

TICS DPP No. 23 Total Marks : 31 Max. Time : 35 min.

Торіс	s : Continuity &	Derivability, Function, I	Limits, Quadratic E	quation, Trigonometric	Ratio	
Type of Questions M.M.						
Single choice Objective (no negative marking) Q.1,2(3 marks, 3 min.)Multiple choice objective (no negative marking) Q.3(5 marks, 4 min.)Subjective Questions (no negative marking) Q.4,5,6,7,8(4 marks, 5 min.)					[6, 6] [5, 4] [20, 25]	
1.	If f(x) = $\frac{a\cos x - \cos bx}{x^2}$, x \ne 0 and f(0) = 4 is continuous at x = 0, then the ordered pair (a, b) is					
	(A) (± 1, 3)	(B) (1, ± 3)	(C) (–1, –3)	(D) (-1, 3)		
2.	•	Let A = {9, 10, 11, 12, 13} and f : A \rightarrow N be a function defined as f(x) = Highest prime factor of x. Then number of elements in the range of f(x) is :-				
	(A) 5	(B) 4	(C) 3	(D) None of th	nese	
3.	Which of the statements(s) is/are INCORRECT ? (A) If $f + g$ is continuous at $x = a$, then f and g are continuous at $x = a$.					
	(B) If $\lim_{x \to a} (fg)$ exists, then $\lim_{x \to a} f$ and $\lim_{x \to a} g$ both exists.					
	(C) Discontinuity at x = a \Rightarrow non existences of limit (D) All functions defined on a closed interval attain maximum or a minimum value in its interval.					
4.	Evaluate o					

(i)
$$\lim_{x \to 0} \frac{\cos(xe^x) - \cos(xe^{-x})}{x^3}$$
 (ii) $\lim_{x \to 0} (\cos ax)^{\cos ec^2 bx}$

5. Evaluate :

(i)
$$\lim_{x \to 2a^+} \frac{\sqrt{x - 2a} + \sqrt{x} - \sqrt{2a}}{\sqrt{x^2 - 4a^2}}$$
 (ii) $\lim_{x \to 0^+} \left(\frac{e^{x \ln(2^x - 1)} - (2^x - 1)^x \sin x}{e^{x \ln x}} \right)^{1/x}$

Find the sum of an infinite geometric progression whose first term is the limiting value of the function 6.

 $f(x) = \frac{\sin\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - 2\cos x}$ at $x = \frac{\pi}{6}$ and whose common ratio is the limiting value of the function

$$g(x) = \frac{\sin(x)^{1/3} \ell n (1+3x)}{(\arctan \sqrt{x})^2 \left(e^{5 \cdot x^{1/3}} - 1\right)} \text{ as } x \to 0^+.$$

- Find the exact value of the expression $\frac{\tan 70^\circ \tan 20^\circ 2\tan 40^\circ}{\tan 10^\circ}$. 7.
- Find all values of a for which the inequality $(a 3) x^2 2ax + 3a 6 > 0$ is satisfied for all values of x. 8.

Answers Key

1. (B) **2.** (B) **3.** (A)(B)(C)(D)

4. (i) - 2 (ii)
$$e^{-\frac{a^2}{2b^2}}$$

5. (i)
$$\frac{1}{2\sqrt{a}}$$
 (ii) $\frac{1}{e} \ell n 2$ **6.** $a = 1, r = \frac{3}{5}, S_{\infty} = \frac{5}{2}$

7. 4 **8.**
$$a \in (6, \infty)$$