THEORY OF COMPUTATION TEST 2

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. Which of the following is TRUE for Turing Machines?
 - (i) Turing machines accepts Type-0 languages.
 - (ii) Turing machines are used for computing functions.
 - (iii) Turing machines are used for determining the undecidability of certain languages.
 - (A) (i), (ii) only (B) (i), (iii) only
 - (C) (ii), (iii) only (D) (i), (ii), (iii)
- **2.** Which of the following operations are not performed on Turing machines?
 - (A) Writing a new symbol in the cell being currently scanned.
 - (B) Moving to the cell left of the present cell.
 - (C) Moving to the cell right of the present cell.
 - (D) None of the above
- 3. If the languages L_1 and L_2 are decidable then which of the following are also decidable?
 - (i) $\overline{L}_1 \cup \overline{L}_2$ (ii) $\overline{L}_1 \cap \overline{L}_2$ (A) (i) only (B) (ii) only (C) Both (i) and (ii) (D) Neither (i) nor (ii)
- **4.** If L_1 and L_2 are Turing-recognizable languages then which of the following are not Turing-recognizable?

(i)	$L_1 \cup L_2$	(ii)	$L_1 \cap L_2$
(iii)	$L_1 - L_2$	(iv)	\overline{L}_1
(v)	L_1^*	(vi)	<i>L</i> ₁ o <i>L</i> ₂
(A)	(iv), (v)	(B)	(iii), (iv)
(\mathbf{O})	(\cdot) (\cdot) (\cdot)	(\mathbf{D})	(\cdots) (\cdots)

- (C) (i), (ii), (vi) (D) (ii), (iv), (v)
- 5. Which of the following statement is FALSE?
 - (A) The set of decidable languages is closed under symmetric difference.
 - (B) If L_1 is undecidable and L_2 is decidable then the symmetric difference of L_1 and L_2 is undecidable.
 - (C) The intersection of a recognizable language and an unrecognizable language is always unrecognizable.
 - (D) All of the above
- 6. If L_1 and L_2 are recursive languages, then which of the following also belongs to recursive languages?
 - (i) $L_1 \cup L_2$
 - (ii) $L_1 L_2$
 - (iii) \overline{L}_1
 - (A) (i) only
 - (C) (ii), (iii) (D) (i), (ii), (iii)
- 7. Which of the following correctly specifies the relation between Turing decidable (TD), Turing recognizable (TR) and 'not Turing recognizable' (NTR) languages?

(B) (i), (ii)

- 8. Which of the following DFA problems are Decidable?
 - (A) The language of all DFA's with an empty language.
 - (B) The language of all pairs of DFA's that have the same language.
 - (C) $A_{DFA} = \{ < D, \omega > | D \text{ is a DFA}, \omega \text{ is a word and } D \text{ accepts } \omega \}$
 - (D) All of the above
- **9.** Which of the following language is accepted by a Turing machine?
 - (i) $\{a^n \# a^n \# a^n : n \ge 0\}$ and $\Sigma = \{a, \#\}$
 - (ii) $\{a^n \# b^{2^n} : n \ge 0\}, \Sigma = \{a, b\}$
 - (A) (i) only (B) (ii) only
 - (C) Both (i) and (ii) (D) Neither (i) nor (ii)
- **10.** For which of the following languages, no Turing-machines will exist?
 - (A) Recursive languages
 - (B) Recursively-enumerable languages
 - (C) Non-Recursively enumerable.
 - (D) None of the above
- 11. If L_1 is a recursive language and L_2 is a recursively enumerable language then which of the following is also recursively enumerable?

Section Marks: 30

3.140 | Theory of Computation Test 2

- **12.** Which of the following is False, if *A* is mapping reducible to *B*?
 - (A) If B is decidable then A is decidable.
 - (B) If *B* is recursively enumerable then *A* is recursively enumerable.
 - (C) If A is undecidable then B is undecidable.
 - (D) None of the above
- 13. Which of the following language is Recursive?
 - (A) $L_1 = \{ <M > | M \text{ is a } TM \text{ and there exists an input on which } M \text{ halts in less than } | <M > | \text{ steps.} \}$
 - (B) $L_2 = \{ <M > | M \text{ is a } TM \text{ and } |L(M)| \le 3 \}$
 - (C) $L_3 = \{ <M > | M \text{ is a } TM \text{ and } |L(M)| \ge 3 \}$
 - (D) All of the above
- **14.** The language {<*M*> | *M* is a Turing machine and *L*(*M*) is finite} is
 - (A) recursive
 - (B) recursively enumerable
 - (C) not recursively-enumerable
 - (D) decidable
- 15. Which of the following problem is Recursive?
 - (i) $\{ \leq M \geq | M \text{ is a DFA and } L(M) \text{ is finite} \}$
 - (ii) $\{ \leq M \geq | M \text{ is a DFA and } L(M) = \Sigma^* \}$
 - (iii) $\{\leq M, x \geq | M \text{ is a DFA and } M \text{ accepts } x\}$
 - (A) (i), (ii) (B) (iii) only
 - (C) (ii), (iii) (D) (i), (ii), (iii)
- **16.** Which of the following is not accepted by a PDA but accepted by a TM?
 - (A) $\{a^n b^n c a^n b^n | n > 0\}$
 - (B) $\{a^n b^{2n} c^{3n} \mid n \ge 0\}$
 - (C) $\{a^n b^{n+m} c^m d^m \mid m, n \ge 0\}$
 - (D) All of the above
- **17.** Which of the following has same power as Turing machine?
 - (A) NDFA (B) 2-PDA
 - (C) k-tape TM (D) Both (B) and (C)
- **18.** The language $L = \{a^n b^n c^n | n \ge 0\}$ can be accepted by a:
 - (i) 2-PDA (ii) TM
 - (A) (i) only (B) (ii) only
 - (C) Both (i) and (ii) (D) Neither (i) nor (ii)

- **19.** If $A \leq_m B$ (i.e., A is reducible to B) and if B is regular language then does it implies that A is a regular language?
 - (A) Yes
 - (B) No
 - (C) Data insufficient
 - (D) Reduction is not possible with regular languages.
- **20.** If a language *L* is recursively enumerable and $L \leq_m L$ then, which of the following is TRUE?
 - (A) L is recursive
 - (B) L may or may not be recursive
 - (C) L is undecidable
 - (D) None of these
- **21.** Which of the following language(s) is/are undecidable? $L_1 = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
 - $L_2 = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is finite} \}$
 - (Å) L_1 only (B) L_2 only
 - (C) Both L_1 and L_2 (D) Neither L_1 nor L_2
- **22.** For which of the following language(s) a Turing machine exists?
 - (i) \varnothing (ii) { ε }
 - (A) (i) only (B) (ii) only
 - (C) Both (i) and (ii) (D) Neither (i) nor (ii)
- **23.** A language *L* is recursive if
 - (A) L is recursively enumerable.
 - (B) \overline{L} is recursively enumerable.
 - (C) Both L and \overline{L} are recursively enumerable.
 - (D) L is not recursively enumerable.
- 24. If a Language L is recursively enumerable but not recursive then \overline{L}
 - (A) is recursive
 - (B) is recursively enumerable
 - (C) is not recursively enumerable
 - (D) is decidable
- **25.** A decision problem is undecidable if
 - (i) it has no algorithm to solve
 - (ii) it has no TM that halts on every input
 - (iii) it specifies a language which is not recursive.
 - (A) (i), (ii) (B) (ii) only
 - (C) (i), (iii) (D) (i), (ii), (iii)

Answer Keys											
1. D	2. D	3. C	4. B	5. C	6. D	7. A	8. D	9. C	10. C		
11. D	12. D	13. A	14. C	15. D	16. D	17. D	18. C	19. B	20. A		
21. C	22. C	23. C	24. C	25. D							

HINTS AND EXPLANATIONS

- 1. Turing machines accepts type-0 languages. They are used for computing functions and for determining the undecidability of languages. Choice (D)
- 2. A Turing machine can write into some cell, move left or right. Choice (D)
- **3.** If a language is decidable then its complement is also decidable.

The union and intersection of two decidable languages is also decidable. Choice (C)

- 4. Turing-recognizable languages (i.e. Recursivelyenumerable) are not closed under subtraction and complement operations. Choice (B)
- **5.** Decidable languages are closed under symmetric difference.

If L_1 is undecidable and L_2 is decidable then the difference of L_1 and L_2 is undecidable.

Let L_1 is a recognizable language and $L_1 = \emptyset$, L_2 is unrecognizable. Then $L_1 \cap L_2 = \emptyset$ which is recognizable. Choice (C)

- Recursive languages are closed under union, intersection, complementation, concatenation and Kleene closure. Choice (D)
- 7. Regular \subset Context-free \subset TD \subset TR \subset NTR. Choice (A)
- 8. Some of the decidable properties of DFA are
 - Universality
 - Kleene-closedness
 - Inclusion
 - Disjointness
 - Membership
 - Emptyness
 - Equivalance
 - \therefore All the problems in given choices are Decidable.

Choice (D)

- **9.** A TM can be designed to accept, $\{a^n \# a^n \# a^n\}$. In the input write *x* for an '*a*'. Traverse till # and again write *x* for an '*a*' and traverse till next # and write *x* for an '*a*'. Traverse left till left most *x* and repeat this for next '*a*'. If no more *a*'s left in any part, accept the language. Similarly, a TM can be constructed for $\{a^n \# b^{2^n} : n \ge 0\}$. Replace *a* with *x* and traverse till # and repeat this. If no more symbols left then accept the language. Choice (C)
- Recursive: TM always halts. Recursively enumerable: TM either halts or halts in non-final state or loops.

Non-Recursively-enumerable: No TM exists.

Choice (C)

11.
$$L_1 - L_2$$
 is not recursively enumerable. Choice (D

- **12.** If *A* is a mapping reducible to *B*, then based on some basic Theorems,
 - *B* is decidable then *A* is decidable
 - *A* is undecidable then *B* is undecidable
 - *B* is Turing-recognizable then *A* is Turing recognizable.
 - \therefore All are TRUE. Choice (D)
- 13. L₁ is a recursive language. First find the length of M and store it. Then it runs M on all inputs of length atmost |<M>| steps and accepts if M accepts atleast one of the strings within the specified number of steps.

Choice (A)

- 14. Given language is not recursively enumerable and undecidable. Choice (C)
- 15. All the given problems are decidable and hence recursive. Choice (D)
- **16.** $\{a^n b^n ca^n b^n | n > 0\}$. PDA can check equality of number of *a*'s and *b*'s.

But it can't able to compare this number of *a*'s and *b*'s with next *a*'s and *b*'s.

But this can be accepted by a TM. Similarly for $\{a^n b^{2n} c^{3n} | n \ge 0\}$ and $\{a^n b^{n+m} c^m d^m | m, n \ge 0\}$.

Choice (D)

- **17.** A TM has same power as *k*-tape TM ($k \ge 1$) and 2-PDA has same power as TM. Choice (D)
- A 2-PDA (i.e., 2-stack PDA) has same power as TM. A TM can accept L. Choice (C)
- **19.** Given $A \leq_m B$. *B* is regular then it does not imply that *A* is regular. Ex: $\{a^n \ b^n \ | \ n \geq 0\} \leq_m \{a^n \ | \ n \geq 0\}$. Choice (B)
- **20.** Given *L* is recursively enumerable and $L \leq_m \overline{L}$. As $L \leq_m \overline{L}$ then $\overline{L} \leq_m L$. $(\because A \leq_m B$ then $\overline{A} \leq_m \overline{B})$. *L* is RE, so \overline{L} is also RE. As both *L* and \overline{L} are RE then

L is recursive. Choice (A)

21. { $\leq M, w \geq : M$ is a TM and M accepts input string w} is a known undecidable problem. We can reduce this to L_1 and L_2 also. So both L_1 and L_2 are undecidable.

Choice (C)

- A TM can exist for both languages. (i) rejects everything. (ii) accepts '∈' only.
 Choice (C)
- **23.** If a language L and its complement \overline{L} are recursively enumerable, then L is recursive. Choice (C)
- **24.** Both *L* and \overline{L} are recursively enumerable if *L* is recursive. Choice (C)
- 25. An undecidable problem has no algorithm, no TM and is also not recursive. Choice (D)