/ta

Madurai Project

 Project Madurai is an open and voluntary initiative to collect and publish free electronic 
editions of ancient tamil literary classics. This means either typing-in or scanning old books 
and archiving the text in one of the most readily accessible formats for use on all popular 
computer platforms. 

 Since its launch in 1998, Project Madurai released in Tamil script form as per TSCII 
encoding. Since 2004 they started releasing ebooks in Tamil unicode as well.

Web Site: http://www.projectmadurai.org/

Tamil Wikipedia:

 Wikipedia is a open source encyclopedia. Any person can write article about any 
subject. In Tamil Wikipedia has more than 1 lacks articles. 

Web Site: https://ta.wikipedia.org/

 In order to make Tamil as a living language, it is the duty every Tamilian to make 

Chapter 18.indd   350 14-08-2018   16:36:04



350 351

participate Tamil in development of technology. Those who forgotten their values, the will be 
considered as “Nomads”. If we learn about how many great technologies we have to add Tamil 
as a symbol of our race. It is our duty to combine our world's first language and language for 
more than five thousand years with growing technology.

• Tamil topped the list of the most widely used languages in India by the end of 2016, 
while 42% are using the Internet.

• Google and Bing provide searching facilities in Tamil.

• Getting Government services through internet is known as e-Governance.

• Tamil e-Library services provide thousands of Tamil Books as ebooks mostly at free of 
cost.

• Thamizpori (்மிழ்பாறி) is a Tamil tranlation application having more than 30000 
Tamil words equalent to English words.

• The first Tamil programming language is “Ezhil” (எழில)

• Unicode is an encoding system, designed to handle various world languages, including 
Tamil.

• Among the various encoding scheme, Unicode is the suitable to handle Tamil.

• Windows Tamil Environment interface should be downloading and install from 
internet.

Points to Remember:

Evaluation

Answer to the following questions

1. List of the search engines supporting Tamil.

2. What are the keyboard layouts used in Android?

3. Write a short note about Tamil Programming Language.

4. What TSCII?

5. Write a short note on Tamil Virtual Academy.

****

Chapter 18.indd   351 14-08-2018   16:36:04



352 353

WORD MEANING

Paradigm Organizing principle of a program.

Abstraction
Abstraction refers to showing only the essential features without re-
vealing background details

Modularity
Designing a system that is divided into a set of functional units 
(named modules) that can be composed into a larger application.

Base class
A class whose properties are inherited by other newly created classes 
.Also called as parent class

Derived class 
A class which inherits the properties of the base class. Also called as 
child class or subclass.

Class Class represents a group of similar objects that share common properties

Object Identifiable entity with some characteristics and behaviour

Encapsulation
Mechanism by which the data and function sare bound together into 
a single unit

Inheritance
Process of creating new classes called derived classes, from the exist-
ing or base classes.

Signature Number of argument and type of argument
Polymorphism many forms
Default argument Initializing the argument with a value

Base Class:
A class from which another class inherits (Also called Super class or 
parent class)

Derived Class: A class inheriting properties from another class. (Also called Sub class)

Inheritance The process of  one class to inherit properties from another class

Inheritance  
Hierarchy  
(Inheritance Path):

The chain depicting relationship between a base class and the derived 
class (Also called Derivation Hierarchy)

Visibility mode
The public, private or protected specifier that controls the visibility 
and availability of a member in a class

Vulnerability The possibility of being attacked or harmed.

Ethics
Moral principles that govern a person's behaviour or the conducting of 
an activity.

GLOSSARY

Chapter 18.indd   352 14-08-2018   16:36:04



352 353

Cyber
Characteristic of the culture of computers, information technology, 
and virtual reality.

Computer Crime Computer crime is an intellectual crime to manipulate computer system.

Authenticity The quality of being real or true.
Sabotage Deliberately destroy, damage, or obstruct.
Perpetrator A person who carries out a harmful, illegal, or immoral act.

Software Piracy
Software Piracy is the copyright violation of software created original-
ly by one person and illegally used by someone else.

Hacking
Hacking is gaining unauthorized access to computer system without 
the owner’s permission.

Cracking
Cracking is gaining unauthorized access to computer systems to 
commit a crime, such as stealing the code to make a copy-protected 
program run thus denying service to legitimate users.

Malicious Intentionally doing harm.
Freeware Freeware is a software available free of charge.

Shareware
Shareware is a software that is distributed free of charge on a trial 
basis for a limited time.

Phishing

Phishing is a term used to describe a malicious individual or group of 
individuals who scam users by sending e-mails or creating web pages 
that are designed to collect an individual's online bank, credit card, or 
other login information.

Fraudulent Dishonest, cheating, swindling, corrupt, criminal, illegal, unlawful.
Anonymous Unnamed, nameless, unidentified, unspecified.

Cookies
Cookies are messages that web servers pass to your web browser 
when you visit Internet sites

Tampering Interfere in order to cause damage.
Immune Resistant to a particular infection or toxin.

Firewall
A firewall is a network security system that monitors and controls incom-
ing and outgoing network traffic based on predetermined security rules.

Proxy server
A proxy server is a  gateway between a local network and a larg-
er-scale network such as the Internet. Proxy servers provide increased 
performance and security.

Encryption
Encryption is the process of encoding a message or information so 
that only authorized users can decrypt it

Decryption
Decryption is theprocess of decoding the encrypted text by converting 
it back into normal text.

Chapter 18.indd   353 14-08-2018   16:36:04



354 PB

COMPUTER SCIENCE – XI  VOL-II
List of Authors and Reviewers

Reviewers
Dr. Ranjani Parthasarathi  
Professor , 
Dept. of Info. Sci and Technology,   
College of Engineering, Guindy, Anna University, Chennai.

Mr. Munivel E.  
Scientist/Engineer 'C'  
IT Group (Information Security) , 
NIELIT Calicut (MeitY, Govt. of India), NIT Campus, Calicut, Kerala.

Content Experts
Dr. Radha P.   
Assistant Professor, 
Dept. of  Information Technology, 
Govt. Arts & Science College (A), Coimbatore.

Dr. Nester Jeyakumar M. 
Associate Professor and  Head of the Department, 
Dept of Computer Science, Loyola College ,Chennai.

Mr. Sankar K. 
Assistant Professor, 
Dept. of Computer Science, 
RKM Vivekananda College, Mylapore, Chennai.

Domain Expert
Dr. T.V.Gopal 
Professor , 
Dept. of Computer Science and Technology, 
College of Engineering, Guindy, Anna University, Chennai.

Art and Design Team
Layout
THY Designers and Computers,  
Chennai.

Wrapper Design
Kathir Arumugam

QC 
Manohar Radhakrishnan 
Jerard Wilson 
P. Arun Kamaraj

Co-ordination 
Ramesh Munisamy

Typist 
Meena T. 
SCERT, Chennai.

This book has been printed on 80 G.S.M. Elegant Maplitho paper.
Printed by offset at:

Authors
Mr. Kannan K. 
Post Graduate Teacher, 
Chennai Girls Hr. Sec. School, Rotler street , Chennai.

Mr. Ramakrishnan V.G. 
Post Graduate Teacher, 
Karnataka Sangha Hr. Sec. School, T. Nagar, Chennai.

Mrs. Bindhu Mohandas 
Post Graduate Teacher, 
Vijayanta Model Hr Sec School, H.V.F Estate, Avadi, Chennai.

Mr. Gowrisankar N.V. 
Post Graduate Teacher, 
Chennai Girls Hr Sec School, Nungambakkam, Chennai.

Mr. Sreenivasan R. 
Post Graduate Teacher, 
Santhome  Hr Sec School, Mylapore, Chennai.

Mr. Lenin K. 
Post Graduate Teacher, 
Chennai Girls Hr Sec School, Saidapet, Chennai

Miss. Sangeetha A. 
Post Graduate Teacher, 
Govt. Hr Sec School, Rajanthangal, Thiruvannamalai District.

Dr. Valarmathi K.E. 
Post Graduate Teacher, 
Velammal Vidhyashram, Surapet, Chennai.

Mrs. Gajalakshmi R 
Post Graduate Teacher, 
Jaigopal Garodia Hindu Vidyalaya Hr Sec School, West Mambalam, Chennai.

Mrs. Vidhya H.
Post Graduate Teacher,
DAV Boys Senior Seconary School, Gopalapuram, Chennai.

Academic Coordinator
Mr. Ravikumar Arumugam
Deputy Director,
State Council of Educational Research and Training, Chennai.

Mrs. Tamil Selvi R.
B.T. Assistant, 
Government High School, Poonampalayam, Trichy District.

QR Code Team
R. Jaganathan, 
S.G.T., PUMS, Ganesapuram- Polur,  Thiruvannamalai Dist.

N. Jagan, 
B.T. Asst., GBHSS, Uthiramerur, Kancheepuram Dist.

J.F. Paul Edwin Roy, 
B.T. Asst., PUMS, Rakkipatti, Salem Dist.

Chapter 18.indd   354 14-08-2018   16:36:04


	Index
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18



