8

FACTS ABOUT ALKANES

Preparation of Alkanes

 From unsaturated Hydrocarbons in the presence of catalyst 'Ni' or 'Pt'

$$CH_2=CH_2+H_2\xrightarrow{Ni}CH_3-CH_3$$

2. By Wurtz Reaction:

3. By the Reduction of Aldehydes and Ketones

$$\begin{array}{c} O \\ R-\ddot{\mathbb{C}}-H+4[H] \xrightarrow{Zn.Hg/conc.HCL} R-CH_3 + H_2O \end{array}$$

4. Grignard's Reagent

$$R-Mg-X + H_2O \longrightarrow R-H + HO-Mg-X$$

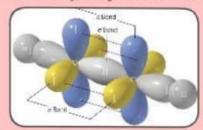
Density of alkanes is less than water therefore they float over it.

Solubility

Alkanes do not dissolve in water. They form a layer on top of water. However alkanes dissolve in non-polar organic solvents like Toulene, Benzene

Example of Alkanes

Methane


Ethane

Propane

C - in sp3 Hybridisation

General Formula :- CnH2n+2

Uses

Lighter alkanes are used in natural gas.

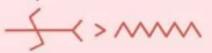
Propane and Butane are used in LPG cylinders

Boiling

Boiling point depends on Vander waal forces.

More Carbon atoms

High Vander waal forces



High boiling point

Melting

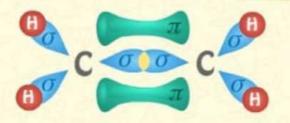
Melting point depends on packing of compound.

More branching

Close packing

High melting point

ALKENES


Physical State

Carbon Count	State
1-3	Gases
4-20	Liquid
> 20	Solid

Acts as a Nucleophile

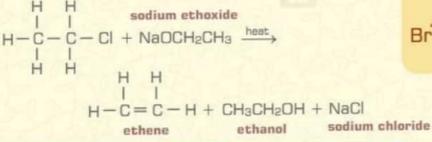
In organic chemistry, π -bond is considered as a nucleophile. Therefore alkenes participate in addition reactions

SP² hybridisation

Polymerisation

Ethene undergoes polymerisation and forms products like polyethene

Preparation


1. Dehydration of alcohols

A molecule of water is eliminated from an alcohol molecule by heating the alcohol in the presence of a strong mineral acid.

2. Dehydrohalogenation of alkyl halides

The dehydrohalogenation of alkyl halides, another β elimination reaction, involves the loss of a hydrogen and a halide from an alkyl halide (RX).

ethyl chloride

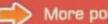
Dipole Moments

Melting Point

Boiling Point

cis > 0. trans = 0

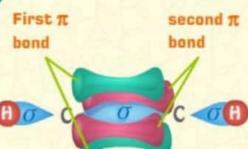
trans > cis


cis > trans

Test for Alkenes $CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$

If you add bromine water to alkene, it decolourises the liquid because bromine reacts with alkene, where as with alkanes it cannot react.

Isomerism



ALKYNES

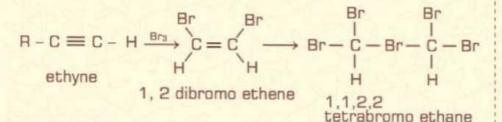
SP hybridisation

Physical Properties

Alkynes are gases at room temperature.

0350

192 kcal/mol energy is required to break the triple bond.


Shortest bond length is 120 Å.

Test for Alkynes

Reaction with Bromine

The alkynes react slowly with bromine water to decolourise it, and this reaction can be used to distinguish between alkenes and alkynes.

Alkenes decolourise bromine water very rapidly, but alkynes take several minues.

Acidic Hydrogen

R-C = C-(1)

Order of electronegativity is

$$sp > sp^2 > sp^3$$

Due to large electronegativity of sp carbon, terminal hydrogen becomes acidic and reacts with bases and undergoes neutralization.

For Terminal Alkynes

Terminal alkynes have acidic hydrogen, therefore by reacting with CuCl in NH₄OH, acidic hydrogen is replaced with Cu giving red colour.

$$R-C \equiv C-H + CuCl \longrightarrow R-C \equiv C^{-+}Cu$$
(Red)

Uses

Alkynes don't have any commercial use. Acetylene is used in oxy – acetylene flame.

Nucleophile: Like alkenes, they also act as nucleophiles, due to presence of 2π bonds

Preparation: Alkynes are prepared by hydrolysing carbides.

