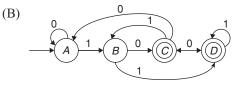
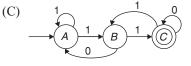
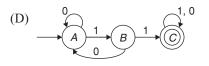
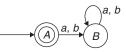
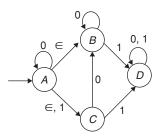

TEST


THEORY OF COMPUTATION


Directions for questions 1 to 30: Select the correct alternative from the given choices.


- 1. Phrase structure languages, context-sensitive languages, context-free languages and regular languages are commonly referred to as languages of type-0, 1, 2, and 3 respectively. Then, Chomsky's Hierarchy states that
 - (A) type-0 \supseteq type-1 \supseteq type-2 \supseteq type-3
 - (B) type-0 \supset type-1 \supset type-2 \supset type-3
 - (C) type-0 \subset type-1 \subset type-2 \subset type-3
 - (D) type-0 \subseteq type-1 \subseteq type-2 \subseteq type-3
- 2. Let *L* be a language recognizable by a finite automaton. The language Reverse $(L) = \{x \text{ such that } x \text{ is the reverse of } v \text{ where } v \in L\}$ is a
 - (A) Regular language
 - (B) Context-sensitive language
 - (C) Context-free language
 - (D) Phrase-structure language
- **3.** Which of the following statement is true?
 - (A) It is possible to construct an NFA with more number of states than its equivalent minimum DFA.
 - (B) There can be a DFA with more than one start state.
 - (C) Both (A) and (B) (A)
 - (D) None of these
- **4.** Which of the following is an equivalent DFA for the NFA shown below:




- 5. Which one of the following regular expressions over {0, 1} denotes the set of strings not containing 100 as a substring?
 - (A) $0^{*}(1^{*}0)^{*}$ (B) $0^{*}1^{*}01^{*}$ (C) $(0^{*}(10+1)^{*})^{*}$ (D) $0^{*}1010^{*}$
- **6.** The following transition diagram of a finite automaton accepts

- (A) All word over sigma (*a*, *b*) such that symbol *a* and *b* alternate.
- (B) Only empty string.
- (C) Only the λ_1 meaning this automaton accepts no string of length greater than zero.
- (D) All words over sigma (a, b) except λ .
- 7. Sentence that can be generated from the following production grammar is

 $S \rightarrow aS/bA$

- $A \rightarrow d/ccA$ (A) *aabccccd* (B) *ababccccd*
- (C) bccddd (D) aaccdb
- **8.** Pumping lemma is generally used for proving (A) A given grammar is regular
 - (A) A given granninar is regular
 - (B) A given grammar is non-regular
 - (C) Whether two given regular expression are equivalent or not
 - (D) Both (A) and (C)
- 9. Finite state machine can recognize
 - (A) Only context-free grammar
 - (B) Only regular grammar
 - (C) Any unambiguous grammar
 - (D) Any grammar
- 10. Which of the following is false?
 - (A) Regular sets are closed under reversal.
 - (B) Regular sets are closed under substitution.
 - (C) Regular sets are closed under intersection.
 - (D) None of these
- 11. For the DFA shown below $\hat{\delta}(A, 01)$ will be

Time: 60 min.

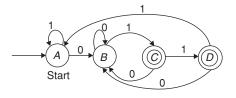
LOCT	b b 1
IESL	J.J

(A) $\{B, D\}$	(B) $\{C, D\}$
(C) $\{A, B, C\}$	(D) $\{A, B, C, D\}$

- 12. 'NFA can be simulated by a DFA'. The statement is(A) True(B) False
 - (C) Depends on NFA (D) Depends on DFA
- **13.** Given an arbitrary non-deterministic finite automaton (NFA) with *N* states, the maximum number of states in an equivalent minimized DFA is at least

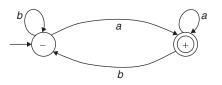
(A) N^2	(B) 2^{N}
(C) 2N	(D) <i>N</i> !

- 14. Let $M = (K, \Sigma, \delta, S, F)$ be a finite state automaton, Where
 - $K = \{A, B\}$ $\Sigma = \{a, b\}$ S = A $F = \{B\},$ $\delta (A, a) = A$ $\delta (A, b) = B$ $\delta (B, a) = B$ and


$$O(D, u) = D$$
 and
 $S(D, h) = A$

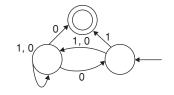
 $\delta\left(B,\,b\right)=A.$

A grammar to generate the language accepted by M can be specified as $G = (V, \Sigma, R, S)$, where

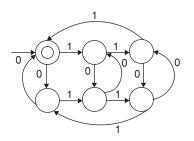

 $V = K \cup \Sigma$, and S = A. Which one of the following set of rules will make L(G) = L(M)?

- (A) $\{A \rightarrow aB, A \rightarrow bA, B \rightarrow bA, B \rightarrow aA, B \rightarrow \in \}$
- (B) $\{A \rightarrow aA, A \rightarrow bB, B \rightarrow aB, B \rightarrow bA, B \rightarrow \epsilon\}$
- (C) $\{A \rightarrow bB, A \rightarrow aB, B \rightarrow aA, B \rightarrow bA, B \rightarrow \epsilon\}$
- (D) $\{A \rightarrow aA, A \rightarrow bA, B \rightarrow aB, B \rightarrow bA, A \rightarrow \epsilon\}$
- **15** A deterministic finite automaton *M* shown below has a start state *A* and accepting state *D*. Which of the following regular expression denotes the set of all words accepted by *M*?

(A)	001	(B) 1 0* 1* 10
(C)	1* 0* 0 0 1	(D) (0/1)* 0 1 1


- 16. Which of the following regular expression is/are true? (A) $(x^*)^* = x^*$ (B) $(x + y)^* = x^* + y^*$ (C) $x^*y^* = x^* + y^*$ (D) All of these
- 17. Consider the FA shown in the figure given below, where '-' is the start sate and '+' is the ending state. The language accepted by the FA is

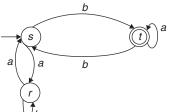
(A)
$$(a+b)*b$$
 (B) $(a+b)*a$
(C) $a*b$ (D) $a*b*$


18. Which of the following statement is false?

- (A) The family of regular language is closed under the complementary operation.
- (B) If L is a regular language, $L_1 = \{UV: U \in L, |V| = 2\}$ is also regular.
- (C) If L is a regular language, $L_1 = \{UV: U \in L, V \in L^R\}$ is also regular.
- (D) None of these
- **19.** Which of the following is false?
 - (A) $L = \{0^i \ 1^m 2^m : i \ge 1, m \ge 1\}$ over $\Sigma = \{0, 1, 2\}$ is regular.
 - (B) $L = \{a^n b^I a^k, k \ge n + I\}$ is not regular.
 - (C) $L = \{UWW^2V: U, V, W \in \{a, b\}^+\}$ is regular.
 - (D) $L = \{a_n b_k : n > k\} \cup \{a_n b_k : n \neq k 1\}$ is not regular.
- **20.** Consider a DFA over $\Sigma = \{a, b\}$ accepting all strings which have number of *a*'s divisible by 6 and number of *b*'s divisible by 8. What is the minimum number of states that the DFA will have?
 - (A) 16 (B) 15 (C) 48 (D) 8
- **21.** For the NFA M given below. Let the language, accepted by M be L. Let L_1 be the language accepted by the NFA M_i , obtained by changing the accepting state of M to a non-accepting state and by changing the non-accepting states of M to accepting states. Which of the following statement is true?

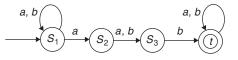
(A)
$$L_1 = A$$

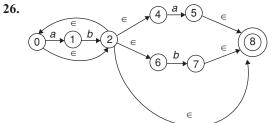
(B) $L_1 \subseteq L$
(C) $L_1 = \{0, 1\}^*$
(D) $L_1 = (0, 1\}^* - L$


22. The following finite state machine accepts all those binary strings in which the number of 1's and 0's are respectively.

- (A) Divisible by 3 and 2
- (B) Odd and even
- (C) Even and odd
- (D) Divisible by 2 and 5

5.52 Unit 5 • Theory of Computation


23. In the automaton below, *s* is the start state and *t* is only final state.


Consider the strings U = a b b a b aV = b a b and W = a a b b

Which of the following statement is true?

- (A) The automaton accepts U and V but not W.
- (B) The automaton accepts each of U, V and W.
- (C) The automaton rejects U, V and W.
- (D) The automaton accepts U but rejects V and W.
- 24. Which regular expression best describe the language accepted by the non-deterministic automaton below?

- (A) (a+b)*a(a+b)b
- (B) (a+b)*a(a+b)b(a+b)*
- (C) (abb)*
- (D) $(a+b)^*$
- 25. Which of the following strings are accepted by the regular expression:(0/1) * 0(0/1) (0/1)
 - (A) 000 or 001 (B) 001 or 010
 - (C) 010 or 011 (D) All the above

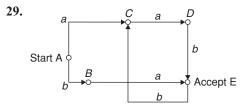
The above diagram represents NFA of regular expression.

- (B) $(ab)^* (a/b)$. (A) $(ab)^* (a/b/\in)$. (C) $(ab)^* (a \in)$. (D) $(ab)^* (b \in)$.
- 27. If 'a' is a terminal and S, A, B are three (3) non-terminals, then which of the following is regular grammar.

28. Consider the grammar

 $S \rightarrow ABc/Abc$

 $BA \rightarrow AB$


(

 $Ab \rightarrow ab$

 $Aa \rightarrow aa$

Which of he following sentences can be derived by this grammar?

- (A) aab (B) *abcc*
- (C) abab (D) *abc*

The language recognized by the following finite automation is

- (A) aabb* + bab*
- (B) (aab (bab*))*
- (C) $(aab + ba) (bab)^*$
- (D) $(aab^* + bab^*)^*$.
- 30. From the following regular expressions over an alphabet $\{a, b\}$ given below, which can yield all the possible strings over $\sum (a, b)$?
 - (i) (*a***b**)
 - (ii) $(a+b)^*$ (A) Only (i)
- (B) Only (ii)
- (D) None of these (C) Both (A) and (B)

Answers Keys									
1. B	2. A	3. A	4. B	5. B	6. B	7. A	8. B	9. B	10. D
11. B	12. A	13. B	14. B	15. D	16. A	17. B	18. D	19. A	20. B
21. C	22. A	23. D	24. B	25. D	26. A	27. D	28. D	29. C	30. B