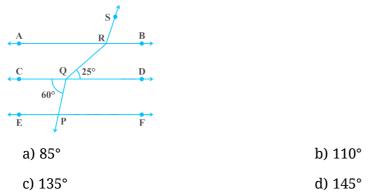
Sample Question Paper - 2 Class- IX Session- 2021-22 TERM 1 Subject- Mathematics

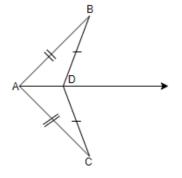

Time Allowed: 1 hour and 30 minutes

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A Attempt any 16 questions

- The cost of 2 kg of apples and 1 kg of grapes on a day was found to be ₹160. A linear equation [1] in two variables to represent the above data is
 - a) x 2y = 160b) 2x + y = 160c) x + y = 160d) 2x y = 160
- 3. In a given figure, if AB || CD || EF, PQ || RS, ∠RQD = 25° and ∠CQP = 60°, then ∠QRS is equal [1] to


4. The base of an isosceles triangle is 8 cm long and each of its equal sides measures 6 cm. The [1] area of the triangle is

- a) $8\sqrt{5}$ cm² c) $16\sqrt{3}$ cm² d) $16\sqrt{5}$ cm²
- 5. If $(16)^{2x+3} = (64)^{x+3}$, then $4^{2x-2} =$

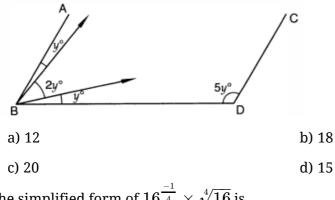
Maximum Marks: 40

	a) 64	b) 256	
	c) 512	d) 32	
6.	The equation of a line parallel to x-axis and 3	3 units above the origin is	[1]
	a) x = 3	b) x = -3	
	c) y = 3	d) y = -3	
7.	Ordinate of a point is negative in		[1]
	a) quadrant IV only	b) quadrant III only	
	c) quadrant I and II	d) quadrant III and IV	
8.	It is given that $\triangle ABC \cong \triangle FDE$ and $AB = 5$ cr following is true?	n, $\angle B$ = 40° and $\angle A$ = 80°. Then which of the	[1]
	a) DE = 5 cm, ∠E = 60°	b) DF = 5 cm, ∠E = 60°	
	c) DF = 5 cm, ∠F = 60°	d) DE = 5 cm, ∠D = 40°	
9.	An irrational number between $\sqrt{2} ext{ and } \sqrt{3}$	is	[1]
	a) $(\sqrt{2}+\sqrt{3})$	b) $\sqrt{2} imes \sqrt{3}$	
	c) 5 ^{1/4}	d) 6 ^{1/4}	

In fig., $riangle ABD \cong riangle ACD$, AB = AC, BD = DC name the criteria by which the triangles are 10. [1] congruent:

a) ASA

c) SSS


b) RHS

[1]

[1]

d) SAS

11. In Fig., if line segment AB is parallel to the line segment CD, what is the value of *y*?

- The simplified form of $16^{rac{-1}{4}} imes \sqrt[4]{16}$ is 12.
 - a) 16 b) 1
 - d) 6 c) 4

			543
13.	If $8^{x+1} = 64$, what is the value of 3^{2x+1} ?		[1]
	a) 3	b) 27	
	c) 1	d) 9	
14.	A point whose abscissa is -3 and ordinate 2 lie	es in	[1]
	a) second quadrant	b) fourth quadrant	
	c) first quadrant	d) third quadrant	
15.	The distance between the graph of the equati	ons x = - 3 and x = 2 is	[1]
	a) 1	b) 3	
	c) 2	d) 5	
16.	In $ riangle RST$ (See Figure), what is the value of x?		[1]
	B T B T		
	a) 100°	b) 40°	
	c) 90°	d) 80°	
17.	The sides of a triangle are x, y and z. If x + y = triangle is :	z = 7 m, y + z = 9 m, and z + x = 8 m, then area of the	[1]
	a) _{4 m²}	b) _{7 m²}	
	c) _{5 m²}	d) _{6 m²}	
18.	The marks obtained by 17 students in a math 91, 82, 100, 100, 96, 65, 82, 76, 79, 90, 46, 64, 72 Find the range of the data.	-	[1]
	a) 90	b) 46	
	c) 100	d) 54	
19.	The simplest form of $0.12ar{3}$ is		[1]
	a) none of these	b) $\frac{37}{330}$	
	c) $\frac{41}{330}$	d) $\frac{41}{333}$	
20.	The distance of the point P (4, 3) from the orig	gin is	[1]
	a) 3	b) 5	
	c) 7	d) 4	
	Sec	tion B	
		y 16 questions	
21.	The graph of the line x = -2 passes through		[1]
	a) (3, -2)	b) (-2, 3)	

	c) (0, 4)	d) (-1, 4)	
22.	The base of a right triangle is 8 cm and hype		[1]
	a) _{48 cm²}	b) _{24 cm²}	
	c) _{80 cm²}	d) 40 cm ²	
23.	The value of k if x = 3 and y = -2 is a solution		[1]
	a) 31	b) 23	
	c) 32	d) 30	
24.	The area of a triangle whose vertices are (0,	0), (4,0) and (0,6) is:	[1]
	a) 6 sq. units	b) 36 sq. units	
	c) 12 sq.units	d) 24 sq. units	
25.	$\frac{125}{216} \frac{\frac{-1}{3}}{3} =$		[1]
	a) $\frac{6}{5}$	b) 125	
	c) $\frac{5}{6}$	d) 216	
26.	Area of an equilateral triangle of side 10 cm	is:	[1]
	a) $50\sqrt{3}~{ m cm}^2$	b) $100\sqrt{3}$ cm ²	
	c) $10\sqrt{3}$ cm 2	d) $25\sqrt{3}\mathrm{cm}^2$	
27.	In figure, ABC is a triangle in which $\angle B = 22$ $\angle BAC$ and $AB = CD$. BE is the bisector of $\angle B$ \square [Hint: $\triangle ABE \cong \triangle DCE$]	∠C. D is a point on side BC such that AD bisects 5. The measure of ∠BAC is	[1]
	a) 74°	b) 73°	
	c) 72°	d) 95°	
28.	The rationalisation factor of $rac{1}{2\sqrt{3}-\sqrt{5}}$ is		[1]
	a) $(\sqrt{3}+\sqrt{5})$	b) $\sqrt{12}+\sqrt{5}$	
	c) $\sqrt{5}-2\sqrt{3}$	b) $\sqrt{12}+\sqrt{5}$ d) $\sqrt{3}+2\sqrt{5}$	
29.	The ordinate of any point on x-axis is		[1]
	a) 0	b) any number	
	c) -1	d) 1	
30.	In a bar graph, 0.25 cm length of a bar represents 2000 people is	esents 100 people. Then, the length of bar which	[1]
	a) 4.5 cm	b) 4 cm	
	c) 5 cm	d) 3.5 cm	
31.	The sides of a triangle are 5 cm, 12 cm and 2	13 cm. then its area is	[1]

	a) 0.003 m ²	b) 0.0015 m ²	
	c) 0.0024 m ²	d) 0.0026 m ²	
32.	If $\sqrt{2}=1.4142,$ then $\sqrt{rac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equal to		[1]
	a) 0.1718	b) 5.8282	
	c) 0.4142	d) 2.4142	
33.	In quadrilateral ABCD, BM and DN are drawn 8 cm. then BD is	perpendiculars to AC such that BM = DN. If BR =	[1]
	a) 12 cm	b) 4 cm	
	c) 16 cm	d) 2 cm	
34.	The empirical relation between mean, mode a	and median is:	[1]
	a) Mode = 3 Mean - 2 Median	b) Mode = 3 Median + 2 Mean	
	c) Mode = 3 Median - 2 Mean	d) Mode = 2 Median - 3 Mean	
35.	In the adjoining figure $\angle QPR = 62^{\circ}$ and $\angle PRQ$ $\angle PRQ$ respectively, then $\angle OQR$ and $\angle QOR :=$	9 = 64°. If OQ and OR and bisectors of ∠PQR and	[1]
	a) 121°, 20°	b) 27°, 121°	
	c) 20°, 80°	d) 26°, 124°	
36.	x = 2, y = 5 is a solution of the linear equation		[1]
	a) 5 x + y = 7	b) x + y = 7	
	c) 5x +2y = 7	d) x + 2y = 7	
37.	In the adjoining figure, AB = AC and AD \perp BC.	The rule by which $ riangle ABD \cong riangle ACD$ is	[1]

b) ASA a) RHS

- d) SSS
- c) SAS ${
 m d} x$. If $x=3+\sqrt{8}$, then the value of $\left(x^2+rac{1}{x^2}
 ight)$ is 38.

a) 32

c) 6

39.

b) 34

b) None of these

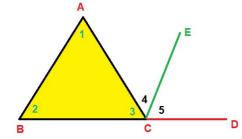
d) 12 The side BC of \triangle ABC is produced to a point D. The bisector of \angle A meets side in L. If \angle ABC = 30° and \angle ACD = 115°, then \angle ALC =

a) 85°

- d) $72rac{1}{2}^{\circ}$ c) 145°
- To draw a histogram to represent the following frequency distribution : 40.

Class interval	5-10	10-15	15-25	25-45	45-75
Frequency	6	12	10	8	15

The adjusted frequency for the class 25-45 is


a) 6	b) 5
c) 2	d) 3

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

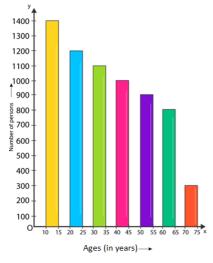
Once the Maths teacher of class IX D told students that today we will prove that the sum of all three angles is 180°. As shown in the figure, he told to draw any triangle ABC in the notebook. Further side BC was extended to D.

Now the teacher said to draw CE | | BA.

Further angles were named 1 to 5 as shown in the figure.

41.	$\angle 2$ is equal to which angle?		[1]
	a) ∠2	b) ∠4	
	c) ∠5	d) ∠3	
42.	BA CE and AC is the transverse line, So $\angle 2$	l is equal to which angle?	[1]
	a) ∠2	b) ∠3	
	c) ∠5	d) ∠4	
43.	What is value of $\angle 3 + \angle 4 + \angle 5$?		[1]
	a) 120°	b) 360°	
	c) 180°	d) 200°	

[1]


44. What is value of $\angle ECD = \angle 4 + \angle 5$?

45.

a) ∠1 + ∠2	b) ∠3 + ∠4	
c) ∠2 + ∠3	d) ∠3 + ∠5	
What is value of $\angle 1 + \angle 2 + \angle 3$?		[1]
a) 360°	b) ∠3 + ∠4 + ∠5 = 180°	
c) 280°	d) ∠3 + ∠4 = 100°	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

A healthcare survey was done by the state health and family welfare care board of the state of Punjab. The data is collected by forming age groups; i.e; 10-15, 20-25 and so on. The overall data from a town is given below in the form of a bar graph. Read the data carefully and answer the questions that follow.

46.	What is the percentage of the youngest age-group persons over those in the oldest age group?	[1]
-----	--	-----

	a) 466.67%	b) 500%	
	c) 500.67%	d) 400.56%	
47.	What is the total population of the town?		[1]
	a) 6700	b) 6800	
	c) 7000	d) 6600	
48.	How many persons are more in the age-grou	p 10-15 than in the age group 30-35?	[1]
	a) 300	b) 200	
	c) 250	d) 100	
49.	What is the age-group of exactly 1200 person	s living in the town?	[1]
	a) 20-25	b) 25-30	
	c) 10-15	d) 15-20	
50.	What is the total number of persons living in	the town in the age-groups 10-15 and 60-65?	[1]
	a) 2000	b) 2100	
	c) 2400	d) 2200	

Solution

Section A

1. (c) $13^{-2/15}$

Explanation: $\frac{13^{1/5}}{13^{1/3}}$ = $13^{1/5+1/3}$ = $13^{-2/15}$

2. **(b)** 2x + y = 160

Explanation: Let the cost of apples be ₹x per Kg and cost of grapes be ₹y per Kg. The cost of 2 kg of apples and 1 kg of grapes on a day was found to be ₹160.
So the equation will be

2x + y = 160

3. **(d)** 145°

```
Explanation: Given, PQ || RS
```

```
\anglePQC = \angleBRS = 60° [alternate exterior angles and \anglePQC = 60° (given)] and \angleDQR = \angleQRA = 25° [alternate interior angles]
```

[∠DQR = 25°, given] ∠QRS = ∠QRA + ∠ARS = ∠QRA + (180° – ∠BRS) [linear pair axiom] = 25° + 180° – 60°= 205° – 60°= 145°

4. (a) $8\sqrt{5}$ cm²

Explanation: Area of isosceles triangle $= rac{b}{4} \sqrt{4a^2 - b^2}$ Here,

a = 6 cm and b = 8 cm Thus, we have

$$egin{array}{l} rac{8}{4} imes \sqrt{4(6)^2 - 8^2} \ = rac{8}{4} imes \sqrt{144 - 64} \ = rac{8}{4} imes \sqrt{80} \ = rac{8}{4} imes 4\sqrt{5} \ = 8\sqrt{5} {
m cm}^2 \end{array}$$

5. **(b)** 256

```
Explanation: (16)^{2x+3} = (64)^{x+3}

\Rightarrow (2^4)^{2x+3} = (2^6)^{x+3}

\Rightarrow 2^{8x+12} = 2^{6x+18}

Comparing, we get

8x + 12 = 6x + 18

\Rightarrow 8x - 6x = 18 - 12

\Rightarrow 2x = 6

\Rightarrow x = \frac{6}{2}

\Rightarrow x=3

Now 4^{2x-2} = 4^{2 \times (3)-2} = 4^{6-2} = 4^4

= 4 \times 4 \times 4 \times 4 = 256
```

6. **(c)** y = 3

Explanation: The equation of a line parallel to x-axis and 3 units above the origin is y = 3

because when a line parallel to x axis in that case equation of line is y = a

where a is the co-ordinate of y-axis and 3 units above the origin value x -cordinate is 3 so required equation is y = 3

- 7. (d) quadrant III and IV
 Explanation: Since, sign of point in 3rd quadrant is (-, -).
 And in 4th quadrant, it is (+, -).
 So, Ordinate of a point is -ve only in 3rd and 4th quadrant.
- 8. **(b)** DF = 5 cm, $\angle E = 60^{\circ}$

Explanation: Given that: In $\triangle ABC$, AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$ Using angles sum property of triangle, we have $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow 80^{\circ} + 40^{\circ} + \angle C = 180$ $\Rightarrow 120^{\circ} + \angle C = 180^{\circ}$ [$\therefore \angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$] $\Rightarrow \angle C = 180^{\circ} - 120^{\circ}$ $\Rightarrow \angle C = 60^{\circ}$ It is given that $\triangle ABC \cong \triangle FDE$, so we have AB = FD, BC = DE and $AC = FE \& \angle A = \angle F$, $\angle B = \angle D$ and $\angle C = \angle E$ $\Rightarrow AB = FD = 5 \text{ cm}$ and $\angle C = \angle E = 60^{\circ}$.

9. (d) $6^{1/4}$

Explanation: $\sqrt{2}$ and $\sqrt{3}$ = $2^{\frac{1}{2}}$ and $3^{\frac{1}{2}}$ = $2^{\frac{2}{4}}$ and $3^{\frac{2}{4}}$ = $4^{\frac{1}{4}}$ and $9^{\frac{1}{4}}$ irrational between $\sqrt{2}$ and $\sqrt{3}$ is $6^{1/4}$

10. (c) SSS

Explanation: Given that two sides are equal and third side is common I.e AD hence all three corresponding sides are equal

11. **(c)** 20

Explanation: Since, AB || CD And, BD cuts them $y + 2y + y + 5y = 180^{\circ}$ (Consecutive interior angle)

9y = 180^o

 $y = 20^{\circ}$

12. **(b)** 1

$$16^{\frac{-1}{4}} \times \sqrt[4]{16}$$

But, 16=2⁴
so,
$$\Rightarrow 16^{\frac{-1}{4}} \times \sqrt[4]{16}$$

Explanation:
$$\Rightarrow \{(2)^4\}^{\frac{-1}{4}} \times (2)^{4 \times \frac{1}{4}}$$

$$\Rightarrow (2)^{4 \times \frac{-1}{4}} \times 2$$

$$\Rightarrow 2^{-1} \times 2$$

$$\Rightarrow \frac{2}{2}$$

$$\Rightarrow 1$$

1

13. **(b)** 27

Explanation: Given $8^{x+1} = 64$ $8^{x+1} = 64$

```
8^{x+1} = 8^{2}

\Rightarrow x+1=2

\Rightarrow x=2-1

\Rightarrow x=1

Now 3^{2x+1} = 3^{2(1)+1}

= 3^{2+1}

= 3^{3}

= 27
```

14. (a) second quadrant

Explanation: As we know that abscissa is negative in second and third coordinate and ordinate is positive in first and second coordinate. Therefore the given point (-3, 2) lies in second coordinate.

15. **(d)** 5

Explanation: Distance between the graph of the equations x = -3 and x = 2 is = 2 - (-3) = 5 units

16. **(a)** 100°

```
Explanation: In \triangleRST

\angleR + \angleS + \angleT = 180°

\Rightarrow 2a^{\circ} + x^{\circ} + 2b^{\circ} = 180^{\circ}

\Rightarrow x^{\circ} = 180^{\circ} - 2(a+b)^{\circ} ...(i)

Now, in \triangleROT

\angleORT + \angleROT + \angleOTR = 180°

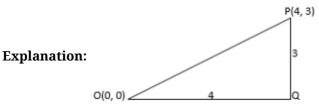
\Rightarrow a^{\circ} + 140^{\circ} + b^{\circ} = 180^{\circ}

\Rightarrow (a+b)^{\circ} = 180^{\circ} - 140^{\circ} = 40^{\circ} ...(ii)

From eq (i) and (ii)

x^{0} = 180^{\circ} - 2(40^{\circ})

\Rightarrow x = 100^{\circ}
```


17. **(d)** 6 m²

Explanation: Adding given three equaitons, $2x + 2y + 2z = 24 \Rightarrow x + y + z = 12$ Therefore, $s = \frac{12}{2} = 6$ m Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{6(6-x)(6-y)(6-z)}$ = $\sqrt{6(12-6-x)(12-6-y)(12-6-z)}$ = $\sqrt{6(y+z-6)(x+z-6)(x+y-6)}$ = $\sqrt{6(9-6)(8-6)(7-6)}$ = $\sqrt{6 \times 3 \times 2 \times 1}$ = 6 sq. m

18. **(d)** 54

Explanation: Highest Marks = 100 Lowest Marks = 46 Range of data = 100 - 46 = 54

- 19. (a) none of these Explanation: none of these Since $0.12\overline{3} = \frac{111}{900} = \frac{37}{300}$
- 20. **(b)** 5

Using Pythagorous theorem: OP^2 = OQ^2 + QP^2 OP^2 = 4^2 + 3^2 OP^2 = $\sqrt{16+9}$ = 5

Section **B**

21. **(b)** (-2, 3)

Explanation: Because value of x -co-ordinate is - 2

22. **(b)** 24 cm²

Explanation: Perpendicular = $\sqrt{10^2 - 8^2} = \sqrt{100 - 64} = 6$ cm Area of triangle = $\frac{1}{2} \times$ Base \times Height = $\frac{1}{2} \times 8 \times 6 = 24$ sq. cm

23. **(c)** 32

Explanation: We have to find the value of 'k' if x = 3 and y = -2 is a solution of the equation 2x - 13y = k2x - 13y = k

2(3) - 13(-2) = k 6 + 26 = k k = 32

24. (c) 12 sq.units

Explanation: We have a point (0,0) i.e; origin. A point (4,0) whose y-coordinate is zero.

So, this point is having 4 units in x-axis = base (let)

A point (0,6) i.e. 6 units in y-axis = height of a triangle

So, these point forms a right angle triangle

so, Area of a triangle = $\frac{1}{2} \times Base \times Height$ Area of a triangle = $\frac{1}{2} \times 6 \times 4 = 12$ sq. units

```
25. (a) \frac{6}{5}
```

Explanation:
$$\frac{125}{216} \frac{-1}{3}$$

= $\frac{5}{6} \frac{3 \times \frac{-1}{3}}{5}$
= $\frac{5}{6} \frac{-1}{5}$
= $\frac{6}{5}$

26. **(d)** $25\sqrt{3}$ cm²

Explanation: Area of equilateral triangle = $\frac{\sqrt{3}}{4}$ (Side)² = $\frac{\sqrt{3}}{4}$ (10)²

= $25\sqrt{3}$ sq. cm

27. **(c)** 72°

Explanation: Given that $\triangle ABC$ BE is bisector of $\angle B$ and AD is bisector of $\angle BAC$ $\angle B = 2\angle C$ By exterior angle theorem in triangle ADC $\angle ADB = \angle DAC + \angle C \dots$ (i) In $\triangle ADB$, $\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$ $2\angle C + \angle BAD + \angle DAC + \angle C = 180^{\circ}$ [From (i)] $3\angle C + \angle BAC = 180^{\circ}$ $\angle BAC = 180^{\circ} - 3\angle C \dots$ (ii) Therefore, AB = CD $\angle C = \angle DAC$ $\angle C = 1/2 \angle BAC \dots (iii)$ Putting value of Angle C in (ii), we get $\angle BAC = 180^{\circ} - 1/2 \angle BAC$ $\angle BAC + \frac{3}{2} \angle BAC = 180^{\circ}$ $\frac{5}{2} \angle BAC = 180^{\circ}$ $\angle BAC = \frac{180 \times 2}{5}$ $= 72^{\circ}$ $\angle BAC = 72^{\circ}$ (b) $\sqrt{12} + \sqrt{5}$

28. **(b)**
$$\sqrt{12} + \sqrt{3}$$

Explanation: $\frac{1}{2\sqrt{3}-\sqrt{5}}$ = $(2\sqrt{3}-\sqrt{5})(2\sqrt{3}+\sqrt{5})$ =12-5 = 7 Rational number $(2\sqrt{3}+\sqrt{5}) = (\sqrt{4\times3}+\sqrt{5}) = \sqrt{12}+\sqrt{5}$

29. **(a)** 0

Explanation: The ordinate of any point on x-axis is always zero. This means that this point hasn't covered any distance on y-axis.

30. (c) 5 cm

Explanation: Use unitary method 0.25 cm - 100 people So 1 cm - 400 people So for 2000 people: $\frac{2000}{400}$ = 5 cm

31. **(a)** 0.003 m²

Explanation: $s = \frac{5+12+13}{2} = 15 \text{ cm}$ Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{15(15-5)(15-12)(15-13)}$ = $\sqrt{15 \times 10 \times 3 \times 2}$ = 30 sq. cm = 0.003 sq. m

32. **(c)** 0.4142

Explanation: Given $\sqrt{2}$ =1.4142

$$\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} = \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}} = \sqrt{\frac{(\sqrt{2}-1)^2}{(\sqrt{2})^2 - (1)^2}} = \sqrt{\frac{(\sqrt{2}-1)^2}{2-1}} = (\sqrt{2}-1) = 1.4142 - 1 = 0.4142$$

33. **(c)** 16 cm

Explanation: In triangles $\triangle DNR$ and $\triangle BMR$, $\angle N = \angle M = 90^{\circ}$ $\angle NRD = \angle MRB$ (vertically opposite angles) BM = DN(Given) Therefore, $\triangle DNR$ and $\triangle MRB$ are congruent Therefore, BR = DR = 8 cm BD = 16 cm

34. **(c)** Mode = 3 Median - 2 Mean

Explanation: For frequency distribution: mean, mode & median connected by the relation mean - mode = 3(mean - median) Thus,

mode = 3 median - 2 mean

35. **(b)** 27°, 121°

Explanation: In \triangle PQR \angle QPR + \angle PQR + \angle PRQ = 180° (Angle sum property) \angle PQR = 180° - 62° - 64° \angle PQR = 54° \angle ORQ = 32° (OR is a bisector) \angle OQR = 27° (OQ is a bisector) In \triangle OQR \angle OQR + \angle ORQ + \angle QOR = 180° (Angle sum property) \angle QOR = 180° - 32° - 27° = 121°

36. **(b)** x + y = 7

Explanation: x = 2 and y = 5 satisfy the given equation.

37. (a) RHS

Explanation: In \triangle ABD and \triangle ADC, we have, \angle ADB = \angle ADC (Right angles) AB = AC (Given and hyptenuses) AD = AD (common in both) Therefore, $\triangle ABD \cong \triangle ACD$ by RHS.

38. **(b)** 34

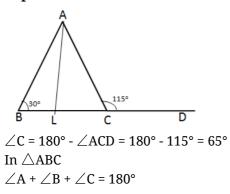
$$given: x = (3 + \sqrt{8})$$

$$\frac{1}{x} = \frac{1}{(3 + \sqrt{8})} = \frac{1}{(3 + \sqrt{8})} \times \frac{(3 - \sqrt{8})}{(3 - \sqrt{8})}$$

$$= \frac{(3 - \sqrt{8})}{(3^2 - (\sqrt{8})^2)} = \frac{(3 + \sqrt{8})}{(9 - 8)} = (3 - \sqrt{8})$$

$$(x + \frac{1}{x}) = (3 + \sqrt{8}) + (3 - \sqrt{8}) = 6$$

$$\Rightarrow (x + \frac{1}{x})^2 = 6^2 = 36$$


$$\Rightarrow (x^2 + \frac{1}{x^2}) + 2 \times x \times \frac{1}{x} = 36$$

$$\Rightarrow (x^2 + \frac{1}{x^2}) + 2 = 36$$

$$\Rightarrow (x^2 + \frac{1}{x^2}) = 36 - 2 = 34$$

39. **(d)** $72\frac{1}{2}^{\circ}$

Explanation:

 $\Rightarrow \angle A = 180 - 30^{\circ} - 65^{\circ}$ $\Rightarrow \angle A = 85^{\circ}$ Now in $\triangle ALC$ $\angle ALC + \angle LAC + \angle C = 180^{\circ}$ $\Rightarrow \angle ALC = 180^{\circ} - \angle LAC - \angle C$ $= 180^{\circ} - \frac{\angle A}{2} - \angle C$ $= 180^{\circ} - \frac{85^{\circ}}{2} - 65^{\circ}$ $= \frac{145^{\circ}}{2}$ $= 72\frac{1}{2}^{\circ}$ **(c)** 2 40. **Explanation:** Adjusted frequency = $\left(\frac{\text{frequency of the class}}{\text{width of the class}}\right) \times 5$ Therefore, Adjusted frequency of 25 - 45 = $rac{8}{20} imes 5=2$ Section C **(c)** ∠5 41. **Explanation**: ∠5 42. **(c)** ∠5 **Explanation**: ∠5 (c) 180° 43. Explanation: 180° **(a)** ∠1 + ∠2 44. **Explanation:** $\angle 1 + \angle 2$ **(b)** $\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$ 45. **Explanation:** $\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$ 46. (a) 466.67% Explanation: 466.67% (a) 6700 47. Explanation: 6700 48. (a) 300 Explanation: 300 49. (a) 20-25 Explanation: 20-25 (d) 2200 50. Explanation: 2200